Newer
Older
(*************************************************************************)
(* This file is part of Colibri2. *)
(* *)
(* Copyright (C) 2014-2021 *)
(* CEA (Commissariat à l'énergie atomique et aux énergies *)
(* alternatives) *)
(* *)
(* you can redistribute it and/or modify it under the terms of the GNU *)
(* Lesser General Public License as published by the Free Software *)
(* Foundation, version 2.1. *)
(* *)
(* It is distributed in the hope that it will be useful, *)
(* but WITHOUT ANY WARRANTY; without even the implied warranty of *)
(* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *)
(* GNU Lesser General Public License for more details. *)
(* *)
(* See the GNU Lesser General Public License version 2.1 *)
(* for more details (enclosed in the file licenses/LGPLv2.1). *)
(*************************************************************************)
let debug =
Debug.register_info_flag ~desc:"for the normalization by pivoting" "LRA.pivot"
type 'a solve_with_unsolved =
| AlreadyEqual
| Contradiction
| Unsolved
module WithUnsolved (P : sig
type t
val name : string
include Colibri2_popop_lib.Popop_stdlib.Datatype with type t := t
val of_one_node : _ Egraph.t -> Node.t -> t
val is_one_node : t -> Node.t option
val subst : t -> Node.t -> t -> t option
val normalize : t -> f:(Node.t -> t) -> t
type data
val nodes : t -> data Node.M.t
type info
val info : _ Egraph.t -> t -> info
val attach_info_change :
Egraph.wt -> (Egraph.rt -> Node.t -> Events.enqueue) -> unit
val solve : info -> info -> t solve_with_unsolved
val set : Egraph.wt -> Node.t -> old_:t -> new_:t -> unit
end) : sig
val assume_equality : Egraph.wt -> Node.t -> P.t -> unit
val init : Egraph.wt -> unit
val get_repr : _ Egraph.t -> Node.t -> P.t option
val iter_eqs : _ Egraph.t -> Node.t -> f:(P.t -> unit) -> unit
val attach_repr_change :
_ Egraph.t -> ?node:Node.t -> (Egraph.wt -> Node.t -> unit) -> unit
val attach_eqs_change :
_ Egraph.t -> ?node:Node.t -> (Egraph.wt -> Node.t -> unit) -> unit
val reshape : Egraph.wt -> Node.t -> f:(P.t -> P.t option) -> unit
end = struct
type t = {
repr : P.t;
(** When a pivot is not possible because the equality can be null, the other
product are waiting on the side, they are also normalized *)
eqs : P.S.t;
}
[@@deriving ord, eq]
let pp fmt t = Fmt.pf fmt "%a,%a" P.pp t.repr P.S.pp t.eqs
let dom =
Dom.Kind.create
(module struct
type nonrec t = t
let name = P.name
end)
let used_in_poly : Node.S.t Node.HC.t =
Node.HC.create Node.S.pp (P.name ^ "_used_in_poly")
let set_poly d cl p chg =
Egraph.set_dom d dom cl p;
List.iter (fun (old_, new_) -> P.set d cl ~old_ ~new_) chg
let add_used_product d cl' new_cls =
Node.M.iter
(fun used _ ->
Node.HC.change
(function
| Some b -> Some (Node.S.add cl' b)
| None -> (
match Egraph.get_dom d dom used with
| None ->
(* If a used node have no polynome associated, we set it to
itself. This allows to be warned when this node is merged. It
is the reason why this module doesn't specifically wait for
representative change *)
Egraph.set_dom d dom used
{ repr = P.of_one_node d used; eqs = P.S.empty };
Some (Node.S.of_list [ cl'; used ])
| Some p ->
assert (
Option.equal Node.equal (P.is_one_node p.repr) (Some used));
assert false))
used_in_poly d used)
new_cls
let add_used_t d cl' t =
add_used_product d cl' (P.nodes t.repr);
P.S.iter (fun p -> add_used_product d cl' (P.nodes p)) t.eqs
let norm_product d p =
P.normalize p ~f:(fun cl ->
let cl = Egraph.find d cl in
match Egraph.get_dom d dom cl with
let norm_dom d cl = function
| None ->
let r = P.of_one_node d cl in
{ repr = r; eqs = P.S.empty }
| Some p -> p
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
