Newer
Older
(**************************************************************************)
(* *)
(* This file is part of Frama-C. *)
(* *)
(* CEA (Commissariat à l'énergie atomique et aux énergies *)
(* alternatives) *)
(* *)
(* you can redistribute it and/or modify it under the terms of the GNU *)
(* Lesser General Public License as published by the Free Software *)
(* Foundation, version 2.1. *)
(* *)
(* It is distributed in the hope that it will be useful, *)
(* but WITHOUT ANY WARRANTY; without even the implied warranty of *)
(* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *)
(* GNU Lesser General Public License for more details. *)
(* *)
(* See the GNU Lesser General Public License version 2.1 *)
(* for more details (enclosed in the file licenses/LGPLv2.1). *)
(* *)
(**************************************************************************)
open Cil_types
module Orig_project =
State_builder.Option_ref(Project.Datatype)(
struct
let name = "Ast_diff.OrigProject"
let dependencies = []
end)
type 'a correspondance =
[ `Same of 'a (** symbol with identical definition has been found. *)
| `Not_present (** no correspondance *)
]
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
module Correspondance_input =
struct
type 'a t = 'a correspondance
let name a = Type.name a ^ " correspondance"
let module_name = "Correspondance"
let structural_descr _ = Structural_descr.t_abstract
let reprs x = [ `Not_present; `Same x]
let mk_equal eq x y =
match x,y with
| `Same x, `Same y -> eq x y
| `Not_present, `Not_present -> true
| `Same _, `Not_present
| `Not_present, `Same _ -> false
let mk_compare cmp x y =
match x,y with
| `Not_present, `Not_present -> 0
| `Not_present, `Same _ -> -1
| `Same x, `Same y -> cmp x y
| `Same _, `Not_present -> 1
let mk_hash h = function
| `Same x -> 117 * h x
| `Not_present -> 43
let map f = function
| `Same x -> `Same (f x)
| `Not_present -> `Not_present
let mk_internal_pretty_code pp prec fmt = function
| `Not_present -> Format.pp_print_string fmt "`Not_present"
| `Same x ->
let pp fmt = Format.fprintf fmt "`Same %a" (pp Type.Call) x in
Type.par prec Call fmt pp
let mk_pretty pp fmt = function
| `Not_present -> Format.pp_print_string fmt "N/A"
| `Same x -> Format.fprintf fmt " => %a" pp x
let mk_varname v = function
| `Not_present -> "x"
| `Same x -> v x ^ "_c"
let mk_mem_project mem query = function
| `Not_present -> false
| `Same x -> mem query x
end
module Correspondance = Datatype.Polymorphic(Correspondance_input)
(* for kernel function, we are a bit more precise than a yes/no answer.
More precisely, we check whether a function has the same spec,
the same body, and whether its callees have changed (provided
the body itself is identical, otherwise, there's no point in checking
the callees.
*)
type partial_correspondance =
[ `Spec_changed (* body and callees haven't changed *)
| `Body_changed (* spec hasn't changed *)
| `Callees_changed (* spec and body haven't changed *)
| `Callees_spec_changed (* body hasn't changed *)
]
type body_correspondance =
[ `Body_changed
| `Callees_changed
| `Same_body
]
let (<=>) res (cmp,x,y) = if res <> 0 then res else cmp x y
let compare_pc pc1 pc2 =
match pc1, pc2 with
| `Spec_changed, `Spec_changed -> 0
| `Spec_changed, _ -> -1
| _, `Spec_changed -> 1
| `Body_changed, `Body_changed -> 0
| `Body_changed, _ -> -1
| _, `Body_changed -> 1
| `Callees_changed, `Callees_changed -> 0
| `Callees_changed, _ -> -1
| _, `Callees_changed -> 1
| `Callees_spec_changed, `Callees_spec_changed -> 0
let string_of_pc = function
| `Spec_changed -> "Spec_changed"
| `Body_changed -> "Body_changed"
| `Callees_changed -> "Callees_changed"
| `Callees_spec_changed -> "Callees_spec_changed"
let pretty_pc fmt =
let open Format in
function
| `Spec_changed -> pp_print_string fmt "(spec changed)"
| `Body_changed -> pp_print_string fmt "(body changed)"
| `Callees_changed -> pp_print_string fmt "(callees changed)"
| `Callees_spec_changed -> pp_print_string fmt "(callees and spec changed)"
type 'a code_correspondance =
[ 'a correspondance
| `Partial of 'a * partial_correspondance
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
module Code_correspondance_input =
struct
type 'a t = 'a code_correspondance
let name a = Type.name a ^ " code_correspondance"
let module_name = "Code_correspondance"
