ast_diff.ml 57.16 KiB
(**************************************************************************)
(* *)
(* This file is part of Frama-C. *)
(* *)
(* Copyright (C) 2007-2022 *)
(* CEA (Commissariat à l'énergie atomique et aux énergies *)
(* alternatives) *)
(* *)
(* you can redistribute it and/or modify it under the terms of the GNU *)
(* Lesser General Public License as published by the Free Software *)
(* Foundation, version 2.1. *)
(* *)
(* It is distributed in the hope that it will be useful, *)
(* but WITHOUT ANY WARRANTY; without even the implied warranty of *)
(* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *)
(* GNU Lesser General Public License for more details. *)
(* *)
(* See the GNU Lesser General Public License version 2.1 *)
(* for more details (enclosed in the file licenses/LGPLv2.1). *)
(* *)
(**************************************************************************)
open Cil_types
module Orig_project =
State_builder.Option_ref(Project.Datatype)(
struct
let name = "Ast_diff.OrigProject"
let dependencies = []
end)
type 'a correspondance =
[ `Same of 'a (** symbol with identical definition has been found. *)
| `Not_present (** no correspondance *)
]
module Correspondance_input =
struct
type 'a t = 'a correspondance
let name a = Type.name a ^ " correspondance"
let module_name = "Correspondance"
let structural_descr _ = Structural_descr.t_abstract
let reprs x = [ `Not_present; `Same x]
let mk_equal eq x y =
match x,y with
| `Same x, `Same y -> eq x y
| `Not_present, `Not_present -> true
| `Same _, `Not_present
| `Not_present, `Same _ -> false
let mk_compare cmp x y =
match x,y with
| `Not_present, `Not_present -> 0
| `Not_present, `Same _ -> -1
| `Same x, `Same y -> cmp x y
| `Same _, `Not_present -> 1
let mk_hash h = function
| `Same x -> 117 * h x
| `Not_present -> 43
let map f = function
| `Same x -> `Same (f x)
| `Not_present -> `Not_present
let mk_internal_pretty_code pp prec fmt = function
| `Not_present -> Format.pp_print_string fmt "`Not_present"
| `Same x ->
let pp fmt = Format.fprintf fmt "`Same %a" (pp Type.Call) x in
Type.par prec Call fmt pp
let mk_pretty pp fmt = function
| `Not_present -> Format.pp_print_string fmt "N/A"
| `Same x -> Format.fprintf fmt " => %a" pp x
let mk_varname v = function
| `Not_present -> "x"
| `Same x -> v x ^ "_c"
let mk_mem_project mem query = function
| `Not_present -> false
| `Same x -> mem query x
end
module Correspondance = Datatype.Polymorphic(Correspondance_input)
(* for kernel function, we are a bit more precise than a yes/no answer.
More precisely, we check whether a function has the same spec,
the same body, and whether its callees have changed (provided
the body itself is identical, otherwise, there's no point in checking
the callees.
*)
type partial_correspondance =
[ `Spec_changed (* body and callees haven't changed *)
| `Body_changed (* spec hasn't changed *)
| `Callees_changed (* spec and body haven't changed *)
| `Callees_spec_changed (* body hasn't changed *)
]
type body_correspondance =
[ `Body_changed
| `Callees_changed
| `Same_body
]
let (<=>) res (cmp,x,y) = if res <> 0 then res else cmp x y
let compare_pc pc1 pc2 =
match pc1, pc2 with
| `Spec_changed, `Spec_changed -> 0
| `Spec_changed, _ -> -1
| _, `Spec_changed -> 1
| `Body_changed, `Body_changed -> 0
| `Body_changed, _ -> -1
| _, `Body_changed -> 1
| `Callees_changed, `Callees_changed -> 0
| `Callees_changed, _ -> -1
| _, `Callees_changed -> 1
| `Callees_spec_changed, `Callees_spec_changed -> 0
let string_of_pc = function
| `Spec_changed -> "Spec_changed"
| `Body_changed -> "Body_changed"
| `Callees_changed -> "Callees_changed"
| `Callees_spec_changed -> "Callees_spec_changed"
let pretty_pc fmt =
let open Format in
function
| `Spec_changed -> pp_print_string fmt "(spec changed)"
| `Body_changed -> pp_print_string fmt "(body changed)"
| `Callees_changed -> pp_print_string fmt "(callees changed)"
| `Callees_spec_changed -> pp_print_string fmt "(callees and spec changed)"
type 'a code_correspondance =
[ 'a correspondance
| `Partial of 'a * partial_correspondance
]
module Code_correspondance_input =
struct
type 'a t = 'a code_correspondance
let name a = Type.name a ^ " code_correspondance"
let module_name = "Code_correspondance"
let structural_descr _ = Structural_descr.t_abstract
let reprs = Correspondance_input.reprs
let mk_equal eq x y =
match x,y with
| `Partial(x,pc), `Partial(x',pc') -> eq x x' && (compare_pc pc pc' = 0)
| `Partial _, _ | _, `Partial _ -> false
| (#correspondance as c), (#correspondance as c') ->
Correspondance_input.mk_equal eq c c'
let mk_compare cmp x y =
match x,y with
| `Partial(x,pc), `Partial(x',pc') ->
cmp x x' <=> (compare_pc,pc,pc')
| `Partial _, `Same _ -> -1
| `Same _, `Partial _ -> 1
| `Partial _, `Not_present -> 1
| `Not_present, `Partial _ -> -1
| (#correspondance as c), (#correspondance as c') ->
Correspondance_input.mk_compare cmp c c'
let mk_hash hash = function
| `Partial (x,_) -> 57 * hash x
| #correspondance as x -> Correspondance_input.mk_hash hash x
let map f = function
| `Partial(x,pc) -> `Partial(f x,pc)
| (#correspondance as x) -> Correspondance_input.map f x
let mk_internal_pretty_code pp prec fmt = function
| `Partial (x,flags) ->
let pp fmt =
Format.fprintf fmt "`Partial (%a,%s)"
(pp Type.Call) x (string_of_pc flags)
in
Type.par prec Call fmt pp
| #correspondance as x ->
Correspondance_input.mk_internal_pretty_code pp prec fmt x
let mk_pretty pp fmt = function
| `Partial(x,flags) ->
Format.fprintf fmt "-> %a %a" pp x pretty_pc flags
| #correspondance as x -> Correspondance_input.mk_pretty pp fmt x
let mk_varname f = function
| `Partial (x,_) -> f x ^ "_pc"
| #correspondance as x -> Correspondance_input.mk_varname f x
let mk_mem_project f p = function
| `Partial (x,_) -> f p x
| #correspondance as x -> Correspondance_input.mk_mem_project f p x
end
module Code_correspondance = Datatype.Polymorphic(Code_correspondance_input)
module Info(I: sig val name: string end) =
(struct
let name = "Ast_diff." ^ I.name
let dependencies = [ Ast.self; Orig_project.self ]
let size = 43
end)
(* Map of symbols under analysis, in case of recursion.
Note that this can only happen with aggregate types, logic
types, and function (both C and ACSL). Other symbols must be
correctly ordered in a well-formed AST
*)
type is_same_env =
{
compinfo: compinfo Cil_datatype.Compinfo.Map.t;
kernel_function: kernel_function Kernel_function.Map.t;
local_vars: varinfo Cil_datatype.Varinfo.Map.t;
logic_info: logic_info Cil_datatype.Logic_info.Map.t;
logic_type_info: logic_type_info Cil_datatype.Logic_type_info.Map.t;
logic_local_vars: logic_var Cil_datatype.Logic_var.Map.t;
logic_type_vars: string Datatype.String.Map.t;
(* goto targets pairs are checked afterwards, so that forward gotos
do not interrupt the linear visit.
We thus collect them in the environment.
