(*************************************************************************) (* This file is part of Colibri2. *) (* *) (* Copyright (C) 2014-2021 *) (* CEA (Commissariat à l'énergie atomique et aux énergies *) (* alternatives) *) (* *) (* you can redistribute it and/or modify it under the terms of the GNU *) (* Lesser General Public License as published by the Free Software *) (* Foundation, version 2.1. *) (* *) (* It is distributed in the hope that it will be useful, *) (* but WITHOUT ANY WARRANTY; without even the implied warranty of *) (* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *) (* GNU Lesser General Public License for more details. *) (* *) (* See the GNU Lesser General Public License version 2.1 *) (* for more details (enclosed in the file licenses/LGPLv2.1). *) (*************************************************************************) let debug = Debug.register_info_flag ~desc:"for the normalization by pivoting" "LRA.pivot" type 'a solve_with_unsolved = | AlreadyEqual | Contradiction | Unsolved | Subst of 'a Node.M.t module WithUnsolved (P : sig type t val name : string include Colibri2_popop_lib.Popop_stdlib.Datatype with type t := t val of_one_node : _ Egraph.t -> Node.t -> t val is_one_node : t -> Node.t option val subst : t -> Node.t -> t -> t option val normalize : t -> f:(Node.t -> t) -> t type data val nodes : t -> data Node.M.t type info val info : _ Egraph.t -> t -> info val attach_info_change : Egraph.wt -> (Egraph.rt -> Node.t -> Events.enqueue) -> unit val solve : info -> info -> t solve_with_unsolved val set : Egraph.wt -> Node.t -> old_:t -> new_:t -> unit end) : sig val assume_equality : Egraph.wt -> Node.t -> P.t -> unit val init : Egraph.wt -> unit val get_repr : _ Egraph.t -> Node.t -> P.t option val iter_eqs : _ Egraph.t -> Node.t -> f:(P.t -> unit) -> unit val attach_repr_change : _ Egraph.t -> ?node:Node.t -> (Egraph.wt -> Node.t -> unit) -> unit val attach_eqs_change : _ Egraph.t -> ?node:Node.t -> (Egraph.wt -> Node.t -> unit) -> unit val reshape : Egraph.wt -> Node.t -> f:(P.t -> P.t option) -> unit end = struct type t = { repr : P.t; (** When a pivot is not possible because the equality can be null, the other product are waiting on the side, they are also normalized *) eqs : P.S.t; } [@@deriving ord, eq] let pp fmt t = Fmt.pf fmt "%a,%a" P.pp t.repr P.S.pp t.eqs let dom = Dom.Kind.create (module struct type nonrec t = t let name = P.name end) let used_in_poly : Node.S.t Node.HC.t = Node.HC.create Node.S.pp (P.name ^ "_used_in_poly") let set_poly d cl p chg = Egraph.set_dom d dom cl p; List.iter (fun (old_, new_) -> P.set d cl ~old_ ~new_) chg let add_used_product d cl' new_cls = Node.M.iter (fun used _ -> Node.HC.change (function | Some b -> Some (Node.S.add cl' b) | None -> ( match Egraph.get_dom d dom used with | None -> (* If a used node have no polynome associated, we set it to itself. This allows to be warned when this node is merged. It is the reason why this module doesn't specifically wait for representative change *) Egraph.set_dom d dom used { repr = P.of_one_node d used; eqs = P.S.empty }; Some (Node.S.of_list [ cl'; used ]) | Some p -> assert ( Option.equal Node.equal (P.is_one_node p.repr) (Some used)); assert false)) used_in_poly d used) new_cls let add_used_t d cl' t = add_used_product d cl' (P.nodes t.repr); P.S.iter (fun p -> add_used_product d cl' (P.nodes p)) t.eqs let norm_product d p = P.normalize p ~f:(fun cl -> let cl = Egraph.find d cl in match Egraph.get_dom d dom cl with | None -> P.of_one_node d cl | Some p -> p.repr) let norm_dom d cl = function | None -> let r = P.of_one_node d cl in { repr = r; eqs = P.S.empty } | Some p -> p module Th = struct let merged v1 v2 = Base.phys_equal