let structural_descr _ = Structural_descr.t_abstract
let reprs = Correspondance_input.reprs
let mk_equal eq x y =
match x,y with
| `Partial(x,pc), `Partial(x',pc') -> eq x x' && (compare_pc pc pc' = 0)
| `Partial _, _ | _, `Partial _ -> false
| (#correspondance as c), (#correspondance as c') ->
Correspondance_input.mk_equal eq c c'
let mk_compare cmp x y =
match x,y with
| `Partial(x,pc), `Partial(x',pc') ->
cmp x x' <=> (compare_pc,pc,pc')
| `Partial _, `Same _ -> -1
| `Same _, `Partial _ -> 1
| `Partial _, `Not_present -> 1
| `Not_present, `Partial _ -> -1
| (#correspondance as c), (#correspondance as c') ->
Correspondance_input.mk_compare cmp c c'
let mk_hash hash = function
| `Partial (x,_) -> 57 * hash x
| #correspondance as x -> Correspondance_input.mk_hash hash x
let map f = function
| `Partial(x,pc) -> `Partial(f x,pc)
| (#correspondance as x) -> Correspondance_input.map f x
let mk_internal_pretty_code pp prec fmt = function
| `Partial (x,flags) ->
let pp fmt =
Format.fprintf fmt "`Partial (%a,%s)"
(pp Type.Call) x (string_of_pc flags)
in
Type.par prec Call fmt pp
| #correspondance as x ->
Correspondance_input.mk_internal_pretty_code pp prec fmt x
let mk_pretty pp fmt = function
| `Partial(x,flags) ->
Format.fprintf fmt "-> %a %a" pp x pretty_pc flags
| #correspondance as x -> Correspondance_input.mk_pretty pp fmt x
let mk_varname f = function
| `Partial (x,_) -> f x ^ "_pc"
| #correspondance as x -> Correspondance_input.mk_varname f x
let mk_mem_project f p = function
| `Partial (x,_) -> f p x
| #correspondance as x -> Correspondance_input.mk_mem_project f p x
end
module Code_correspondance = Datatype.Polymorphic(Code_correspondance_input)
module Info(I: sig val name: string end) =
(struct
let name = "Ast_diff." ^ I.name
let dependencies = [ Ast.self; Orig_project.self ]
let size = 43
end)
Virgile Prevosto
committed
(* Map of symbols under analysis, in case of recursion.
Note that this can only happen with aggregate types, logic
types, and function (both C and ACSL). Other symbols must be
correctly ordered in a well-formed AST
*)
type is_same_env =
{
compinfo: compinfo Cil_datatype.Compinfo.Map.t;
kernel_function: kernel_function Kernel_function.Map.t;
local_vars: varinfo Cil_datatype.Varinfo.Map.t;
Virgile Prevosto
committed
logic_info: logic_info Cil_datatype.Logic_info.Map.t;
logic_type_info: logic_type_info Cil_datatype.Logic_type_info.Map.t;
logic_local_vars: logic_var Cil_datatype.Logic_var.Map.t;
logic_type_vars: string Datatype.String.Map.t;
(* goto targets pairs are checked afterwards, so that forward gotos
do not interrupt the linear visit.
We thus collect them in the environment.
*)
goto_targets: (stmt * stmt) list;
Virgile Prevosto
committed
}
Virgile Prevosto
committed
module type Correspondance_table = sig
include State_builder.Hashtbl
val pretty_data: Format.formatter -> data -> unit
end
module Build(H:Datatype.S_with_collections)(D:Datatype.S):
Correspondance_table with type key = H.t and type data = D.t =
struct
include
State_builder.Hashtbl(H.Hashtbl)(D)
(Info(struct let name = "Ast_diff." ^ D.name end))
let pretty_data = D.pretty
end
Virgile Prevosto
committed
module Build_correspondance(H:Datatype.S_with_collections) =
Build(H)(Correspondance.Make(H))
module Build_code_correspondance(H:Datatype.S_with_collections) =
Build(H)(Code_correspondance.Make(H))
Virgile Prevosto
committed
module Varinfo = Build_correspondance(Cil_datatype.Varinfo)
Virgile Prevosto
committed
module Compinfo = Build_correspondance(Cil_datatype.Compinfo)
Virgile Prevosto
committed
module Enuminfo = Build_correspondance(Cil_datatype.Enuminfo)
Virgile Prevosto
committed
module Enumitem = Build_correspondance(Cil_datatype.Enumitem)
Virgile Prevosto
committed
module Typeinfo = Build_correspondance(Cil_datatype.Typeinfo)
module Stmt = Build_code_correspondance(Cil_datatype.Stmt)
Virgile Prevosto
committed
module Logic_info = Build_correspondance(Cil_datatype.Logic_info)
Virgile Prevosto
committed
module Logic_type_info = Build_correspondance(Cil_datatype.Logic_type_info)
module Logic_ctor_info = Build_correspondance(Cil_datatype.Logic_ctor_info)
Virgile Prevosto
committed
module Fieldinfo = Build_correspondance(Cil_datatype.Fieldinfo)
Virgile Prevosto
committed
module Model_info = Build_correspondance(Cil_datatype.Model_info)