*)
goto_targets: (stmt * stmt) list;
}
module type Correspondance_table = sig
include State_builder.Hashtbl
val pretty_data: Format.formatter -> data -> unit
end
module Build(H:Datatype.S_with_collections)(D:Datatype.S):
Correspondance_table with type key = H.t and type data = D.t =
struct
include
State_builder.Hashtbl(H.Hashtbl)(D)
(Info(struct let name = "Ast_diff." ^ D.name end))
let pretty_data = D.pretty
end
module Build_correspondance(H:Datatype.S_with_collections) =
Build(H)(Correspondance.Make(H))
module Build_code_correspondance(H:Datatype.S_with_collections) =
Build(H)(Code_correspondance.Make(H))
module Varinfo = Build_correspondance(Cil_datatype.Varinfo)
module Compinfo = Build_correspondance(Cil_datatype.Compinfo)
module Enuminfo = Build_correspondance(Cil_datatype.Enuminfo)
module Enumitem = Build_correspondance(Cil_datatype.Enumitem)
module Typeinfo = Build_correspondance(Cil_datatype.Typeinfo)
module Stmt = Build_code_correspondance(Cil_datatype.Stmt)
module Logic_info = Build_correspondance(Cil_datatype.Logic_info)
module Logic_type_info = Build_correspondance(Cil_datatype.Logic_type_info)
module Logic_ctor_info = Build_correspondance(Cil_datatype.Logic_ctor_info)
module Fieldinfo = Build_correspondance(Cil_datatype.Fieldinfo)
module Model_info = Build_correspondance(Cil_datatype.Model_info)
module Logic_var = Build_correspondance(Cil_datatype.Logic_var)
module Kf = Kernel_function
module Kernel_function = Build_code_correspondance(Kernel_function)
module Fundec = Build_correspondance(Cil_datatype.Fundec)
let make_correspondance candidate has_same_spec code_corres =
match has_same_spec, code_corres with
| false, `Body_changed -> `Not_present
| false, `Callees_changed ->
`Partial(candidate,`Callees_spec_changed)
| false, `Same_body ->
`Partial(candidate, `Spec_changed)
| true, `Same_body ->
`Same candidate
| true, ((`Body_changed|`Callees_changed) as c) ->
`Partial(candidate, c)
let (&&>) (res,env) f =
match res with
| `Body_changed -> `Body_changed, env
| `Same_body -> f env
| `Callees_changed ->
let res', env = f env in
match res' with
| `Body_changed -> `Body_changed, env
| `Same_body | `Callees_changed -> `Callees_changed, env
let (&&&) (res, env) f = if res then f env else false, env
let empty_env =
{ compinfo = Cil_datatype.Compinfo.Map.empty;
kernel_function = Kf.Map.empty;
local_vars = Cil_datatype.Varinfo.Map.empty;
logic_info = Cil_datatype.Logic_info.Map.empty;
logic_type_info = Cil_datatype.Logic_type_info.Map.empty;
logic_local_vars = Cil_datatype.Logic_var.Map.empty;
logic_type_vars = Datatype.String.Map.empty;
goto_targets = []
}
let add_locals f f' env =
let add_one env v v' =
{ env with local_vars = Cil_datatype.Varinfo.Map.add v v' env.local_vars }
in
List.fold_left2 add_one env f f'
(* local static variables are in fact global. As soon as we have determined
that they have a correspondance, we add them to the global bindings *)
let add_statics l l' =
let add_one v v' = Varinfo.add v (`Same v') in
List.iter2 add_one l l'
let add_logic_vars p p' env =
let add_one env lv lv' =
{ env with
logic_local_vars =
Cil_datatype.Logic_var.Map.add lv lv' env.logic_local_vars }
in
List.fold_left2 add_one env p p'
let add_logic_info v v' env =
{ env with logic_info = Cil_datatype.Logic_info.Map.add v v' env.logic_info }
let logic_type_vars_env l l' env =
if List.length l = List.length l' then begin
let logic_type_vars =
List.fold_left2 (fun env s s' -> Datatype.String.Map.add s s' env)
env.logic_type_vars l l'
in
true, { env with logic_type_vars }
end else false, env
let formals_correspondance f f' =
let add_one v v' = Varinfo.add v (`Same v') in
List.iter2 add_one f f'
let logic_prms_correspondance p p' =
let add_one lv lv' =
Logic_var.add lv (`Same lv') in
List.iter2 add_one p p'
(** TODO: use location info to detect potential renaming.
Requires some information about syntactic diff. *)
let find_candidate_type ?loc:_loc ti =
if Globals.Types.mem_type Logic_typing.Typedef ti.tname then begin
match Globals.Types.global Logic_typing.Typedef ti.tname with
| GType(ti,_) -> Some ti
| g ->
Kernel.fatal
"Expected typeinfo instead of %a" Cil_datatype.Global.pretty g
end else None
let find_candidate_compinfo ?loc:_loc ci =
let su = if ci.cstruct then Logic_typing.Struct else Logic_typing.Union in
if Globals.Types.mem_type su ci.cname then begin
match Globals.Types.find_type su ci.cname with
| TComp(ci', _) -> Some ci'
| t ->
Kernel.fatal
"Expected compinfo instead of %a"
Printer.pp_typ t
end else None
let find_candidate_enuminfo ?loc:_loc ei =
if Globals.Types.mem_type Logic_typing.Enum ei.ename then begin
match Globals.Types.find_type Logic_typing.Enum ei.ename with
| TEnum(ei,_) -> Some ei
| t ->
Kernel.fatal
"Expected enuminfo instead of %a"
Printer.pp_typ t
end else None
let find_candidate_varinfo ?loc:_loc vi where =
try
Some (Globals.Vars.find_from_astinfo vi.vname where)
with Not_found -> None
let find_candidate_func ?loc:_loc kf =
try
Some (Globals.Functions.find_by_name (Kf.get_name kf))
with Not_found -> None
let find_candidate_logic_type ?loc:_loc ti =
try
Some (Logic_env.find_logic_type ti.lt_name)
with Not_found -> None
let is_same_opt f o o' env =
match o, o' with
| None, None -> true
| Some v, Some v' -> f v v' env
| _ -> false
let is_same_opt_env f o o' env =
match o, o' with
| None, None -> true, env
| Some v, Some v' -> f v v' env
| _ -> false, env
let is_same_pair f1 f2 (x1,x2) (y1,y2) env = f1 x1 y1 env && f2 x2 y2 env
let rec is_same_list f l l' env =
match l, l' with
| [], [] -> true
| h::t, h'::t' -> f h h' env && is_same_list f t t' env
| _ -> false
let rec is_same_list_env f l l' env =
match l, l' with
| [], [] -> true, env
| h::t, h'::t' -> f h h' env &&& is_same_list_env f t t'
| _ -> false, env
let get_original_kf vi =
let selection = State_selection.of_list
[Kernel_function.self; Annotations.funspec_state; Globals.Functions.self]
in
Project.on ~selection (Orig_project.get()) Globals.Functions.get vi
let check_goto_targets env =
let check_one (s,s') =
match Stmt.find s with
| `Not_present -> false
| `Same s'' | `Partial (s'',_) ->
(* From the goto point of view, what matters is that the targets
themselves have a correspondance. If they're e.g. calls to a
function that has itself changed, or blocks whose content has
changed, it has already been detected when comparing the targets,
and will be dealt with accordingly as the fundec level. *)
Cil_datatype.Stmt.equal s' s''
| exception Not_found -> false
in
if List.for_all check_one env.goto_targets then `Same_body, env
else `Body_changed, env
let is_matching_fieldinfo fi fi' =
