Newer
Older
(**************************************************************************)
(* *)
(* This file is part of WP plug-in of Frama-C. *)
(* *)
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
(* CEA (Commissariat a l'energie atomique et aux energies *)
(* alternatives) *)
(* *)
(* you can redistribute it and/or modify it under the terms of the GNU *)
(* Lesser General Public License as published by the Free Software *)
(* Foundation, version 2.1. *)
(* *)
(* It is distributed in the hope that it will be useful, *)
(* but WITHOUT ANY WARRANTY; without even the implied warranty of *)
(* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *)
(* GNU Lesser General Public License for more details. *)
(* *)
(* See the GNU Lesser General Public License version 2.1 *)
(* for more details (enclosed in the file licenses/LGPLv2.1). *)
(* *)
(**************************************************************************)
(* -------------------------------------------------------------------------- *)
(* --- Dependencies of Logic Definitions --- *)
(* -------------------------------------------------------------------------- *)
open Cil
open Cil_types
open Cil_datatype
open Clabels
open Visitor
(* -------------------------------------------------------------------------- *)
(* --- Name Utilities --- *)
(* -------------------------------------------------------------------------- *)
let trim name =
let rec first s k n =
if k < n && s.[k]='_' then first s (succ k) n else k in
let rec last s k =
if k >= 0 && s.[k]='_' then last s (pred k) else k in
let n = String.length name in
if n > 0 then
if ( name.[0]='_' || name.[n-1]='_' ) then
let p = first name 0 n in
let q = last name (pred n) in
if p <= q then
let name = String.sub name p (q+1-p) in
match name.[0] with
| '0' .. '9' -> "_" ^ name
| _ -> name
else "_"
else name
else "_"
(* -------------------------------------------------------------------------- *)
(* --- Definition Blocks --- *)
(* -------------------------------------------------------------------------- *)
type logic_lemma = {
lem_name : string ;
lem_position : Filepath.position ;
lem_types : string list ;
lem_labels : logic_label list ;
lem_predicate : toplevel_predicate ;
lem_depends : logic_lemma list ;
(* global lemmas declared before in AST order (in reverse order) *)
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
}
type axiomatic = {
ax_name : string ;
ax_position : Filepath.position ;
ax_property : Property.t ;
mutable ax_types : logic_type_info list ;
mutable ax_logics : logic_info list ;
mutable ax_lemmas : logic_lemma list ;
mutable ax_reads : Varinfo.Set.t ; (* read-only *)
}
type logic_section =
| Toplevel of int
| Axiomatic of axiomatic
let is_global_axiomatic ax =
ax.ax_types = [] &&
ax.ax_logics = [] &&
ax.ax_lemmas <> []
module SMap = Datatype.String.Map
module TMap = Logic_type_info.Map
module LMap = Logic_info.Map
module LSet = Logic_info.Set
(* -------------------------------------------------------------------------- *)
(* --- Usage and Dependencies --- *)
(* -------------------------------------------------------------------------- *)
type inductive_case = {
ind_logic : logic_info ;
ind_case : string ;
mutable ind_call : LabelSet.t LabelMap.t ;
}
type database = {
mutable cases : inductive_case list LMap.t ;
mutable clash : LSet.t SMap.t ;
mutable names : string LMap.t ;
mutable types : logic_section TMap.t ;
mutable logics : logic_section LMap.t ;
mutable lemmas : (logic_lemma * logic_section) SMap.t ;
mutable recursives : LSet.t ;
mutable axiomatics : axiomatic SMap.t ;
mutable proofcontext : logic_lemma list ;
}
let empty_database () = {
cases = LMap.empty ;
names = LMap.empty ;
clash = SMap.empty ;
types = TMap.empty ;
logics = LMap.empty ;
lemmas = SMap.empty ;
recursives = LSet.empty ;
axiomatics = SMap.empty ;
proofcontext = [] ;
}
module DatabaseType = Datatype.Make
(struct
type t = database