module Th = struct
let merged v1 v2 =
Base.phys_equal v1 v2
||
match (v1, v2) with
| None, None -> true
| Some v', Some v -> equal v' v
| _ -> false
let add_itself d cl norm =
add_used_t d cl norm;
Egraph.set_dom d dom cl norm
let rec merge d (_, cl1) (_, cl2) _inv =
let cl1 = Egraph.find d cl1 in
let cl2 = Egraph.find d cl2 in
assert (not (Egraph.is_equal d cl1 cl2));
merge_aux d cl1 cl2
and merge_aux d cl1 cl2 =
let p1o = Egraph.get_dom d dom cl1 in
let p2o = Egraph.get_dom d dom cl2 in
assert (not (Option.is_none p1o && Option.is_none p2o));
match (p1o, p2o) with
| None, None -> assert false (* absurd: no need to merge *)
| Some p, None ->
assert (Option.is_none (Node.HC.find_opt used_in_poly d cl2));
add_itself d cl2 p
| None, Some p ->
assert (Option.is_none (Node.HC.find_opt used_in_poly d cl1));
add_itself d cl1 p
| Some p1, Some p2 -> (
match
solve d
(Base.List.cartesian_product
(part d (p1.repr :: P.S.elements p1.eqs))
(part d (p2.repr :: P.S.elements p2.eqs)))
with
| `Solved ->
(* The domains have been substituted, and possibly recursively *)
merge_aux d cl1 cl2
| `Not_solved ->
(* nothing to solve *)
let repr =
match (P.is_one_node p1.repr, P.is_one_node p2.repr) with
| None, None -> p1.repr (* arbitrary *)
| Some _, None -> p1.repr
| None, Some _ -> p2.repr
| Some cl1', Some cl2' ->
assert (Node.equal cl1' cl2');
p1.repr
in
let eqs =
p1.eqs |> P.S.add p1.repr |> P.S.union p2.eqs |> P.S.add p2.repr
|> P.S.remove repr
in
let p = { repr; eqs } in
Egraph.set_dom d dom cl1 p;
Egraph.set_dom d dom cl2 p)
and merge_one_new_eq d cl eq =
let eq = norm_product d eq in
let po = Egraph.get_dom d dom cl in
if Option.is_some po || Node.M.mem cl (P.nodes eq) then (
let p = norm_dom d cl po in
if (not (P.S.mem eq p.eqs)) && not (P.equal eq p.repr) then
match
solve d
(Base.List.cartesian_product
(part d (p.repr :: P.S.elements p.eqs))
(part d [ eq ]))
with
| `Solved ->
(* The domains have been substituted, and possibly recursively *)
merge_one_new_eq d cl eq
| `Not_solved ->
(* nothing to solve *)
let repr = p.repr in
let eqs = p.eqs |> P.S.add eq |> P.S.remove repr in
let p = { repr; eqs } in
add_used_product d cl (P.nodes eq);
set_poly d cl p [ (eq, eq) ])
else (
add_used_product d cl (P.nodes eq);
set_poly d cl { repr = eq; eqs = P.S.empty } [ (eq, eq) ])
Debug.dprintf5 debug "[Pivot:%s] subst %a with %a" P.name Node.pp cl P.pp
eq;
let po = Egraph.get_dom d dom cl in
match po with
| None ->
let p = { repr = eq; eqs = P.S.empty } in
add_used_product d cl (P.nodes eq);
set_poly d cl p [ (eq, eq) ]
assert (Option.equal Node.equal (P.is_one_node p.repr) (Some cl));
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
and subst_doms d cl p =
let b =
match Node.HC.find used_in_poly d cl with
| exception Not_found -> Node.S.empty
| b -> b
in
let touched = Node.H.create 10 in
Node.S.iter
(fun cl' ->
match Egraph.get_dom d dom cl' with
| None -> assert false (* absurd: can't be used and absent *)
| Some q ->
let fold (new_cl, acc, chg) (q : P.t) =
let new_cl =
Node.M.set_union new_cl
(Node.M.set_diff (P.nodes p) (P.nodes q))
in
match P.subst q cl p with
| None -> (new_cl, P.S.add q acc, chg)
| Some q' ->
Node.H.replace touched cl' ();
(new_cl, P.S.add q' acc, (q, q') :: chg)
in
let new_cl, acc, chg =
fold (Node.M.empty, P.S.empty, []) q.repr
in
let repr = P.S.choose acc (* there is only one in acc *) in
let new_cl, acc, chg =
P.S.fold_left fold (new_cl, acc, chg) q.eqs
in
let eqs = P.S.remove repr acc in
add_used_product d cl' new_cl;
set_poly d cl' { repr; eqs } chg)
b;
Node.H.iter (recheck d) touched
and part d l = List.map (fun p -> P.info d p) l
and solve d l =
let exception Solved of P.t Node.M.t in