module Logic_var = Build_correspondance(Cil_datatype.Logic_var)
module Kf = Kernel_function
module Kernel_function = Build_code_correspondance(Kernel_function)
Virgile Prevosto
committed
module Fundec = Build_correspondance(Cil_datatype.Fundec)
let make_correspondance candidate has_same_spec code_corres =
match has_same_spec, code_corres with
| false, `Body_changed -> `Not_present
| false, `Callees_changed ->
`Partial(candidate,`Callees_spec_changed)
| false, `Same_body ->
`Partial(candidate, `Spec_changed)
| true, `Same_body ->
`Same candidate
| true, ((`Body_changed|`Callees_changed) as c) ->
`Partial(candidate, c)
let (&&>) (res,env) f =
match res with
| `Body_changed -> `Body_changed, env
| `Same_body -> f env
| `Callees_changed ->
let res', env = f env in
match res' with
| `Body_changed -> `Body_changed, env
| `Same_body | `Callees_changed -> `Callees_changed, env
let (&&&) (res, env) f = if res then f env else false, env
Virgile Prevosto
committed
let empty_env =
{ compinfo = Cil_datatype.Compinfo.Map.empty;
kernel_function = Kf.Map.empty;
local_vars = Cil_datatype.Varinfo.Map.empty;
Virgile Prevosto
committed
logic_info = Cil_datatype.Logic_info.Map.empty;
logic_type_info = Cil_datatype.Logic_type_info.Map.empty;
logic_local_vars = Cil_datatype.Logic_var.Map.empty;
logic_type_vars = Datatype.String.Map.empty;
Virgile Prevosto
committed
}
let add_locals f f' env =
let add_one env v v' =
{ env with local_vars = Cil_datatype.Varinfo.Map.add v v' env.local_vars }
in
List.fold_left2 add_one env f f'
(* local static variables are in fact global. As soon as we have determined
that they have a correspondance, we add them to the global bindings *)
let add_statics l l' =
let add_one v v' = Varinfo.add v (`Same v') in
List.iter2 add_one l l'
let add_logic_vars p p' env =
let add_one env lv lv' =
{ env with
logic_local_vars =
Cil_datatype.Logic_var.Map.add lv lv' env.logic_local_vars }
in
List.fold_left2 add_one env p p'
let add_logic_info v v' env =
{ env with logic_info = Cil_datatype.Logic_info.Map.add v v' env.logic_info }
let logic_type_vars_env l l' env =
if List.length l = List.length l' then begin
let logic_type_vars =
List.fold_left2 (fun env s s' -> Datatype.String.Map.add s s' env)
env.logic_type_vars l l'
in
true, { env with logic_type_vars }
end else false, env
let formals_correspondance f f' =
let add_one v v' = Varinfo.add v (`Same v') in
List.iter2 add_one f f'
let logic_prms_correspondance p p' =
let add_one lv lv' =
Logic_var.add lv (`Same lv') in
List.iter2 add_one p p'
(** TODO: use location info to detect potential renaming.
Requires some information about syntactic diff. *)
let find_candidate_type ?loc:_loc ti =
if Globals.Types.mem_type Logic_typing.Typedef ti.tname then begin
match Globals.Types.global Logic_typing.Typedef ti.tname with
| GType(ti,_) -> Some ti
| g ->
Kernel.fatal
"Expected typeinfo instead of %a" Cil_datatype.Global.pretty g
end else None
let find_candidate_compinfo ?loc:_loc ci =
let su = if ci.cstruct then Logic_typing.Struct else Logic_typing.Union in
if Globals.Types.mem_type su ci.cname then begin
match Globals.Types.find_type su ci.cname with
| TComp(ci', _) -> Some ci'
| t ->
Kernel.fatal
"Expected compinfo instead of %a"
Printer.pp_typ t
end else None
let find_candidate_enuminfo ?loc:_loc ei =
if Globals.Types.mem_type Logic_typing.Enum ei.ename then begin
match Globals.Types.find_type Logic_typing.Enum ei.ename with
| TEnum(ei,_) -> Some ei
| t ->
Kernel.fatal
"Expected enuminfo instead of %a"
Printer.pp_typ t
end else None
let find_candidate_varinfo ?loc:_loc vi where =
try
Some (Globals.Vars.find_from_astinfo vi.vname where)
with Not_found -> None
let find_candidate_func ?loc:_loc kf =
try
Some (Globals.Functions.find_by_name (Kf.get_name kf))
with Not_found -> None
let find_candidate_logic_type ?loc:_loc ti =
try
Some (Logic_env.find_logic_type ti.lt_name)
with Not_found -> None
Virgile Prevosto
committed
let is_same_opt f o o' env =
match o, o' with
| None, None -> true
Virgile Prevosto
committed
| Some v, Some v' -> f v v' env
| _ -> false
Virgile Prevosto
committed
let is_same_opt_env f o o' env =
match o, o' with
| None, None -> true, env
| Some v, Some v' -> f v v' env
| _ -> false, env
let is_same_pair f1 f2 (x1,x2) (y1,y2) env = f1 x1 y1 env && f2 x2 y2 env
Virgile Prevosto
committed