include Datatype.Serializable_undefined
let reprs = [empty_database ()]
let name = "Wp.LogicUsage.DatabaseType"
end)
module Database = State_builder.Ref(DatabaseType)
(struct
let name = "Wp.LogicUsage.Database"
let dependencies = [Ast.self;Annotations.code_annot_state]
let default = empty_database
end)
let pp_logic fmt l = Printer.pp_logic_var fmt l.l_var_info
(* -------------------------------------------------------------------------- *)
(* --- Overloading --- *)
(* -------------------------------------------------------------------------- *)
let basename x = trim x.vorig_name
let compute_logicname l =
let d = Database.get () in
try LMap.find l d.names
with Not_found ->
let base = l.l_var_info.lv_name in
let over =
try SMap.find base d.clash
with Not_found -> LSet.empty (*TODO: Undetected usage -> overloading issue *)
in
match LSet.elements over with
| [] | [_] -> d.names <- LMap.add l base d.names ; base
| symbols ->
let rec register k = function
| l::ls ->
let name = Printf.sprintf "%s_%d_" base k in
d.names <- LMap.add l name d.names ;
register (succ k) ls
| [] -> ()
in register 1 symbols ; LMap.find l d.names
let is_overloaded l =
let d = Database.get () in
try LSet.cardinal (SMap.find l.l_var_info.lv_name d.clash) > 1
with Not_found -> false
let pp_profile fmt l =
Format.fprintf fmt "%s" l.l_var_info.lv_name ;
match l.l_profile with
| [] -> ()
| x::xs ->
Format.fprintf fmt "@[<hov 1>(%a" Printer.pp_logic_type x.lv_type ;
List.iter
(fun y -> Format.fprintf fmt ",@,%a"
Printer.pp_logic_type y.lv_type)
xs ;
Format.fprintf fmt ")@]"
(* -------------------------------------------------------------------------- *)
(* --- Utilities --- *)
(* -------------------------------------------------------------------------- *)
let ip_lemma l =
Property.ip_lemma {
il_name = l.lem_name; il_labels = l.lem_labels;
il_args = l.lem_types; il_loc = (l.lem_position, l.lem_position);
il_attrs = l.lem_attrs;
il_pred = l.lem_predicate;
}
let lemma_of_global ~context = function
| Dlemma(name,labels,types,pred,attrs,loc) ->
{
lem_name = name ;
lem_position = fst loc ;
lem_types = types ;
lem_labels = labels ;
| _ -> assert false
let populate a ~context = function
| Dfun_or_pred(l,_) -> a.ax_logics <- l :: a.ax_logics
| Dtype(t,_) -> a.ax_types <- t :: a.ax_types
| Dlemma _ as g -> a.ax_lemmas <- lemma_of_global ~context g :: a.ax_lemmas
| _ -> ()
let ip_of_axiomatic g =
match Property.ip_of_global_annotation_single g with
| None -> assert false
| Some ip -> ip
let axiomatic_of_global ~context = function
| Daxiomatic(name,globals,_,loc) as g ->
let a = {
ax_name = name ;
ax_position = fst loc ;
ax_property = ip_of_axiomatic g ;
ax_reads = Varinfo.Set.empty ;
ax_types = [] ; ax_lemmas = [] ; ax_logics = [] ;
} in
List.iter (populate a ~context) globals ;
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
a.ax_types <- List.rev a.ax_types ;
a.ax_logics <- List.rev a.ax_logics ;
a.ax_lemmas <- List.rev a.ax_lemmas ;
a
| _ -> assert false
let register_logic d section l =
let name = l.l_var_info.lv_name in
let over =
try LSet.add l (SMap.find name d.clash)
with Not_found -> LSet.singleton l in
begin
d.clash <- SMap.add name over d.clash ;
d.logics <- LMap.add l section d.logics ;
end
let register_lemma d section l =
begin
d.lemmas <- SMap.add l.lem_name (l,section) d.lemmas ;
end
let register_type d section t =
begin
d.types <- TMap.add t section d.types ;
end
let register_axiomatic d a =
begin
d.axiomatics <- SMap.add a.ax_name a d.axiomatics ;
end
let register_cases l inds =
let d = Database.get () in
d.cases <- LMap.add l inds d.cases
(* -------------------------------------------------------------------------- *)
(* --- Adding a label called in an inductive case --- *)
(* -------------------------------------------------------------------------- *)
(* calls : LabelSet.t LabelMap.t
Given an inductive phi{...A...}
In case H{...B...}, have a call to phi{...B...}
Then: ( A \in calls[B] ).