let criteria i1 i2 =
let aux i1 i2 =
match P.solve i1 i2 with
| AlreadyEqual -> ()
| Contradiction -> Egraph.contradiction d
| Unsolved -> ()
| Subst m -> raise (Solved m)
in
aux i1 i2;
aux i2 i1
in
match List.iter (fun (a, b) -> criteria a b) l with
| exception Solved m ->
let n, p = Node.M.choose m in
Node.M.iter (fun n p -> merge_one_new_eq d n p) (Node.M.remove n m);
`Solved
| () -> `Not_solved
and recheck d n () =
match Egraph.get_dom d dom n with
| None -> assert false (* absurd: can't be used and absent *)
| Some p -> (
match
solve d
(Base.List.cartesian_product
(part d (p.repr :: P.S.elements p.eqs))
(part d (p.repr :: P.S.elements p.eqs)))
with
| `Solved -> recheck d n ()
| `Not_solved -> ())
let key = dom
type nonrec t = t
let pp = pp
end
let () = Dom.register (module Th)
let get_repr d n =
let+ p = Egraph.get_dom d dom n in
p.repr
let iter_eqs d n ~f =
match Egraph.get_dom d dom n with
| None -> ()
| Some p ->
f p.repr;
P.S.iter f p.eqs
let assume_equality d n (p : P.t) =
Debug.dprintf5 debug "[Pivot %s] assume %a = %a" P.name Node.pp n P.pp p;
let n = Egraph.find d n in
Th.merge_one_new_eq d n p
let reshape d cl ~(f : P.t -> P.t option) =
match Node.HC.find used_in_poly d cl with
| exception Not_found -> ()
| b ->
Node.S.iter
(fun cl' ->
match Egraph.get_dom d dom cl' with
| None -> assert false (* absurd: can't be used and absent *)
| Some q ->
let replace p =
match f p with
| None -> p
| Some p ->
Node.H.replace touched cl' ();
p
in
P.S.fold
(fun p acc -> P.S.add (replace p) acc)
q.eqs P.S.empty
let q' = { repr = replace q.repr; eqs } in
Egraph.set_dom d dom cl' q';
let l = Th.part d (q'.repr :: P.S.elements q'.eqs) in
let l = Base.List.cartesian_product l l in
ignore (Th.solve d l))
b;
Node.H.iter (Th.recheck d) touched
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
type runable = Node.S.t
let print_runable = Node.S.pp
let run d ns =
Node.S.iter
(fun n ->
let p = Base.Option.value_exn (Egraph.get_dom d dom n) in
let l = Th.part d (p.repr :: P.S.elements p.eqs) in
let l = Base.List.cartesian_product l l in
ignore (Th.solve d l))
ns
let delay = Events.Delayed_by 10
let key =
Events.Dem.create
(module struct
type t = Node.S.t
let name = "Dom_product.ChangePos"
end)
let init d =
P.attach_info_change d (fun d n ->
match Node.HC.find_opt used_in_poly d n with
| Some ns -> Events.EnqRun (key, ns, None)
| None -> Events.EnqAlready)
end
let () = Events.register (module ChangeInfo)
let init d = ChangeInfo.init d
let attach_eqs_change d ?node f =
match node with
| Some x -> Daemon.attach_dom d x dom f
| None -> Daemon.attach_any_dom d dom f
let attach_repr_change = attach_eqs_change
end
type 'a solve_total = AlreadyEqual | Contradiction | Subst of Node.t * 'a
module Total (P : sig
type t
val name : string
include Colibri2_popop_lib.Popop_stdlib.Datatype with type t := t
val of_one_node : Node.t -> t
val is_one_node : t -> Node.t option
val subst : t -> Node.t -> t -> t
val normalize : t -> f:(Node.t -> t) -> t
type data
val nodes : t -> data Node.M.t
val solve : t -> t -> t solve_total
val set : Egraph.wt -> Node.t -> old_:t option -> new_:t -> unit
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
end) : sig
val assume_equality : Egraph.wt -> Node.t -> P.t -> unit
val init : Egraph.wt -> unit
val get_repr : _ Egraph.t -> Node.t -> P.t option
val attach_repr_change :
_ Egraph.t -> ?node:Node.t -> (Egraph.wt -> Node.t -> unit) -> unit
val events_repr_change :
_ Egraph.t ->
?node:Node.t ->
(Egraph.rt -> Node.t -> Events.enqueue) ->
unit
val normalize : _ Egraph.t -> P.t -> P.t
end = struct
open Colibri2_popop_lib
let dom =
Dom.Kind.create
(module struct
type t = P.t
let name = P.name