v1 v2 || match (v1, v2) with | None, None -> true | Some v', Some v -> equal v' v | _ -> false let add_itself d cl norm = add_used_t d cl norm; Egraph.set_dom d dom cl norm let rec merge d (_, cl1) (_, cl2) _inv = let cl1 = Egraph.find d cl1 in let cl2 = Egraph.find d cl2 in assert (not (Egraph.is_equal d cl1 cl2)); merge_aux d cl1 cl2 and merge_aux d cl1 cl2 = let p1o = Egraph.get_dom d dom cl1 in let p2o = Egraph.get_dom d dom cl2 in assert (not (Option.is_none p1o && Option.is_none p2o)); match (p1o, p2o) with | None, None -> assert false (* absurd: no need to merge *) | Some p, None -> assert (Option.is_none (Node.HC.find_opt used_in_poly d cl2)); add_itself d cl2 p | None, Some p -> assert (Option.is_none (Node.HC.find_opt used_in_poly d cl1)); add_itself d cl1 p | Some p1, Some p2 -> ( match solve d (Base.List.cartesian_product (part d (p1.repr :: P.S.elements p1.eqs)) (part d (p2.repr :: P.S.elements p2.eqs))) with | `Solved -> (* The domains have been substituted, and possibly recursively *) merge_aux d cl1 cl2 | `Not_solved -> (* nothing to solve *) let repr = match (P.is_one_node p1.repr, P.is_one_node p2.repr) with | None, None -> p1.repr (* arbitrary *) | Some _, None -> p1.repr | None, Some _ -> p2.repr | Some cl1', Some cl2' -> assert (Node.equal cl1' cl2'); p1.repr in let eqs = p1.eqs |> P.S.add p1.repr |> P.S.union p2.eqs |> P.S.add p2.repr |> P.S.remove repr in let p = { repr; eqs } in Egraph.set_dom d dom cl1 p; Egraph.set_dom d dom cl2 p) and merge_one_new_eq d cl eq = let eq = norm_product d eq in let po = Egraph.get_dom d dom cl in if Option.is_some po || Node.M.mem cl (P.nodes eq) then ( let p = norm_dom d cl po in if (not (P.S.mem eq p.eqs)) && not (P.equal eq p.repr) then match solve d (Base.List.cartesian_product (part d (p.repr :: P.S.elements p.eqs)) (part d [ eq ])) with | `Solved -> (* The domains have been substituted, and possibly recursively *) merge_one_new_eq d cl eq | `Not_solved -> (* nothing to solve *) let repr = p.repr in let eqs = p.eqs |> P.S.add eq |> P.S.remove repr in let p = { repr; eqs } in add_used_product d cl (P.nodes eq); set_poly d cl p [ (eq, eq) ]) else ( add_used_product d cl (P.nodes eq); set_poly d cl { repr = eq; eqs = P.S.empty } [ (eq, eq) ]) and subst d cl eq = Debug.dprintf5 debug "[Pivot:%s] subst %a with %a" P.name Node.pp cl P.pp eq; let po = Egraph.get_dom d dom cl in match po with | None -> let p = { repr = eq; eqs = P.S.empty } in add_used_product d cl (P.nodes eq); set_poly d cl p [ (eq, eq) ] | Some p -> assert (Option.equal Node.equal (P.is_one_node p.repr) (Some cl)); subst_doms d cl eq and subst_doms d cl p = let b = match Node.HC.find used_in_poly d cl with | exception Not_found -> Node.S.empty | b -> b in let touched = Node.H.create 10 in Node.S.iter (fun cl' -> match Egraph.get_dom d dom cl' with | None -> assert false (* absurd: can't be used and absent *) | Some q -> let fold (new_cl, acc, chg) (q : P.t) = let new_cl = Node.M.set_union new_cl (Node.M.set_diff (P.nodes p) (P.nodes q)) in match P.subst q cl p with | None -> (new_cl, P.S.add q acc, chg) | Some q' -> Node.H.replace touched cl' (); (new_cl, P.S.add q' acc, (q, q') :: chg) in let new_cl, acc, chg = fold (Node.M.empty, P.S.empty, []) q.repr in let repr = P.S.choose acc (* there is only one in acc *) in let new_cl, acc, chg = P.S.fold_left fold (new_cl, acc, chg) q.eqs in let eqs = P.S.remove repr acc in add_used_product d cl' new_cl; set_poly d cl' { repr; eqs } chg) b; Node.H.iter (recheck d) touched and part d l = List.map (fun p -> P.info d p) l and solve d l = let exception Solved of P.t Node.M.t in let criteria i1 i2 = let aux i1 i2 = match P.solve i1 i2 with | AlreadyEqual -> () | Contradiction -> Egraph.contradiction