*)
let add_call calls l_a l_b =
let a = Clabels.of_logic l_a in
let b = Clabels.of_logic l_b in
let s =
try LabelSet.add a (LabelMap.find b calls)
with Not_found -> LabelSet.singleton a
in
LabelMap.add b s calls
(* -------------------------------------------------------------------------- *)
(* --- Visitor --- *)
(* -------------------------------------------------------------------------- *)
class visitor =
object(self)
inherit Visitor.frama_c_inplace
val database = Database.get ()
val mutable caller : logic_info option = None
val mutable axiomatic : axiomatic option = None
val mutable inductive : inductive_case option = None
val mutable toplevel = 0
method private section =
match axiomatic with
| None -> Toplevel toplevel
| Some a -> Axiomatic a
method private do_var x =
match axiomatic with
| None -> ()
| Some a -> a.ax_reads <- Varinfo.Set.add x a.ax_reads
method private do_lvar x =
try self#do_call (Logic_env.find_logic_cons x) []
with Not_found -> ()
method private do_call l labels =
match inductive with
| Some case ->
if Logic_info.equal l case.ind_logic then
case.ind_call <- List.fold_left2 add_call case.ind_call l.l_labels labels
| None ->
match caller with
| None -> ()
| Some f ->
if Logic_info.equal f l then
database.recursives <- LSet.add f database.recursives
method private do_case l (case,_labels,_types,pnamed) =
begin
let indcase = {
ind_logic = l ;
ind_case = case ;
ind_call = LabelMap.empty ;
} in
inductive <- Some indcase ;
ignore (visitFramacPredicate (self :> frama_c_visitor) pnamed) ;
inductive <- None ; indcase
end
(* --- LVALUES --- *)
method! vlval = function
| (Var x,_) -> self#do_var x ; DoChildren
| _ -> DoChildren
method! vterm_lval = function
| (TVar { lv_origin=Some x } , _ ) -> self#do_var x ; DoChildren
| (TVar x , _ ) -> self#do_lvar x ; DoChildren
| _ -> DoChildren
(* --- TERMS --- *)
method! vterm_node = function
| Tapp(l,labels,_) -> self#do_call l labels ; DoChildren
| _ -> DoChildren
(* --- PREDICATE --- *)
method! vpredicate_node = function
| Papp(l,labels,_) -> self#do_call l labels ; DoChildren
| _ -> DoChildren
method! vannotation global =
match global with
(* --- AXIOMATICS --- *)
| Daxiomatic _ ->
begin
let pf = database.proofcontext in
let ax = axiomatic_of_global pf global in
register_axiomatic database ax ;
axiomatic <- Some ax ;
DoChildrenPost
(fun g ->
if not (is_global_axiomatic ax) then
database.proofcontext <- pf ;
axiomatic <- None ;
toplevel <- succ toplevel ;
g)
end
(* --- LOGIC INFO --- *)
| Dtype_annot(l,_)
| Dinvariant(l,_)
| Dfun_or_pred(l,_) ->
begin
register_logic database self#section l ;
match l.l_body with
| LBnone when axiomatic = None -> SkipChildren
| LBnone | LBreads _ | LBterm _ | LBpred _ ->
caller <- Some l ;
DoChildrenPost (fun g -> caller <- None ; g)
| LBinductive cases ->
register_cases l (List.map (self#do_case l) cases) ;
SkipChildren
end
(* --- LEMMAS --- *)
| Dlemma _ ->
let lem = lemma_of_global database.proofcontext global in
register_lemma database self#section lem ;
if Logic_utils.use_predicate lem.lem_predicate.tp_kind then
database.proofcontext <- lem :: database.proofcontext ;
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
SkipChildren
| Dtype(t,_) ->
register_type database self#section t ;
SkipChildren
(* --- OTHERS --- *)
| Dvolatile _
| Dmodel_annot _
| Dextended _
-> SkipChildren
method! vfunc _ = SkipChildren
end
let compute () =
Wp_parameters.feedback ~ontty:`Transient "Collecting axiomatic usage" ;
Visitor.visitFramacFile (new visitor) (Ast.get ())
(* -------------------------------------------------------------------------- *)
(* --- External API --- *)