let rec is_same_list f l l' env =
match l, l' with
| [], [] -> true
| h::t, h'::t' -> f h h' env && is_same_list f t t' env
| _ -> false
Virgile Prevosto
committed
let rec is_same_list_env f l l' env =
match l, l' with
| [], [] -> true, env
| h::t, h'::t' -> f h h' env &&& is_same_list_env f t t'
| _ -> false, env
let get_original_kf vi =
Virgile Prevosto
committed
let selection = State_selection.of_list
[Kernel_function.self; Annotations.funspec_state; Globals.Functions.self]
in
Project.on ~selection (Orig_project.get()) Globals.Functions.get vi
let check_goto_targets env =
let check_one (s,s') =
match Stmt.find s with
| `Not_present -> false
| `Same s'' | `Partial (s'',_) ->
(* From the goto point of view, what matters is that the targets
themselves have a correspondance. If they're e.g. calls to a
function that has itself changed, or blocks whose content has
changed, it has already been detected when comparing the targets,
and will be dealt with accordingly as the fundec level. *)
Cil_datatype.Stmt.equal s' s''
| exception Not_found -> false
in
if List.for_all check_one env.goto_targets then `Same_body, env
else `Body_changed, env
let is_matching_fieldinfo fi fi' =
match Fieldinfo.find fi with
| `Not_present -> false
| `Same fi'' -> Cil_datatype.Fieldinfo.equal fi' fi''
| exception Not_found ->
Kernel.fatal "Unbound field %a in AST diff"
Cil_datatype.Fieldinfo.pretty fi
let is_matching_model_info mf mf' =
match Model_info.find mf with
| `Not_present -> false
| `Same mf'' -> Cil_datatype.Model_info.equal mf' mf''
| exception Not_found ->
Kernel.fatal "Unbound model field %a in AST diff"
Cil_datatype.Model_info.pretty mf
let is_matching_logic_type_var a a' env =
match Datatype.String.Map.find_opt a env.logic_type_vars with
| None -> false
| Some a'' -> Datatype.String.equal a' a''
module Unop = struct
type t = [%import: Cil_types.unop] [@@deriving eq]
end
module Binop = struct
type t = [%import: Cil_types.binop] [@@deriving eq]
end
module Ikind = struct
type t = [%import: Cil_types.ikind] [@@deriving eq]
end
module Fkind = struct
type t = [%import: Cil_types.fkind] [@@deriving eq]
end
module Predicate_kind = struct
type t = [%import: Cil_types.predicate_kind] [@@deriving eq]
end
module Logic_builtin_label = struct
type t = [%import: Cil_types.logic_builtin_label] [@@deriving eq]
end
module Relation = struct
type t = [%import: Cil_types.relation] [@@deriving eq]
end
module Termination_kind = struct
type t = [%import: Cil_types.termination_kind] [@@deriving eq]
end
let is_same_behavior_set l l' =
Datatype.String.Set.(equal (of_list l) (of_list l'))
let are_same_cd_clauses l l' =
let module StringSetSet = Set.Make(Datatype.String.Set) in
let of_list l =
StringSetSet.of_list (List.map Datatype.String.Set.of_list l)
in
StringSetSet.equal (of_list l) (of_list l')
let is_same_logic_label l l' _env =
match l, l' with
| StmtLabel s, StmtLabel s' ->
(match Stmt.find !s with
| `Not_present -> false
| `Same s'' | `Partial(s'',_) ->
Cil_datatype.Stmt.equal !s' s''
| exception Not_found -> false)
| FormalLabel s, FormalLabel s' -> Datatype.String.equal s s'
| BuiltinLabel l, BuiltinLabel l' -> Logic_builtin_label.equal l l'
| (StmtLabel _ | FormalLabel _ | BuiltinLabel _), _ -> false
let rec is_same_predicate p p' env =
(* names are semantically irrelevant. *)
is_same_predicate_node p.pred_content p'.pred_content env
and is_same_predicate_node p p' env =
match p, p' with
| Pfalse, Pfalse -> true
| Ptrue, Ptrue -> true
| Papp(p,labs,args), Papp(p',labs',args') ->
is_matching_logic_info p p' env &&
is_same_list is_same_logic_label labs labs' env &&
is_same_list is_same_term args args' env
| Pseparated t, Pseparated t' -> is_same_list is_same_term t t' env
| Prel (r,t1,t2), Prel(r',t1',t2') ->
Relation.equal r r' && is_same_term t1 t1' env && is_same_term t2 t2' env
| Pand(p1,p2), Pand(p1',p2')
| Por(p1,p2), Por(p1',p2')
| Pxor(p1,p2), Pxor(p1',p2')
| Pimplies(p1,p2), Pimplies(p1',p2')
| Piff(p1,p2), Piff(p1',p2') ->
is_same_predicate p1 p1' env && is_same_predicate p2 p2' env
| Pnot p, Pnot p' -> is_same_predicate p p' env
| Pif(t,p1,p2), Pif(t',p1',p2') ->
is_same_term t t' env &&
is_same_predicate p1 p1' env &&
is_same_predicate p2 p2' env
| Plet(v,p), Plet(v',p') ->
if is_same_logic_info v v' env then begin
let env = add_logic_info v v' env in