match Fieldinfo.find fi with
| `Not_present -> false
| `Same fi'' -> Cil_datatype.Fieldinfo.equal fi' fi''
| exception Not_found ->
Kernel.fatal "Unbound field %a in AST diff"
Cil_datatype.Fieldinfo.pretty fi
let is_matching_model_info mf mf' =
match Model_info.find mf with
| `Not_present -> false
| `Same mf'' -> Cil_datatype.Model_info.equal mf' mf''
| exception Not_found ->
Kernel.fatal "Unbound model field %a in AST diff"
Cil_datatype.Model_info.pretty mf
let is_matching_logic_type_var a a' env =
match Datatype.String.Map.find_opt a env.logic_type_vars with
| None -> false
| Some a'' -> Datatype.String.equal a' a''
module Unop = struct
type t = [%import: Cil_types.unop] [@@deriving eq]
end
module Binop = struct
type t = [%import: Cil_types.binop] [@@deriving eq]
end
module Ikind = struct
type t = [%import: Cil_types.ikind] [@@deriving eq]
end
module Fkind = struct
type t = [%import: Cil_types.fkind] [@@deriving eq]
end
module Predicate_kind = struct
type t = [%import: Cil_types.predicate_kind] [@@deriving eq]
end
module Logic_builtin_label = struct
type t = [%import: Cil_types.logic_builtin_label] [@@deriving eq]
end
module Relation = struct
type t = [%import: Cil_types.relation] [@@deriving eq]
end
module Termination_kind = struct
type t = [%import: Cil_types.termination_kind] [@@deriving eq]
end
let is_same_behavior_set l l' =
Datatype.String.Set.(equal (of_list l) (of_list l'))
let are_same_cd_clauses l l' =
let module StringSetSet = Set.Make(Datatype.String.Set) in
let of_list l =
StringSetSet.of_list (List.map Datatype.String.Set.of_list l)
in
StringSetSet.equal (of_list l) (of_list l')
let is_same_logic_label l l' _env =
match l, l' with
| StmtLabel s, StmtLabel s' ->
(match Stmt.find !s with
| `Not_present -> false
| `Same s'' | `Partial(s'',_) ->
Cil_datatype.Stmt.equal !s' s''
| exception Not_found -> false)
| FormalLabel s, FormalLabel s' -> Datatype.String.equal s s'
| BuiltinLabel l, BuiltinLabel l' -> Logic_builtin_label.equal l l'
| (StmtLabel _ | FormalLabel _ | BuiltinLabel _), _ -> false
let rec is_same_predicate p p' env =
(* names are semantically irrelevant. *)
is_same_predicate_node p.pred_content p'.pred_content env
and is_same_predicate_node p p' env =
match p, p' with
| Pfalse, Pfalse -> true
| Ptrue, Ptrue -> true
| Papp(p,labs,args), Papp(p',labs',args') ->
is_matching_logic_info p p' env &&
is_same_list is_same_logic_label labs labs' env &&
is_same_list is_same_term args args' env
| Pseparated t, Pseparated t' -> is_same_list is_same_term t t' env
| Prel (r,t1,t2), Prel(r',t1',t2') ->
Relation.equal r r' && is_same_term t1 t1' env && is_same_term t2 t2' env
| Pand(p1,p2), Pand(p1',p2')
| Por(p1,p2), Por(p1',p2')
| Pxor(p1,p2), Pxor(p1',p2')
| Pimplies(p1,p2), Pimplies(p1',p2')
| Piff(p1,p2), Piff(p1',p2') ->
is_same_predicate p1 p1' env && is_same_predicate p2 p2' env
| Pnot p, Pnot p' -> is_same_predicate p p' env
| Pif(t,p1,p2), Pif(t',p1',p2') ->
is_same_term t t' env &&
is_same_predicate p1 p1' env &&
is_same_predicate p2 p2' env
| Plet(v,p), Plet(v',p') ->
if is_same_logic_info v v' env then begin
let env = add_logic_info v v' env in
let env = add_logic_vars [v.l_var_info] [v'.l_var_info] env in
is_same_predicate p p' env
end else false
| Pforall(q,p), Pforall(q',p')
| Pexists(q,p), Pexists(q',p') ->
if is_same_list is_same_logic_var q q' env then begin
let env = add_logic_vars q q' env in
is_same_predicate p p' env
end else false
| Pat(p,l), Pat(p',l') ->
is_same_predicate p p' env && is_same_logic_label l l' env
| Pobject_pointer(l,t), Pobject_pointer(l',t')
| Pvalid_read(l,t), Pvalid_read(l',t')
| Pvalid(l,t), Pvalid(l',t')
| Pinitialized(l,t), Pinitialized(l',t')
| Pdangling(l,t), Pdangling(l',t')
| Pallocable(l,t), Pallocable(l',t')
| Pfreeable(l,t), Pfreeable(l',t') ->
is_same_logic_label l l' env && is_same_term t t' env
| Pfresh(l1,l2,p,s), Pfresh(l1',l2',p',s') ->
is_same_logic_label l1 l1' env &&
is_same_logic_label l2 l2' env &&
is_same_term p p' env &&
is_same_term s s' env
| Pvalid_function(t), Pvalid_function(t') -> is_same_term t t' env
| (Pfalse | Ptrue | Papp _ | Pseparated _ | Prel _ | Pand _ | Por _ | Pxor _
| Pimplies _ | Piff _ | Pnot _ | Pif _ | Plet _ | Pforall _ | Pexists _
| Pat _ | Pobject_pointer _ | Pvalid_read _ | Pvalid _ | Pinitialized _
| Pdangling _ | Pallocable _ | Pfreeable _ | Pfresh _
| Pvalid_function _), _ -> false
and is_same_logic_constant c c' env =
match c,c' with
| LEnum ei, LEnum ei' ->
(match enumitem_correspondance ei env with
| `Same ei'' -> Cil_datatype.Enumitem.equal ei' ei''
| `Not_present -> false)
| LEnum _, _ | _, LEnum _ -> false
| (Integer _ | LStr _ | LWStr _ | LChr _ | LReal _), _ ->
Cil_datatype.Logic_constant.equal c c'
and is_same_term t t' env =
is_same_term_node t.term_node t'.term_node env
and is_same_term_node t t' env =
match t,t' with
| TConst c, TConst c' -> is_same_logic_constant c c' env
| TLval lv, TLval lv' -> is_same_term_lval lv lv' env
| TSizeOf t, TSizeOf t'
| TAlignOf t, TAlignOf t' -> is_same_type t t' env
| TSizeOfE t, TSizeOfE t'
| TAlignOfE t, TAlignOfE t' -> is_same_term t t' env
| TSizeOfStr s, TSizeOfStr s' -> String.length s = String.length s'
| TUnOp(op,t), TUnOp(op',t') -> Unop.equal op op' && is_same_term t t' env
| TBinOp(op,t1,t2), TBinOp(op',t1',t2') ->
Binop.equal op op' && is_same_term t1 t1' env && is_same_term t2 t2' env
| TCastE(typ,term), TCastE(typ',term') ->
is_same_type typ typ' env && is_same_term term term' env
| TAddrOf lv, TAddrOf lv'
| TStartOf lv, TStartOf lv' -> is_same_term_lval lv lv' env
| Tapp(f,labs,args), Tapp(f',labs',args') ->
is_matching_logic_info f f' env &&
is_same_list is_same_logic_label labs labs' env &&
is_same_list is_same_term args args' env
| Tlambda(q,t), Tlambda(q',t') ->
if is_same_list is_same_logic_var q q' env then begin
let env = add_logic_vars q q' env in
is_same_term t t' env
end else false
| TDataCons(c,args), TDataCons(c',args') ->
is_matching_logic_ctor c c' env &&
is_same_list is_same_term args args' env
| Tif(c,t1,t2), Tif(c',t1',t2') ->
is_same_term c c' env &&
is_same_term t1 t1' env &&
is_same_term t2 t2' env
| Tat(t,l), Tat(t',l') ->
is_same_term t t' env && is_same_logic_label l l' env
| Tbase_addr(l,t), Tbase_addr(l',t')
| Toffset(l,t), Toffset(l',t')
| Tblock_length(l,t), Tblock_length(l',t') ->
is_same_logic_label l l' env && is_same_term t t' env
| Tnull, Tnull -> true
| TLogic_coerce(typ,t), TLogic_coerce(typ',t') ->
is_same_logic_type typ typ' env && is_same_term t t' env
| TUpdate(a,o,v), TUpdate(a',o',v') ->
is_same_term a a' env &&
is_same_term_offset o o' env &&