(* -------------------------------------------------------------------------- *)
let (compute,_) =
State_builder.apply_once "LogicUsage.compute"
[Ast.self;Annotations.code_annot_state] compute
let is_recursive l =
compute () ;
let d = Database.get () in
LSet.mem l d.recursives
let get_induction_labels l case =
compute () ;
try
let d = Database.get () in
let cases = LMap.find l d.cases in
try (List.find (fun i -> i.ind_case = case) cases).ind_call
with Not_found ->
Wp_parameters.fatal "No case '%s' for inductive '%s'"
case l.l_var_info.lv_name
with Not_found ->
Wp_parameters.fatal "Non-inductive '%s'" l.l_var_info.lv_name
let axiomatic a =
compute () ;
try
let d = Database.get () in
SMap.find a d.axiomatics
with Not_found ->
Wp_parameters.fatal "Axiomatic '%s' undefined" a
let section_of_type t =
compute () ;
try
let d = Database.get () in
TMap.find t d.types
with Not_found ->
Wp_parameters.fatal "Logic type '%s' undefined" t.lt_name
let section_of_logic l =
compute () ;
try
let d = Database.get () in
LMap.find l d.logics
with Not_found ->
Wp_parameters.fatal "Logic '%a' undefined" pp_logic l
let get_lemma l =
compute () ;
try
let d = Database.get () in
SMap.find l d.lemmas
with Not_found ->
Wp_parameters.fatal "Lemma '%s' undefined" l
let iter_lemmas f =
compute () ;
let d = Database.get () in
SMap.iter (fun _name (lem,_) -> f lem) d.lemmas
let fold_lemmas f =
compute () ;
let d = Database.get () in
SMap.fold (fun _name (lem,_) -> f lem) d.lemmas
let logic_lemma l = fst (get_lemma l)
let section_of_lemma l = snd (get_lemma l)
let proof_context () =
(* No need for compute: if no lemma, database is empty ! *)
let d = Database.get () in
d.proofcontext
(* -------------------------------------------------------------------------- *)
(* --- Dump API --- *)
(* -------------------------------------------------------------------------- *)
let pp_type fmt t = Format.fprintf fmt " * type '%s'@\n" t.lt_name
begin
Format.fprintf fmt " * %s '%s'@\n" kind (compute_logicname l) ;
if is_overloaded l then
Format.fprintf fmt " profile %a@\n" pp_profile l ;
if is_recursive l then
Format.fprintf fmt " recursive@\n" ;
end
begin
try
let cases = LMap.find l d.cases in
List.iter
(fun ind ->
Format.fprintf fmt " @[case %s:" ind.ind_case ;
LabelMap.iter
(fun l s ->
Format.fprintf fmt "@ @[<hov 2>{%a:" Clabels.pretty l ;
LabelSet.iter (fun l -> Format.fprintf fmt "@ %a"
Clabels.pretty l) s ;
Format.fprintf fmt "}@]"
) ind.ind_call ;
Format.fprintf fmt "@]@\n"
) cases ;
with Not_found ->
let kind = if l.l_type = None then "predicate" else "function" in
Format.fprintf fmt " * %a '%s'@\n"
Cil_printer.pp_lemma_kind l.lem_predicate.tp_kind l.lem_name
let get_name l = compute () ; compute_logicname l
let pp_section fmt = function
| Toplevel 0 -> Format.fprintf fmt "Toplevel"
| Toplevel n -> Format.fprintf fmt "Toplevel(%d)" n
| Axiomatic a -> Format.fprintf fmt "Axiomatic '%s'" a.ax_name
let dump () =
compute () ;
Log.print_on_output
begin fun fmt ->
let d = Database.get () in
SMap.iter
(fun _ a ->
Format.fprintf fmt "Axiomatic %s {@\n" a.ax_name ;
List.iter (pp_type fmt) a.ax_types ;
List.iter (pp_decl fmt d) a.ax_logics ;
List.iter (pp_lemma fmt) a.ax_lemmas ;
Format.fprintf fmt "}@\n"
) d.axiomatics ;
TMap.iter
(fun t s ->
Format.fprintf fmt " * type '%s' in %a@\n"
t.lt_name pp_section s)
d.types ;
LMap.iter
(fun l s ->
Format.fprintf fmt " * logic '%a' in %a@\n"
pp_logic l pp_section s)
d.logics ;
SMap.iter
(fun l (lem,s) ->
Cil_printer.pp_lemma_kind lem.lem_predicate.tp_kind
l pp_section s)
d.lemmas ;
Format.fprintf fmt "-------------------------------------------------@." ;
end