let env = add_logic_vars [v.l_var_info] [v'.l_var_info] env in
is_same_predicate p p' env
end else false
| Pforall(q,p), Pforall(q',p')
| Pexists(q,p), Pexists(q',p') ->
if is_same_list is_same_logic_var q q' env then begin
let env = add_logic_vars q q' env in
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
is_same_predicate p p' env
end else false
| Pat(p,l), Pat(p',l') ->
is_same_predicate p p' env && is_same_logic_label l l' env
| Pobject_pointer(l,t), Pobject_pointer(l',t')
| Pvalid_read(l,t), Pvalid_read(l',t')
| Pvalid(l,t), Pvalid(l',t')
| Pinitialized(l,t), Pinitialized(l',t')
| Pdangling(l,t), Pdangling(l',t')
| Pallocable(l,t), Pallocable(l',t')
| Pfreeable(l,t), Pfreeable(l',t') ->
is_same_logic_label l l' env && is_same_term t t' env
| Pfresh(l1,l2,p,s), Pfresh(l1',l2',p',s') ->
is_same_logic_label l1 l1' env &&
is_same_logic_label l2 l2' env &&
is_same_term p p' env &&
is_same_term s s' env
| Pvalid_function(t), Pvalid_function(t') -> is_same_term t t' env
| (Pfalse | Ptrue | Papp _ | Pseparated _ | Prel _ | Pand _ | Por _ | Pxor _
| Pimplies _ | Piff _ | Pnot _ | Pif _ | Plet _ | Pforall _ | Pexists _
| Pat _ | Pobject_pointer _ | Pvalid_read _ | Pvalid _ | Pinitialized _
| Pdangling _ | Pallocable _ | Pfreeable _ | Pfresh _
| Pvalid_function _), _ -> false
and is_same_logic_constant c c' env =
match c,c' with
| LEnum ei, LEnum ei' ->
(match enumitem_correspondance ei env with
| `Same ei'' -> Cil_datatype.Enumitem.equal ei' ei''
| `Not_present -> false)
| LEnum _, _ | _, LEnum _ -> false
| (Integer _ | LStr _ | LWStr _ | LChr _ | LReal _), _ ->
Cil_datatype.Logic_constant.equal c c'
and is_same_term t t' env =
is_same_term_node t.term_node t'.term_node env
and is_same_term_node t t' env =
match t,t' with
| TConst c, TConst c' -> is_same_logic_constant c c' env
| TLval lv, TLval lv' -> is_same_term_lval lv lv' env
| TSizeOf t, TSizeOf t'
| TAlignOf t, TAlignOf t' -> is_same_type t t' env
| TSizeOfE t, TSizeOfE t'
| TAlignOfE t, TAlignOfE t' -> is_same_term t t' env
| TSizeOfStr s, TSizeOfStr s' -> String.length s = String.length s'
| TUnOp(op,t), TUnOp(op',t') -> Unop.equal op op' && is_same_term t t' env
| TBinOp(op,t1,t2), TBinOp(op',t1',t2') ->
Binop.equal op op' && is_same_term t1 t1' env && is_same_term t2 t2' env
| TCastE(typ,term), TCastE(typ',term') ->
is_same_type typ typ' env && is_same_term term term' env
| TAddrOf lv, TAddrOf lv'
| TStartOf lv, TStartOf lv' -> is_same_term_lval lv lv' env
| Tapp(f,labs,args), Tapp(f',labs',args') ->
is_matching_logic_info f f' env &&
is_same_list is_same_logic_label labs labs' env &&
is_same_list is_same_term args args' env
| Tlambda(q,t), Tlambda(q',t') ->
if is_same_list is_same_logic_var q q' env then begin
let env = add_logic_vars q q' env in
is_same_term t t' env
end else false
| TDataCons(c,args), TDataCons(c',args') ->
is_matching_logic_ctor c c' env &&
is_same_list is_same_term args args' env
| Tif(c,t1,t2), Tif(c',t1',t2') ->
is_same_term c c' env &&
is_same_term t1 t1' env &&
is_same_term t2 t2' env
| Tat(t,l), Tat(t',l') ->
is_same_term t t' env && is_same_logic_label l l' env
| Tbase_addr(l,t), Tbase_addr(l',t')
| Toffset(l,t), Toffset(l',t')
| Tblock_length(l,t), Tblock_length(l',t') ->
is_same_logic_label l l' env && is_same_term t t' env
| Tnull, Tnull -> true
| TLogic_coerce(typ,t), TLogic_coerce(typ',t') ->
is_same_logic_type typ typ' env && is_same_term t t' env
| TUpdate(a,o,v), TUpdate(a',o',v') ->
is_same_term a a' env &&
is_same_term_offset o o' env &&
is_same_term v v' env
| Ttypeof t, Ttypeof t' -> is_same_term t t' env
| Ttype t, Ttype t' -> is_same_type t t' env
| Tempty_set, Tempty_set -> true
| Tunion l, Tunion l'
| Tinter l, Tinter l' -> is_same_list is_same_term l l' env
| Tcomprehension(t,q,p), Tcomprehension(t',q',p') ->
if is_same_list is_same_logic_var q q' env then begin
let env = add_logic_vars q q' env in
is_same_term t t' env && is_same_opt is_same_predicate p p' env
end else false
| Trange(l,u), Trange(l',u') ->
is_same_opt is_same_term l l' env && is_same_opt is_same_term u u' env
| Tlet(v,t), Tlet(v',t') ->
if is_same_logic_info v v' env then begin
let env = add_logic_info v v' env in
let env = add_logic_vars [v.l_var_info] [v'.l_var_info] env in
is_same_term t t' env
end else false
| (TConst _ | TLval _ | TSizeOf _ | TSizeOfE _ | TSizeOfStr _ | TAlignOf _