is_same_term v v' env
| Ttypeof t, Ttypeof t' -> is_same_term t t' env
| Ttype t, Ttype t' -> is_same_type t t' env
| Tempty_set, Tempty_set -> true
| Tunion l, Tunion l'
| Tinter l, Tinter l' -> is_same_list is_same_term l l' env
| Tcomprehension(t,q,p), Tcomprehension(t',q',p') ->
if is_same_list is_same_logic_var q q' env then begin
let env = add_logic_vars q q' env in
is_same_term t t' env && is_same_opt is_same_predicate p p' env
end else false
| Trange(l,u), Trange(l',u') ->
is_same_opt is_same_term l l' env && is_same_opt is_same_term u u' env
| Tlet(v,t), Tlet(v',t') ->
if is_same_logic_info v v' env then begin
let env = add_logic_info v v' env in
let env = add_logic_vars [v.l_var_info] [v'.l_var_info] env in
is_same_term t t' env
end else false
| (TConst _ | TLval _ | TSizeOf _ | TSizeOfE _ | TSizeOfStr _ | TAlignOf _
| TAlignOfE _ | TUnOp _ | TBinOp _ | TCastE _ | TAddrOf _ | TStartOf _
| Tapp _ | Tlambda _ | TDataCons _ | Tif _ | Tat _ | Tbase_addr _
| Toffset _ | Tblock_length _ | Tnull | TLogic_coerce _ | TUpdate _
| Ttypeof _ | Ttype _ | Tempty_set | Tunion _ | Tinter _ | Tcomprehension _
| Tlet _ | Trange _), _ -> false
and is_same_term_lval (lh,lo) (lh',lo') env =
is_same_term_lhost lh lh' env && is_same_term_offset lo lo' env
and is_same_term_lhost lh lh' env =
match lh, lh' with
| TVar lv, TVar lv' -> is_matching_logic_var lv lv' env
| TResult _, TResult _ -> true
| TMem p, TMem p' -> is_same_term p p' env
| (TVar _ | TResult _ | TMem _), _ -> false
and is_matching_logic_var lv lv' env =
match lv.lv_origin, lv'.lv_origin with
| Some vi, Some vi' -> is_matching_varinfo vi vi' env
| None, None ->
(match Cil_datatype.Logic_var.Map.find_opt lv env.logic_local_vars with
| Some lv'' -> Cil_datatype.Logic_var.equal lv' lv''
| None ->
(match Logic_var.find lv with
| `Not_present -> false
| `Same lv'' -> Cil_datatype.Logic_var.equal lv' lv''
| exception Not_found ->
if lv.lv_name = "\\exit_status" && lv'.lv_name = "\\exit_status"
then begin Logic_var.add lv (`Same lv'); true end
else begin
match logic_var_correspondance lv env with
| None -> false
| Some lv'' -> Cil_datatype.Logic_var.equal lv' lv''
end))
| _ -> false
and logic_var_correspondance lv env =
match find_candidate_logic_var lv env with
| None -> None
| Some lv' -> Logic_var.add lv (`Same lv'); Some lv'
and is_same_term_offset lo lo' env =
match lo, lo' with
| TNoOffset, TNoOffset -> true
| TField(f,o), TField(f',o') ->
is_matching_fieldinfo f f' && is_same_term_offset o o' env
| TModel(f,o), TModel(f',o') ->
is_matching_model_info f f' && is_same_term_offset o o' env
| TIndex(i,o), TIndex(i',o') ->
is_same_term i i' env && is_same_term_offset o o' env
| (TNoOffset | TField _ | TModel _ | TIndex _), _ -> false
and is_same_toplevel_predicate p p' env =
Predicate_kind.equal p.tp_kind p'.tp_kind &&
is_same_predicate p.tp_statement p'.tp_statement env
and is_same_identified_predicate p p' env =
is_same_toplevel_predicate p.ip_content p'.ip_content env
and is_same_identified_term t t' env =
is_same_term t.it_content t'.it_content env
and is_same_post_cond (k,p) (k',p') env =
Termination_kind.equal k k' && is_same_identified_predicate p p' env
and is_same_deps d d' env =
match d,d' with
| FromAny, FromAny -> true
| From l, From l' -> is_same_list is_same_identified_term l l' env
| (FromAny | From _), _ -> false
and is_same_from (t,f) (t',f') env =
is_same_identified_term t t' env && is_same_deps f f' env
and is_same_assigns a a' env =
match a,a' with
| WritesAny, WritesAny -> true
| Writes l, Writes l' -> is_same_list is_same_from l l' env
| (WritesAny | Writes _), _ -> false
and is_same_allocation a a' env =
match a,a' with
| FreeAllocAny, FreeAllocAny -> true
| FreeAlloc(f,a), FreeAlloc(f',a') ->
is_same_list is_same_identified_term f f' env &&
is_same_list is_same_identified_term a a' env
| (FreeAllocAny | FreeAlloc _),_ -> false
and is_same_behavior b b' env =
is_same_list is_same_identified_predicate b.b_requires b'.b_requires env &&
is_same_list is_same_identified_predicate b.b_assumes b'.b_assumes env &&
is_same_list is_same_post_cond b.b_post_cond b'.b_post_cond env &&
is_same_assigns b.b_assigns b'.b_assigns env &&
is_same_allocation b.b_allocation b'.b_allocation env
(* TODO: also consider ACSL extensions, with the help of the plugins
that handle them. *)
and is_same_variant (v,m) (v',m') env =
is_same_term v v' env && is_same_opt is_matching_logic_info m m' env
and is_same_loop_pragma p p' env =
match p, p' with
| Unroll_specs l, Unroll_specs l'
| Widen_hints l, Widen_hints l'
| Widen_variables l, Widen_variables l' ->
is_same_list is_same_term l l' env
| (Unroll_specs _ | Widen_hints _ | Widen_variables _), _ -> false
and is_same_slice_pragma p p' env =
match p, p' with
| SPexpr t, SPexpr t' -> is_same_term t t' env
| SPctrl, SPctrl -> true
| SPstmt, SPstmt -> true
| (SPexpr _ | SPctrl | SPstmt), _ -> false
and is_same_impact_pragma p p' env =
match p, p' with
| IPexpr t, IPexpr t' -> is_same_term t t' env
| IPstmt, IPstmt -> true
| (IPexpr _ | IPstmt), _ -> false
and is_same_pragma p p' env =
match p,p' with
| Loop_pragma p, Loop_pragma p' -> is_same_loop_pragma p p' env
| Slice_pragma p, Slice_pragma p' -> is_same_slice_pragma p p' env
| Impact_pragma p, Impact_pragma p' -> is_same_impact_pragma p p' env
| (Loop_pragma _ | Slice_pragma _ | Impact_pragma _), _ -> false
and are_same_behaviors bhvs bhvs' env =
let treat_one_behavior acc b =
match List.partition (fun b' -> b.b_name = b'.b_name) acc with
| [], _ -> raise Exit
| [b'], acc ->
if is_same_behavior b b' env then acc else raise Exit
| _ ->
Kernel.fatal "found several behaviors with the same name %s" b.b_name
in
try
match List.fold_left treat_one_behavior bhvs' bhvs with
| [] -> true
| _ -> (* new behaviors appeared: spec has changed. *) false
with Exit -> false
and is_same_funspec s s' env =
are_same_behaviors s.spec_behavior s'.spec_behavior env &&
is_same_opt is_same_variant s.spec_variant s'.spec_variant env &&
is_same_opt is_same_identified_predicate
s.spec_terminates s'.spec_terminates env &&
are_same_cd_clauses s.spec_complete_behaviors s'.spec_complete_behaviors &&
are_same_cd_clauses s.spec_disjoint_behaviors s'.spec_disjoint_behaviors
and is_same_code_annotation a a' env =
match a.annot_content, a'.annot_content with
| AAssert (bhvs, p), AAssert(bhvs',p') ->
is_same_behavior_set bhvs bhvs' && is_same_toplevel_predicate p p' env
| AStmtSpec (bhvs, s), AStmtSpec(bhvs', s') ->
is_same_behavior_set bhvs bhvs' && is_same_funspec s s' env
| AInvariant (bhvs, is_loop, p), AInvariant(bhvs', is_loop', p') ->