end)
let used_in_poly : Node.t Bag.t Node.HC.t =
Node.HC.create (Bag.pp Node.pp) "used_in_poly"
let set_poly d cl old_ new_ =
Egraph.set_dom d dom cl new_;
P.set d cl ~old_ ~new_
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
let add_used d cl' new_cl =
Node.M.iter
(fun used _ ->
Node.HC.change
(function
| Some b -> Some (Bag.append b cl')
| None ->
(match Egraph.get_dom d dom used with
| None ->
(* If a used node have no polynome associated, we set it to
itself. This allows to be warned when this node is merged. It
is the reason why this module doesn't specifically wait for
representative change *)
Egraph.set_dom d dom used (P.of_one_node used)
| Some p -> assert (P.equal (P.of_one_node used) p));
Some (Bag.elt cl'))
used_in_poly d used)
new_cl
let subst_doms d cl (p : P.t) =
let b =
match Node.HC.find used_in_poly d cl with
| exception Not_found -> Bag.empty
| b -> b
in
Bag.iter
(fun cl' ->
match Egraph.get_dom d dom cl' with
| None -> assert false (* absurd: can't be used and absent *)
| Some q ->
let new_cl = Node.M.set_diff (P.nodes p) (P.nodes q) in
let q_new = P.subst q cl p in
set_poly d cl' (Some q) q_new)
set_poly d cl None p
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
module Th = struct
include P
let merged v1 v2 =
match (v1, v2) with
| None, None -> true
| Some v', Some v -> equal v' v
| _ -> false
let norm_dom cl = function
| None ->
let r = P.of_one_node cl in
r
| Some p -> p
let add_itself d cl norm =
add_used d cl (P.nodes norm);
Egraph.set_dom d dom cl norm
let merge d ((p1o, cl1) as a1) ((p2o, cl2) as a2) inv =
assert (not (Egraph.is_equal d cl1 cl2));
assert (not (Option.is_none p1o && Option.is_none p2o));
let (pother, other), (prepr, repr) = if inv then (a2, a1) else (a1, a2) in
let other = Egraph.find d other in
let repr = Egraph.find d repr in
let p1 = norm_dom other pother in
let p2 = norm_dom repr prepr in
(match P.solve p1 p2 with
| AlreadyEqual -> (
(* no new equality already equal *)
match (pother, prepr) with
| Some _, Some _ | None, None ->
assert false (* absurd: no need of merge *)
| Some p, None ->
(* p = repr *)
add_itself d repr p
| None, Some p ->
(* p = other *)
add_itself d other p)
| Contradiction -> Egraph.contradiction d
| Subst (x, p) ->
Debug.dprintf2 debug "[Arith] @[pivot %a@]" Node.pp x;
let add_if_default n norm = function
| Some _ -> ()
| None -> add_itself d n norm
in
add_if_default other p1 pother;
add_if_default repr p2 prepr;
subst_doms d x p);
assert (
Option.compare P.compare
(Egraph.get_dom d dom repr)
(Egraph.get_dom d dom other)
= 0)
let solve_one d cl p1 =
let p2 = Egraph.get_dom d dom cl in
if Option.is_some p2 || Node.M.mem cl (P.nodes p1) then (
let p2 = norm_dom cl p2 in
match P.solve p1 p2 with
| AlreadyEqual -> ()
| Contradiction -> Egraph.contradiction d
| Subst (x, p) ->
Debug.dprintf2 debug "[Arith] @[pivot %a@]" Node.pp x;
subst_doms d x p)
else
(* This case allows to not substitute when not needed *)
subst_doms d cl p1
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
let key = dom
end
let () = Dom.register (module Th)
let normalize d (p : P.t) =
P.normalize p ~f:(fun cl ->
let cl = Egraph.find_def d cl in
match Egraph.get_dom d dom cl with
| None -> P.of_one_node cl
| Some p -> p)
let assume_equality d n (p : P.t) =
let n = Egraph.find_def d n in
let p = normalize d p in
Th.solve_one d n p
let get_repr d cl = Egraph.get_dom d dom cl
let attach_repr_change d ?node f =
match node with
| Some x -> Daemon.attach_dom d x dom f
| None -> Daemon.attach_any_dom d dom f
let events_repr_change d ?node f =
match node with
| Some x -> Events.attach_dom d x dom f
| None -> Events.attach_any_dom d dom f
let init _ = ()
end