| TAlignOfE _ | TUnOp _ | TBinOp _ | TCastE _ | TAddrOf _ | TStartOf _
| Tapp _ | Tlambda _ | TDataCons _ | Tif _ | Tat _ | Tbase_addr _
| Toffset _ | Tblock_length _ | Tnull | TLogic_coerce _ | TUpdate _
| Ttypeof _ | Ttype _ | Tempty_set | Tunion _ | Tinter _ | Tcomprehension _
| Tlet _ | Trange _), _ -> false
and is_same_term_lval (lh,lo) (lh',lo') env =
is_same_term_lhost lh lh' env && is_same_term_offset lo lo' env
and is_same_term_lhost lh lh' env =
match lh, lh' with
| TVar lv, TVar lv' -> is_matching_logic_var lv lv' env
| TResult _, TResult _ -> true
| TMem p, TMem p' -> is_same_term p p' env
| (TVar _ | TResult _ | TMem _), _ -> false
and is_matching_logic_var lv lv' env =
match lv.lv_origin, lv'.lv_origin with
| Some vi, Some vi' -> is_matching_varinfo vi vi' env
| None, None ->
(match Cil_datatype.Logic_var.Map.find_opt lv env.logic_local_vars with
| Some lv'' -> Cil_datatype.Logic_var.equal lv' lv''
| None ->
(match Logic_var.find lv with
| `Not_present -> false
| `Same lv'' -> Cil_datatype.Logic_var.equal lv' lv''
| exception Not_found ->
if lv.lv_name = "\\exit_status" && lv'.lv_name = "\\exit_status"
then begin Logic_var.add lv (`Same lv'); true end
else begin
match logic_var_correspondance lv env with
| None -> false
| Some lv'' -> Cil_datatype.Logic_var.equal lv' lv''
end))
| _ -> false
and logic_var_correspondance lv env =
match find_candidate_logic_var lv env with
| None -> None
| Some lv' -> Logic_var.add lv (`Same lv'); Some lv'
and is_same_term_offset lo lo' env =
match lo, lo' with
| TNoOffset, TNoOffset -> true
| TField(f,o), TField(f',o') ->
is_matching_fieldinfo f f' && is_same_term_offset o o' env
| TModel(f,o), TModel(f',o') ->
is_matching_model_info f f' && is_same_term_offset o o' env
| TIndex(i,o), TIndex(i',o') ->
is_same_term i i' env && is_same_term_offset o o' env
| (TNoOffset | TField _ | TModel _ | TIndex _), _ -> false
and is_same_toplevel_predicate p p' env =
Predicate_kind.equal p.tp_kind p'.tp_kind &&
is_same_predicate p.tp_statement p'.tp_statement env
and is_same_identified_predicate p p' env =
is_same_toplevel_predicate p.ip_content p'.ip_content env
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
and is_same_identified_term t t' env =
is_same_term t.it_content t'.it_content env
and is_same_post_cond (k,p) (k',p') env =
Termination_kind.equal k k' && is_same_identified_predicate p p' env
and is_same_deps d d' env =
match d,d' with
| FromAny, FromAny -> true
| From l, From l' -> is_same_list is_same_identified_term l l' env
| (FromAny | From _), _ -> false
and is_same_from (t,f) (t',f') env =
is_same_identified_term t t' env && is_same_deps f f' env
and is_same_assigns a a' env =
match a,a' with
| WritesAny, WritesAny -> true
| Writes l, Writes l' -> is_same_list is_same_from l l' env
| (WritesAny | Writes _), _ -> false
and is_same_allocation a a' env =
match a,a' with
| FreeAllocAny, FreeAllocAny -> true
| FreeAlloc(f,a), FreeAlloc(f',a') ->
is_same_list is_same_identified_term f f' env &&
is_same_list is_same_identified_term a a' env
| (FreeAllocAny | FreeAlloc _),_ -> false
and is_same_behavior b b' env =
is_same_list is_same_identified_predicate b.b_requires b'.b_requires env &&
is_same_list is_same_identified_predicate b.b_assumes b'.b_assumes env &&
is_same_list is_same_post_cond b.b_post_cond b'.b_post_cond env &&
is_same_assigns b.b_assigns b'.b_assigns env &&
is_same_allocation b.b_allocation b'.b_allocation env
(* TODO: also consider ACSL extensions, with the help of the plugins
that handle them. *)
and is_same_variant (v,m) (v',m') env =
is_same_term v v' env && is_same_opt is_matching_logic_info m m' env
and is_same_loop_pragma p p' env =
match p, p' with
| Unroll_specs l, Unroll_specs l'
| Widen_hints l, Widen_hints l'
| Widen_variables l, Widen_variables l' ->
is_same_list is_same_term l l' env
| (Unroll_specs _ | Widen_hints _ | Widen_variables _), _ -> false
and is_same_slice_pragma p p' env =
match p, p' with
| SPexpr t, SPexpr t' -> is_same_term t t' env
| SPctrl, SPctrl -> true
| SPstmt, SPstmt -> true
| (SPexpr _ | SPctrl | SPstmt), _ -> false
and is_same_impact_pragma p p' env =
match p, p' with
| IPexpr t, IPexpr t' -> is_same_term t t' env
| IPstmt, IPstmt -> true
| (IPexpr _ | IPstmt), _ -> false
and is_same_pragma p p' env =
match p,p' with