is_same_behavior_set bhvs bhvs' && is_loop = is_loop' &&
is_same_toplevel_predicate p p' env
| AVariant v, AVariant v' -> is_same_variant v v' env
| AAssigns(bhvs, a), AAssigns(bhvs', a') ->
is_same_behavior_set bhvs bhvs' && is_same_assigns a a' env
| AAllocation(bhvs, a), AAllocation(bhvs',a') ->
is_same_behavior_set bhvs bhvs' && is_same_allocation a a' env
| APragma p, APragma p' -> is_same_pragma p p' env
| AExtended _, AExtended _ -> true (*TODO: checks also for extended clauses*)
| (AAssert _ | AStmtSpec _ | AInvariant _ | AVariant _ | AAssigns _
| AAllocation _ | APragma _ | AExtended _), _ -> false
and is_same_logic_type t t' env =
match t,t' with
| Ctype t, Ctype t' -> is_same_type t t' env
| Ltype (t,prms), Ltype (t',prms') ->
is_matching_logic_type_info t t' env &&
is_same_list is_same_logic_type prms prms' env
| Lvar s, Lvar s' -> is_matching_logic_type_var s s' env
| Linteger, Linteger -> true
| Lreal, Lreal -> true
| Larrow(args,rt), Larrow(args', rt') ->
is_same_list is_same_logic_type args args' env &&
is_same_logic_type rt rt' env
| (Ctype _ | Ltype _ | Lvar _ | Linteger | Lreal | Larrow _),_ -> false
and is_same_inductive_case (_,labs,tprms,p) (_,labs',tprms',p') env =
let res, env =
(is_same_list is_same_logic_label labs labs' env, env) &&&
logic_type_vars_env tprms tprms'
in
res && is_same_predicate p p' env
and is_same_logic_body b b' env =
match b,b' with
| LBnone, LBnone -> true
| LBreads l, LBreads l' ->
is_same_list is_same_identified_term l l' env
| LBterm t, LBterm t' -> is_same_term t t' env
| LBpred p, LBpred p' -> is_same_predicate p p' env
| LBinductive l, LBinductive l' ->
is_same_list is_same_inductive_case l l' env
| (LBnone | LBreads _ | LBterm _ | LBpred _ | LBinductive _), _ -> false
and is_same_logic_ctor_info c c' env =
(* we rely on order in the type declaration to match constructors,
not on names. *)
is_same_list is_same_logic_type c.ctor_params c'.ctor_params env
and is_same_logic_type_def d d' env =
match d,d' with
| LTsum l, LTsum l' ->
if is_same_list is_same_logic_ctor_info l l' env then begin
List.iter2 (fun c c' -> Logic_ctor_info.add c (`Same c')) l l';
true
end else begin
List.iter (fun c -> Logic_ctor_info.add c `Not_present) l;
false
end
| LTsyn t, LTsyn t' -> is_same_logic_type t t' env
| (LTsum _ | LTsyn _), _ -> false
and is_same_logic_info li li' env =
let res,env =
(is_same_list is_same_logic_label li.l_labels li'.l_labels env, env) &&&
logic_type_vars_env li.l_tparams li'.l_tparams &&&
logic_vars_env li.l_profile li'.l_profile
in
res && is_same_opt is_same_logic_type li.l_type li'.l_type env &&
is_same_logic_body li.l_body li'.l_body env
and is_same_logic_type_info ti ti' env =
let res,env =
(Cil_datatype.Attributes.equal ti.lt_attr ti'.lt_attr, env) &&&
logic_type_vars_env ti.lt_params ti'.lt_params
in
res && is_same_opt is_same_logic_type_def ti.lt_def ti'.lt_def env
and is_same_model_info mi mi' env =
is_same_type mi.mi_base_type mi'.mi_base_type env &&
is_same_logic_type mi.mi_field_type mi'.mi_field_type env &&
Cil_datatype.Attributes.equal mi.mi_attr mi'.mi_attr
and is_same_type t t' env =
match t, t' with
| TVoid a, TVoid a' -> Cil_datatype.Attributes.equal a a'
| TInt (ik,a), TInt(ik',a') ->
Ikind.equal ik ik' && Cil_datatype.Attributes.equal a a'
| TFloat (fk,a), TFloat(fk', a') ->
Fkind.equal fk fk' && Cil_datatype.Attributes.equal a a'
| TBuiltin_va_list a, TBuiltin_va_list a' ->
Cil_datatype.Attributes.equal a a'
| TPtr(t,a), TPtr(t',a') ->
is_same_type t t' env && Cil_datatype.Attributes.equal a a'
| TArray(t,s,a), TArray(t',s',a') ->
is_same_type t t' env &&
is_same_opt is_same_exp s s' env &&
Cil_datatype.Attributes.equal a a'
| TFun(rt,l,var,a), TFun(rt', l', var', a') ->
is_same_type rt rt' env &&
is_same_opt (is_same_list is_same_formal) l l' env &&
(var = var') &&
Cil_datatype.Attributes.equal a a'
| TNamed(t,a), TNamed(t',a') ->
let correspondance = typeinfo_correspondance t env in
(match correspondance with
| `Not_present -> false
| `Same t'' -> Cil_datatype.Typeinfo.equal t' t'') &&
Cil_datatype.Attributes.equal a a'
| TComp(c,a), TComp(c', a') ->
let correspondance = compinfo_correspondance c env in
(match correspondance with
| `Not_present -> false
| `Same c'' -> Cil_datatype.Compinfo.equal c' c'') &&
Cil_datatype.Attributes.equal a a'
| TEnum(e,a), TEnum(e',a') ->
let correspondance = enuminfo_correspondance e env in
(match correspondance with
| `Not_present -> false
| `Same e'' -> Cil_datatype.Enuminfo.equal e' e'') &&
Cil_datatype.Attributes.equal a a'
| (TVoid _ | TInt _ | TFloat _ | TBuiltin_va_list _ | TPtr _ | TArray _
| TFun _ | TNamed _ | TComp _ | TEnum _), _ -> false
and is_same_compinfo ci ci' env =
ci.cstruct = ci'.cstruct &&
Cil_datatype.Attributes.equal ci.cattr ci'.cattr &&
is_same_opt (is_same_list is_same_fieldinfo) ci.cfields ci'.cfields env
and is_same_enuminfo ei ei' env =
Cil_datatype.Attributes.equal ei.eattr ei'.eattr &&
Ikind.equal ei.ekind ei'.ekind &&
is_same_list is_same_enumitem ei.eitems ei'.eitems env
and is_same_fieldinfo fi fi' env =
(* we don't compare names: it's the order in which they appear in the
definition of the aggregate that counts. *)
fi.forder = fi'.forder &&
is_same_type fi.ftype fi'.ftype env &&
is_same_opt (fun x y _ -> x = y) fi.fbitfield fi'.fbitfield env &&
Cil_datatype.Attributes.equal fi.fattr fi'.fattr
and is_same_enumitem ei ei' env = is_same_exp ei.eival ei'.eival env
and is_same_formal (_,t,a) (_,t',a') env =
is_same_type t t' env && Cil_datatype.Attributes.equal a a'
and is_same_compound_init (o,i) (o',i') env =
is_same_offset o o' env && is_same_init i i' env
and is_same_init i i' env =
match i, i' with
| SingleInit e, SingleInit e' -> is_same_exp e e' env
| CompoundInit (t,l), CompoundInit (t', l') ->
is_same_type t t' env &&
(is_same_list is_same_compound_init) l l' env
| (SingleInit _ | CompoundInit _), _ -> false
and is_same_initinfo i i' env = is_same_opt is_same_init i.init i'.init env
and is_same_local_init i i' env =
match i, i' with
| AssignInit i, AssignInit i' ->
if is_same_init i i' env then `Same_body
else `Body_changed
| (ConsInit(c,args,Plain_func), ConsInit(c',args',Plain_func))
| (ConsInit(c,args,Constructor),ConsInit(c',args',Constructor)) ->
if is_same_varinfo c c' env &&
is_same_list is_same_exp args args' env
then begin
match gfun_correspondance c env with
| `Partial _ | `Not_present -> `Callees_changed
| `Same _ -> `Same_body
end else `Body_changed
| (AssignInit _| ConsInit _), _ -> `Body_changed
and is_same_constant c c' env =
match c,c' with
| CEnum ei, CEnum ei' ->
(match enumitem_correspondance ei env with
| `Same ei'' -> Cil_datatype.Enumitem.equal ei' ei''
| `Not_present -> false)
| CEnum _, _ | _, CEnum _ -> false
| (CInt64 _ | CStr _ | CWStr _ | CChr _ | CReal _), _ ->
Cil_datatype.Constant.equal c c'
and is_same_exp e e' env =
match e.enode, e'.enode with
| Const c, Const c' -> is_same_constant c c' env
| Lval lv, Lval lv' -> is_same_lval lv lv' env
| SizeOf t, SizeOf t' -> is_same_type t t' env
| SizeOfE e, SizeOfE e' -> is_same_exp e e' env
| SizeOfStr s, SizeOfStr s' -> String.length s = String.length s'
| AlignOf t, AlignOf t' -> is_same_type t t' env
| AlignOfE e, AlignOfE e' -> is_same_exp e e' env
| UnOp(op,e,t), UnOp(op',e',t') ->
Unop.equal op op' && is_same_exp e e' env && is_same_type t t' env
| BinOp(op,e1,e2,t), BinOp(op',e1',e2',t') ->
Binop.equal op op' && is_same_exp e1 e1' env && is_same_exp e2 e2' env
&& is_same_type t t' env
| CastE(t,e), CastE(t',e') -> is_same_type t t' env && is_same_exp e e' env
| AddrOf lv, AddrOf lv' -> is_same_lval lv lv' env
| StartOf lv, StartOf lv' -> is_same_lval lv lv' env
| (Const _ | Lval _ | SizeOf _ | SizeOfE _ | SizeOfStr _ | AlignOf _
| AlignOfE _ | UnOp _ | BinOp _ | CastE _ | AddrOf _ | StartOf _),_-> false
and is_same_lval lv lv' env =
is_same_pair is_same_lhost is_same_offset lv lv' env
and is_same_lhost h h' env =
match h, h' with
| Var vi, Var vi' -> is_matching_varinfo vi vi' env
| Mem p, Mem p' -> is_same_exp p p' env
| (Var _ | Mem _), _ -> false
and is_matching_varinfo vi vi' env =
if vi.vglob then begin
match gvar_correspondance vi env with
| `Not_present -> false
| `Same vi'' -> Cil_datatype.Varinfo.equal vi' vi''
end else begin
try
let vi'' = Cil_datatype.Varinfo.Map.find vi env.local_vars in
Cil_datatype.Varinfo.equal vi' vi''
with Not_found ->
Kernel.fatal "Unbound variable %a in AST diff"
Cil_datatype.Varinfo.pretty vi
end
and is_same_offset o o' env =
match o, o' with
| NoOffset, NoOffset -> true
| Field (i,o), Field(i',o') ->
is_matching_fieldinfo i i' && is_same_offset o o' env
| Index(i,o), Index(i',o') ->
is_same_exp i i' env && is_same_offset o o' env
| (NoOffset | Field _ | Index _), _ -> false
and is_same_extended_asm a a' env =
let is_same_out (_,c,l) (_,c',l') env =
Datatype.String.equal c c' && is_same_lval l l' env
and is_same_in (_,c,e) (_,c',e') env =
Datatype.String.equal c c' && is_same_exp e e' env
in
let res =
is_same_list is_same_out a.asm_outputs a'.asm_outputs env &&
is_same_list is_same_in a.asm_inputs a'.asm_inputs env &&
is_same_list
(fun s1 s2 _ -> Datatype.String.equal s1 s2)
a.asm_clobbers a'.asm_clobbers env
&&
List.length a.asm_gotos = List.length a'.asm_gotos
in
let bind s s' env =
(true, { env with goto_targets = (!s,!s') :: env.goto_targets})
in
(res, env) &&& is_same_list_env bind a.asm_gotos a'.asm_gotos
and is_same_instr i i' env: body_correspondance*is_same_env =
match i, i' with
| Set(lv,e,_), Set(lv',e',_) ->
if is_same_lval lv lv' env && is_same_exp e e' env then
`Same_body, env
else
`Body_changed, env
| Call(lv,f,args,_), Call(lv',f',args',_) ->
if is_same_opt is_same_lval lv lv' env &&
is_same_list is_same_exp args args' env
then begin
match f.enode, f'.enode with
| Lval(Var f,NoOffset), Lval(Var f', NoOffset) ->
(match gfun_correspondance f env with
| `Partial _ | `Not_present -> `Callees_changed, env
| `Same f'' ->
if Cil_datatype.Varinfo.equal f' (Kf.get_vi f'') then
`Same_body, env
else
`Callees_changed, env)
| _ -> `Callees_changed, env
(* by default, we consider that indirect call might have changed *)
end else `Body_changed, env
| Local_init(v,i,_), Local_init(v',i',_) ->
if is_same_varinfo v v' env then begin
let env = add_locals [v] [v'] env in
let res = is_same_local_init i i' env in
res, env
end else `Body_changed, env
| Asm(a,c,e,_), Asm(a',c',e',_) ->
let res =
Cil_datatype.Attributes.equal a a' &&
is_same_list (fun s1 s2 _ -> Datatype.String.equal s1 s2) c c' env
in
let (res,env) = (res,env) &&& is_same_opt_env is_same_extended_asm e e' in
if res then `Same_body, env else `Body_changed, env
| Skip _, Skip _ -> `Same_body, env
| Code_annot _, Code_annot _ ->
(* should not be present in normalized AST *)
`Same_body, env
| _ -> `Body_changed, env
and is_same_instr_list l l' env =
match l, l' with
| [], [] -> `Same_body, env
| [], _ | _, [] -> `Body_changed, env
| i::tl, i'::tl' ->
is_same_instr i i' env &&> is_same_instr_list tl tl'
and is_same_stmt s s' env =
let selection =
State_selection.with_codependencies Annotations.code_annot_state
in
let annots =
Project.on ~selection (Orig_project.get()) Annotations.code_annot s
in
let annots' = Annotations.code_annot s' in
let annot_res = is_same_list is_same_code_annotation annots annots' env in
let code_res, env =
if s.ghost = s'.ghost && Cil_datatype.Attributes.equal s.sattr s'.sattr then
begin
match s.skind,s'.skind with
| Instr i, Instr i' -> is_same_instr i i' env
| Return (r,_), Return(r', _) ->
if is_same_opt is_same_exp r r' env then `Same_body, env
else `Body_changed, env
| Goto (s,_), Goto(s',_) ->
`Same_body, { env with goto_targets = (!s,!s') :: env.goto_targets }
| Break _, Break _ -> `Same_body, env
| Continue _, Continue _ -> `Same_body, env
| If(e,b1,b2,_), If(e',b1',b2',_) ->
if is_same_exp e e' env then begin
is_same_block b1 b1' env &&>
is_same_block b2 b2'
end else `Body_changed, env
| Switch(e,b,_,_), Switch(e',b',_,_) ->
if is_same_exp e e' env then begin
is_same_block b b' env
end else `Body_changed, env
| Loop(_,b,_,_,_), Loop(_,b',_,_,_) ->
is_same_block b b' env
| Block b, Block b' ->
is_same_block b b' env
| UnspecifiedSequence l, UnspecifiedSequence l' ->
let b = Cil.block_from_unspecified_sequence l in
let b' = Cil.block_from_unspecified_sequence l' in
is_same_block b b' env
| Throw (e,_), Throw (e',_) ->
if is_same_opt (is_same_pair is_same_exp is_same_type) e e' env then
`Same_body, env
else `Body_changed, env
| TryCatch (b,c,_), TryCatch(b',c',_) ->
let rec is_same_catch_list l l' env =
match l, l' with
| [], [] -> `Same_body, env
| [],_ | _, [] -> `Body_changed, env
| (bind, b) :: tl, (bind', b') :: tl' ->
is_same_binder bind bind' env &&>
is_same_block b b' &&>
is_same_catch_list tl tl'
in
is_same_block b b' env &&> is_same_catch_list c c'
| TryFinally(b1,b2,_), TryFinally(b1',b2',_) ->
is_same_block b1 b1' env &&>
(is_same_block b2 b2')
| TryExcept(b1,(h,e),b2,_), TryExcept(b1',(h',e'),b2',_) ->
if is_same_exp e e' env then begin
is_same_block b1 b1' env &&>
is_same_instr_list h h' &&>
is_same_block b2 b2'
end else `Body_changed, env
| _ -> `Body_changed, env
end else `Body_changed, env
in
let res = make_correspondance s' annot_res code_res in