| Loop_pragma p, Loop_pragma p' -> is_same_loop_pragma p p' env
| Slice_pragma p, Slice_pragma p' -> is_same_slice_pragma p p' env
| Impact_pragma p, Impact_pragma p' -> is_same_impact_pragma p p' env
| (Loop_pragma _ | Slice_pragma _ | Impact_pragma _), _ -> false
and are_same_behaviors bhvs bhvs' env =
let treat_one_behavior acc b =
match List.partition (fun b' -> b.b_name = b'.b_name) acc with
| [], _ -> raise Exit
| [b'], acc ->
if is_same_behavior b b' env then acc else raise Exit
| _ ->
Kernel.fatal "found several behaviors with the same name %s" b.b_name
in
try
match List.fold_left treat_one_behavior bhvs' bhvs with
| [] -> true
| _ -> (* new behaviors appeared: spec has changed. *) false
with Exit -> false
and is_same_funspec s s' env =
are_same_behaviors s.spec_behavior s'.spec_behavior env &&
is_same_opt is_same_variant s.spec_variant s'.spec_variant env &&
is_same_opt is_same_identified_predicate
s.spec_terminates s'.spec_terminates env &&
are_same_cd_clauses s.spec_complete_behaviors s'.spec_complete_behaviors &&
are_same_cd_clauses s.spec_disjoint_behaviors s'.spec_disjoint_behaviors
and is_same_code_annotation a a' env =
match a.annot_content, a'.annot_content with
| AAssert (bhvs, p), AAssert(bhvs',p') ->
is_same_behavior_set bhvs bhvs' && is_same_toplevel_predicate p p' env
| AStmtSpec (bhvs, s), AStmtSpec(bhvs', s') ->
is_same_behavior_set bhvs bhvs' && is_same_funspec s s' env
| AInvariant (bhvs, is_loop, p), AInvariant(bhvs', is_loop', p') ->
is_same_behavior_set bhvs bhvs' && is_loop = is_loop' &&
is_same_toplevel_predicate p p' env
| AVariant v, AVariant v' -> is_same_variant v v' env
| AAssigns(bhvs, a), AAssigns(bhvs', a') ->
is_same_behavior_set bhvs bhvs' && is_same_assigns a a' env
| AAllocation(bhvs, a), AAllocation(bhvs',a') ->
is_same_behavior_set bhvs bhvs' && is_same_allocation a a' env
| APragma p, APragma p' -> is_same_pragma p p' env
| AExtended _, AExtended _ -> true (*TODO: checks also for extended clauses*)
| (AAssert _ | AStmtSpec _ | AInvariant _ | AVariant _ | AAssigns _
| AAllocation _ | APragma _ | AExtended _), _ -> false
and is_same_logic_type t t' env =
match t,t' with
| Ctype t, Ctype t' -> is_same_type t t' env
| Ltype (t,prms), Ltype (t',prms') ->
is_matching_logic_type_info t t' env &&
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
is_same_list is_same_logic_type prms prms' env
| Lvar s, Lvar s' -> is_matching_logic_type_var s s' env
| Linteger, Linteger -> true
| Lreal, Lreal -> true
| Larrow(args,rt), Larrow(args', rt') ->
is_same_list is_same_logic_type args args' env &&
is_same_logic_type rt rt' env
| (Ctype _ | Ltype _ | Lvar _ | Linteger | Lreal | Larrow _),_ -> false
and is_same_inductive_case (_,labs,tprms,p) (_,labs',tprms',p') env =
let res, env =
(is_same_list is_same_logic_label labs labs' env, env) &&&
logic_type_vars_env tprms tprms'
in
res && is_same_predicate p p' env
and is_same_logic_body b b' env =
match b,b' with
| LBnone, LBnone -> true
| LBreads l, LBreads l' ->
is_same_list is_same_identified_term l l' env
| LBterm t, LBterm t' -> is_same_term t t' env
| LBpred p, LBpred p' -> is_same_predicate p p' env
| LBinductive l, LBinductive l' ->
is_same_list is_same_inductive_case l l' env
| (LBnone | LBreads _ | LBterm _ | LBpred _ | LBinductive _), _ -> false
and is_same_logic_ctor_info c c' env =
(* we rely on order in the type declaration to match constructors,
not on names. *)
is_same_list is_same_logic_type c.ctor_params c'.ctor_params env
and is_same_logic_type_def d d' env =
match d,d' with
| LTsum l, LTsum l' ->
if is_same_list is_same_logic_ctor_info l l' env then begin
List.iter2 (fun c c' -> Logic_ctor_info.add c (`Same c')) l l';
true
end else begin
List.iter (fun c -> Logic_ctor_info.add c `Not_present) l;
false
end
| LTsyn t, LTsyn t' -> is_same_logic_type t t' env
| (LTsum _ | LTsyn _), _ -> false
and is_same_logic_info li li' env =
let res,env =
(is_same_list is_same_logic_label li.l_labels li'.l_labels env, env) &&&
logic_type_vars_env li.l_tparams li'.l_tparams &&&
logic_vars_env li.l_profile li'.l_profile
in
res && is_same_opt is_same_logic_type li.l_type li'.l_type env &&
is_same_logic_body li.l_body li'.l_body env
and is_same_logic_type_info ti ti' env =
let res,env =
(Cil_datatype.Attributes.equal ti.lt_attr ti'.lt_attr, env) &&&