Stmt.add s res; code_res, env
(* is_same_block will return its modified environment in order
to update correspondance table with respect to locals, in case
the body of the enclosing function is unchanged. *)
and is_same_block b b' env =
let local_decls = List.filter (fun x -> not x.vdefined) b.blocals in
let local_decls' = List.filter (fun x -> not x.vdefined) b'.blocals in
if is_same_list is_same_varinfo b.bstatics b'.bstatics env &&
Cil_datatype.Attributes.equal b.battrs b'.battrs
then begin
let res, env = is_same_list_env varinfo_env local_decls local_decls' env in
if res then begin
add_statics b.bstatics b'.bstatics;
let rec is_same_stmts l l' env =
match l, l' with
| [], [] -> `Same_body,env
| [], _ | _, [] -> `Body_changed, env
| s :: tl, s' :: tl' ->
is_same_stmt s s' env &&> (is_same_stmts tl tl')
in
is_same_stmts b.bstmts b'.bstmts env
end else `Body_changed, env
end else `Body_changed, env
and is_same_binder b b' env =
match b, b' with
| Catch_exn(v,conv), Catch_exn(v', conv') ->
if is_same_varinfo v v' env then begin
let env = add_locals [v] [v'] env in
let rec is_same_conv l l' env =
match l, l' with
| [], [] -> `Same_body, env
| [], _ | _, [] -> `Body_changed, env
| (v,b)::tl, (v',b')::tl' ->
if is_same_varinfo v v' env then begin
let env = add_locals [v] [v'] env in
is_same_block b b' env &&>
(is_same_conv tl tl')
end else `Body_changed, env
in
is_same_conv conv conv' env
end else `Body_changed, env
| Catch_all, Catch_all -> `Same_body, env
| (Catch_exn _ | Catch_all), _ -> `Body_changed, env
(* correspondance of formals is supposed to have already been checked,
and formals mapping to have been put in the local env
*)
and is_same_fundec f f' env: body_correspondance =
let res, env =
is_same_block f.sbody f'.sbody env &&>
check_goto_targets
in
(* Since we add the locals only if the body is the same,
we have explored all nodes, and added all locals bindings.
Otherwise, is_same_block would have returned `Body_changed.
Hence [Not_found] cannot be raised. *)
let add_local v =
let v' = Cil_datatype.Varinfo.Map.find v env.local_vars in
Varinfo.add v (`Same v')
in
(match res with
| `Same_body | `Callees_changed ->
List.iter add_local f.slocals
| `Body_changed -> ());
res
(* only for locals and formals. Globals are treated by
gvar_correspondance below. *)
and is_same_varinfo vi vi' env =
is_same_type vi.vtype vi'.vtype env &&
Cil_datatype.Attributes.equal vi.vattr vi'.vattr
and varinfo_env vi vi' env =
if is_same_varinfo vi vi' env then true, add_locals [vi] [vi'] env
else false, env
and is_same_logic_var lv lv' env =
is_same_logic_type lv.lv_type lv'.lv_type env &&
Cil_datatype.Attributes.equal lv.lv_attr lv'.lv_attr
and logic_vars_env l l' env =
if is_same_list is_same_logic_var l l' env then
true, add_logic_vars l l' env
else
false, env
and find_candidate_logic_var ?loc:_loc lv env =
let candidates = Logic_env.find_all_logic_functions lv.lv_name in
match List.find_opt (fun li -> li.l_profile = []) candidates with
| None -> None
| Some li ->
if is_same_logic_var lv li.l_var_info env then
Some li.l_var_info
else None
(* because of overloading, we have to check for a corresponding profile,
leading to potentially recursive calls to is_same_* functions. *)
and find_candidate_logic_info ?loc:_loc li env =
let candidates = Logic_env.find_all_logic_functions li.l_var_info.lv_name in
let find_one li' =
let res, env = logic_type_vars_env li.l_tparams li'.l_tparams env in
res && is_same_list is_same_logic_var li.l_profile li'.l_profile env
&& is_same_opt is_same_logic_type li.l_type li'.l_type env
in
List.find_opt find_one candidates
and find_candidate_model_info ?loc:_loc mi env =
let candidates = Logic_env.find_all_model_fields mi.mi_name in
let find_one mi' =
is_same_type mi.mi_base_type mi'.mi_base_type env
in
let rec aux = function
| [] -> None
| mi' :: tl -> if find_one mi' then Some mi' else aux tl
in
aux candidates
and typeinfo_correspondance ?loc ti env =
let add ti =
match find_candidate_type ?loc ti with
| None -> `Not_present
| Some ti' ->
let res = is_same_type ti.ttype ti'.ttype env in
if res then `Same ti' else `Not_present
in
Typeinfo.memo add ti
and compinfo_correspondance ?loc ci env =
let add ci =
match find_candidate_compinfo ?loc ci with
| None -> `Not_present
| Some ci' ->
let env' =
{env with compinfo = Cil_datatype.Compinfo.Map.add ci ci' env.compinfo}
in
let res = is_same_compinfo ci ci' env' in
if res then begin
(match ci.cfields, ci'.cfields with
| Some fl, Some fl' ->
(* by definition, if is_same_compinfo returns true,
we have the same number of fields in ci and ci'. *)
List.iter2 (fun fi fi' -> Fieldinfo.add fi (`Same fi')) fl fl'
| _ -> ());
`Same ci'
end else begin
(* fields are considered different, even if it might be possible
to consider that the beginning of the struct hasn't changed. *)
(match ci.cfields with
| Some fl -> List.iter (fun fi -> Fieldinfo.add fi `Not_present) fl
| None -> ());
`Not_present
end
in
match Cil_datatype.Compinfo.Map.find_opt ci env.compinfo with
| Some ci' -> `Same ci'
| None -> Compinfo.memo add ci
and enuminfo_correspondance ?loc ei env =
let add ei =
match find_candidate_enuminfo ?loc ei with
| None -> `Not_present
| Some ei' ->
if is_same_enuminfo ei ei' env then begin
(* add items correspondance. By definition, we have
the same number of items here. *)
List.iter2 (fun ei ei' -> Enumitem.add ei (`Same ei'))
ei.eitems ei'.eitems;
`Same ei'
end else begin
(* consider that all items are different.
Might be refined at some point. *)
List.iter (fun ei -> Enumitem.add ei `Not_present) ei.eitems;
`Not_present
end
in
Enuminfo.memo add ei
and enumitem_correspondance ?loc:_loc ei _env = Enumitem.find ei
and gvar_correspondance ?loc vi env =
let add vi =
match find_candidate_varinfo ?loc vi Cil_types.VGlobal with
| None when Cil.isFunctionType vi.vtype ->
begin
match gfun_correspondance ?loc vi env with
| `Same kf' -> `Same (Kf.get_vi kf')
| `Partial(kf',_) ->
(* a partial match at kf level is still the
identity for the underlying varinfo *)
`Same (Kf.get_vi kf')
| `Not_present -> `Not_present
end
| None -> `Not_present
| Some vi' ->
let selection = State_selection.singleton Globals.Vars.self in
let init =
Project.on ~selection (Orig_project.get()) Globals.Vars.find vi
in
let init' = Globals.Vars.find vi' in
let res = is_same_initinfo init init' empty_env in
if res then `Same vi' else `Not_present
in
Varinfo.memo add vi
and gfun_correspondance ?loc vi env =
(* NB: we also take care of the correspondance between the underlying varinfo,
in case we have to refer to it directly, e.g. as an AddrOf argument.
*)
let kf = get_original_kf vi in
let add kf =
match find_candidate_func ?loc kf with
| None -> Varinfo.add vi `Not_present; `Not_present
| Some kf' ->
let formals = Kf.get_formals kf in
let formals' = Kf.get_formals kf' in
let res, env =
(is_same_type (Kf.get_return_type kf) (Kf.get_return_type kf') env, env)
&&& is_same_list_env varinfo_env formals formals'
in
if res then begin
(* from a variable point of view, e.g. if we take its address,
they are similar *)
Varinfo.add vi (`Same (Kf.get_vi kf'));
(* we only add formals to global correspondance tables if some
part of the kf is unchanged (otherwise, we can't reuse information
about the formals anyways). Hence, we only add them into the local
env for now. *)
let env =
{ env with kernel_function = Kf.Map.add kf kf' env.kernel_function }
in
let same_spec = is_same_funspec kf.spec kf'.spec env in
let same_body =
match (Kf.has_definition kf, Kf.has_definition kf') with
| false, false -> `Same_body
| false, true | true, false -> `Body_changed
| true, true ->
is_same_fundec (Kf.get_definition kf) (Kf.get_definition kf') env
in
let res = make_correspondance kf' same_spec same_body in
(match res with
| `Not_present ->
List.iter (fun v -> Varinfo.add v `Not_present) formals;
| `Same _ | `Partial _ -> formals_correspondance formals formals');
res
end else begin
(* signatures do not match, we consider that pointers
are not equivalent. *)
Varinfo.add vi `Not_present;
`Not_present
end
in
match Kf.Map.find_opt kf env.kernel_function with
| Some kf' -> `Same kf'
| None -> Kernel_function.memo add kf
and is_matching_logic_info li li' env =
match Cil_datatype.Logic_info.Map.find_opt li env.logic_info with
| None ->
(match Logic_info.find li with
| `Not_present -> false
| `Same li'' -> Cil_datatype.Logic_info.equal li' li''
| exception Not_found ->
begin
let res = logic_info_correspondance li env in
Logic_info.add li res;
match res with
| `Not_present -> false
| `Same li'' -> Cil_datatype.Logic_info.equal li' li''
end)
| Some li'' -> Cil_datatype.Logic_info.equal li' li''
and logic_info_correspondance ?loc li env =
let add li =
match find_candidate_logic_info ?loc li env with
| None -> `Not_present
| Some li' ->
let env = add_logic_vars li.l_profile li'.l_profile env in
let env =
{ env with
logic_info=Cil_datatype.Logic_info.Map.add li li' env.logic_info }
in
let res = is_same_logic_info li li' env in
if res then begin
logic_prms_correspondance li.l_profile li'.l_profile;
`Same li'
end else `Not_present
in
match Cil_datatype.Logic_info.Map.find_opt li env.logic_info with
| Some li' -> `Same li'
| None -> Logic_info.memo add li
and is_matching_logic_ctor c c' env =
match Logic_ctor_info.find c with
| `Not_present -> false
| `Same c'' -> Cil_datatype.Logic_ctor_info.equal c' c''
| exception Not_found ->
let ty = c.ctor_type in
let res = logic_type_correspondance ty env in
Logic_type_info.add ty res;
if not (Logic_ctor_info.mem c) then
Kernel.fatal "Unbound logic type constructor %a in AST diff"
Cil_datatype.Logic_ctor_info.pretty c;
is_matching_logic_ctor c c' env
and is_matching_logic_type_info t t' env =
match Logic_type_info.find t with
| `Not_present -> false
| `Same t'' -> Cil_datatype.Logic_type_info.equal t' t''
| exception Not_found ->
(match Cil_datatype.Logic_type_info.Map.find_opt t env.logic_type_info with
| Some t'' -> Cil_datatype.Logic_type_info.equal t' t''
| None ->
let res = logic_type_correspondance t env in
Logic_type_info.add t res;
(match res with
| `Same t'' -> Cil_datatype.Logic_type_info.equal t' t''
| `Not_present -> false))
and logic_type_correspondance ?loc ti env =
let add ti =
match find_candidate_logic_type ?loc ti with
| None -> `Not_present
| Some ti' ->
let env =
{ env with
logic_type_info =
Cil_datatype.Logic_type_info.Map.add ti ti' env.logic_type_info }
in
let res = is_same_logic_type_info ti ti' env in
(* In case of a sum type, the constructors table
is updated by is_same_logic_type_info. *)
if res then `Same ti' else `Not_present
in
match Cil_datatype.Logic_type_info.Map.find_opt ti env.logic_type_info with
| Some ti' -> `Same ti'
| None -> Logic_type_info.memo add ti
let model_info_correspondance ?loc mi =
let add mi =
match find_candidate_model_info ?loc mi empty_env with
| None -> `Not_present
| Some mi' ->
let res = is_same_model_info mi mi' empty_env in
if res then `Same mi' else `Not_present
in
Model_info.memo add mi
let rec gannot_correspondance =
function
| Dfun_or_pred (li,loc) ->
ignore (logic_info_correspondance ~loc li empty_env)
| Dvolatile _ -> ()
(* reading and writing function themselves will be checked elsewhere. *)
| Daxiomatic(_,l,_,_) ->
List.iter gannot_correspondance l
| Dtype (ti,loc) -> ignore (logic_type_correspondance ~loc ti empty_env)
| Dlemma _ -> ()
(* TODO: we currently do not have any appropriate structure for
storing information about lemmas. *)
| Dinvariant(li, loc) ->
ignore (logic_info_correspondance ~loc li empty_env)
| Dtype_annot(li,loc) ->
ignore (logic_info_correspondance ~loc li empty_env)
| Dmodel_annot (mi,loc) ->
ignore (model_info_correspondance ~loc mi)
| Dextended _ -> ()
(* TODO: provide mechanism for extension themselves
to give relevant information. *)
let global_correspondance g =
match g with
| GType (ti,loc) -> ignore (typeinfo_correspondance ~loc ti empty_env)
| GCompTag(ci,loc) | GCompTagDecl(ci,loc) ->
ignore (compinfo_correspondance ~loc ci empty_env)
| GEnumTag(ei,loc) | GEnumTagDecl(ei,loc) ->
ignore (enuminfo_correspondance ~loc ei empty_env)
| GVar(vi,_,loc) | GVarDecl(vi,loc) ->
ignore (gvar_correspondance ~loc vi empty_env)
| GFunDecl(_,vi,loc) -> ignore (gfun_correspondance ~loc vi empty_env)
| GFun(f,loc) -> ignore (gfun_correspondance ~loc f.svar empty_env)
| GAnnot (g,_) -> gannot_correspondance g
| GAsm _ | GPragma _ | GText _ -> ()
let compare_ast () =
let prj = Orig_project.get () in
let ast = Project.on prj Ast.get () in
Cil.iterGlobals ast global_correspondance
let compare_from_prj prj =
Orig_project.set prj;
compare_ast ()
let prepare_project () =
if Kernel.AstDiff.get () then begin
let orig = Project.create_by_copy ~last:false
("orig_" ^ Project.get_name (Project.current()))
in
Orig_project.set orig
end
let () = Cmdline.run_after_configuring_stage prepare_project
let compute_diff _ =
if Kernel.AstDiff.get () then begin
Ast.compute (); compare_ast ()
end
let () = Cmdline.run_after_setting_files compute_diff