logic_type_vars_env ti.lt_params ti'.lt_params
in
res && is_same_opt is_same_logic_type_def ti.lt_def ti'.lt_def env
and is_same_model_info mi mi' env =
is_same_type mi.mi_base_type mi'.mi_base_type env &&
is_same_logic_type mi.mi_field_type mi'.mi_field_type env &&
Cil_datatype.Attributes.equal mi.mi_attr mi'.mi_attr
and is_same_type t t' env =
match t, t' with
| TVoid a, TVoid a' -> Cil_datatype.Attributes.equal a a'
| TInt (ik,a), TInt(ik',a') ->
Ikind.equal ik ik' && Cil_datatype.Attributes.equal a a'
| TFloat (fk,a), TFloat(fk', a') ->
Fkind.equal fk fk' && Cil_datatype.Attributes.equal a a'
| TBuiltin_va_list a, TBuiltin_va_list a' ->
Cil_datatype.Attributes.equal a a'
| TPtr(t,a), TPtr(t',a') ->
is_same_type t t' env && Cil_datatype.Attributes.equal a a'
| TArray(t,s,a), TArray(t',s',a') ->
is_same_type t t' env &&
is_same_opt is_same_exp s s' env &&
Virgile Prevosto
committed
Cil_datatype.Attributes.equal a a'
| TFun(rt,l,var,a), TFun(rt', l', var', a') ->
is_same_type rt rt' env &&
is_same_opt (is_same_list is_same_formal) l l' env &&
(var = var') &&
Cil_datatype.Attributes.equal a a'
| TNamed(t,a), TNamed(t',a') ->
let correspondance = typeinfo_correspondance t env in
(match correspondance with
| `Not_present -> false
| `Same t'' -> Cil_datatype.Typeinfo.equal t' t'') &&
Cil_datatype.Attributes.equal a a'
| TComp(c,a), TComp(c', a') ->
let correspondance = compinfo_correspondance c env in
(match correspondance with
| `Not_present -> false
| `Same c'' -> Cil_datatype.Compinfo.equal c' c'') &&
Cil_datatype.Attributes.equal a a'
| TEnum(e,a), TEnum(e',a') ->
let correspondance = enuminfo_correspondance e env in
(match correspondance with
| `Not_present -> false
| `Same e'' -> Cil_datatype.Enuminfo.equal e' e'') &&
Cil_datatype.Attributes.equal a a'
| (TVoid _ | TInt _ | TFloat _ | TBuiltin_va_list _ | TPtr _ | TArray _
| TFun _ | TNamed _ | TComp _ | TEnum _), _ -> false
and is_same_compinfo ci ci' env =
ci.cstruct = ci'.cstruct &&
Cil_datatype.Attributes.equal ci.cattr ci'.cattr &&
is_same_opt (is_same_list is_same_fieldinfo) ci.cfields ci'.cfields env
and is_same_enuminfo ei ei' env =
Cil_datatype.Attributes.equal ei.eattr ei'.eattr &&
Ikind.equal ei.ekind ei'.ekind &&
is_same_list is_same_enumitem ei.eitems ei'.eitems env
and is_same_fieldinfo fi fi' env =
(* we don't compare names: it's the order in which they appear in the
definition of the aggregate that counts. *)
fi.forder = fi'.forder &&
is_same_type fi.ftype fi'.ftype env &&
is_same_opt (fun x y _ -> x = y) fi.fbitfield fi'.fbitfield env &&
Cil_datatype.Attributes.equal fi.fattr fi'.fattr
and is_same_enumitem ei ei' env = is_same_exp ei.eival ei'.eival env
Virgile Prevosto
committed
and is_same_formal (_,t,a) (_,t',a') env =
is_same_type t t' env && Cil_datatype.Attributes.equal a a'
Virgile Prevosto
committed
and is_same_compound_init (o,i) (o',i') env =
is_same_offset o o' env && is_same_init i i' env
Virgile Prevosto
committed
and is_same_init i i' env =
match i, i' with
Virgile Prevosto
committed
| SingleInit e, SingleInit e' -> is_same_exp e e' env
| CompoundInit (t,l), CompoundInit (t', l') ->
is_same_type t t' env &&
(is_same_list is_same_compound_init) l l' env
| (SingleInit _ | CompoundInit _), _ -> false
and is_same_initinfo i i' env = is_same_opt is_same_init i.init i'.init env
and is_same_local_init i i' env =
match i, i' with
| AssignInit i, AssignInit i' ->
if is_same_init i i' env then `Same_body
else `Body_changed
| (ConsInit(c,args,Plain_func), ConsInit(c',args',Plain_func))
| (ConsInit(c,args,Constructor),ConsInit(c',args',Constructor)) ->
if is_same_varinfo c c' env &&
is_same_list is_same_exp args args' env
then begin
match gfun_correspondance c env with
| `Partial _ | `Not_present -> `Callees_changed
| `Same _ -> `Same_body
end else `Body_changed
| (AssignInit _| ConsInit _), _ -> `Body_changed
and is_same_constant c c' env =
match c,c' with
| CEnum ei, CEnum ei' ->
(match enumitem_correspondance ei env with
| `Same ei'' -> Cil_datatype.Enumitem.equal ei' ei''
| `Not_present -> false)
| CEnum _, _ | _, CEnum _ -> false
| (CInt64 _ | CStr _ | CWStr _ | CChr _ | CReal _), _ ->
Cil_datatype.Constant.equal c c'
and is_same_exp e e' env =
match e.enode, e'.enode with
| Const c, Const c' -> is_same_constant c c' env
| Lval lv, Lval lv' -> is_same_lval lv lv' env