d | Unsolved -> () | Subst m -> raise (Solved m) in aux i1 i2; aux i2 i1 in match List.iter (fun (a, b) -> criteria a b) l with | exception Solved m -> let n, p = Node.M.choose m in subst d n p; Node.M.iter (fun n p -> merge_one_new_eq d n p) (Node.M.remove n m); `Solved | () -> `Not_solved and recheck d n () = match Egraph.get_dom d dom n with | None -> assert false (* absurd: can't be used and absent *) | Some p -> ( match solve d (Base.List.cartesian_product (part d (p.repr :: P.S.elements p.eqs)) (part d (p.repr :: P.S.elements p.eqs))) with | `Solved -> recheck d n () | `Not_solved -> ()) let key = dom type nonrec t = t let pp = pp end let () = Dom.register (module Th) let get_repr d n = let open CCOption in let+ p = Egraph.get_dom d dom n in p.repr let iter_eqs d n ~f = match Egraph.get_dom d dom n with | None -> () | Some p -> f p.repr; P.S.iter f p.eqs let assume_equality d n (p : P.t) = Debug.dprintf5 debug "[Pivot %s] assume %a = %a" P.name Node.pp n P.pp p; let n = Egraph.find d n in Th.merge_one_new_eq d n p let reshape d cl ~(f : P.t -> P.t option) = match Node.HC.find used_in_poly d cl with | exception Not_found -> () | b -> let touched = Node.H.create 10 in Node.S.iter (fun cl' -> match Egraph.get_dom d dom cl' with | None -> assert false (* absurd: can't be used and absent *) | Some q -> let replace p = match f p with | None -> p | Some p -> Node.H.replace touched cl' (); p in let eqs = P.S.fold (fun p acc -> P.S.add (replace p) acc) q.eqs P.S.empty in let q' = { repr = replace q.repr; eqs } in Egraph.set_dom d dom cl' q'; let l = Th.part d (q'.repr :: P.S.elements q'.eqs) in let l = Base.List.cartesian_product l l in ignore (Th.solve d l)) b; Node.H.iter (Th.recheck d) touched module ChangeInfo = struct type runable = Node.S.t let print_runable = Node.S.pp let run d ns = Node.S.iter (fun n -> let p = Base.Option.value_exn (Egraph.get_dom d dom n) in let l = Th.part d (p.repr :: P.S.elements p.eqs) in let l = Base.List.cartesian_product l l in ignore (Th.solve d l)) ns let delay = Events.Delayed_by 10 let key = Events.Dem.create (module struct type t = Node.S.t let name = "Dom_product.ChangePos" end) let init d = P.attach_info_change d (fun d n -> match Node.HC.find_opt used_in_poly d n with | Some ns -> Events.EnqRun (key, ns, None) | None -> Events.EnqAlready) end let () = Events.register (module ChangeInfo) let init d = ChangeInfo.init d let attach_eqs_change d ?node f = match node with | Some x -> Daemon.attach_dom d x dom f | None -> Daemon.attach_any_dom d dom f let attach_repr_change = attach_eqs_change end type 'a solve_total = AlreadyEqual | Contradiction | Subst of Node.t * 'a module Total (P : sig type t val name : string include Colibri2_popop_lib.Popop_stdlib.Datatype with type t := t val of_one_node : Node.t -> t val is_one_node : t -> Node.t option val subst : t -> Node.t -> t -> t val normalize : t -> f:(Node.t -> t) -> t type data val nodes : t -> data Node.M.t val solve : t -> t -> t solve_total val set : Egraph.wt -> Node.t -> old_:t option -> new_:t -> unit end) : sig val assume_equality : Egraph.wt -> Node.t -> P.t -> unit val init : Egraph.wt -> unit val get_repr : _ Egraph.t -> Node.t -> P.t option val attach_repr_change : _ Egraph.t -> ?node:Node.t -> (Egraph.wt -> Node.t -> unit) -> unit val events_repr_change : _ Egraph.t -> ?node:Node.t -> (Egraph.rt -> Node.t -> Events.enqueue) -> unit val normalize : _ Egraph.t -> P.t -> P.t end = struct open Colibri2_popop_lib let dom = Dom.Kind.create (module struct type t = P.t let name = P.name end) let used_in_poly : Node.t Bag.t Node.HC.t = Node.HC.create (Bag.pp Node.pp) "used_in_poly" let set_poly d cl old_ new_ = Egraph.set_dom d dom cl new_; P.set d cl ~old_ ~new_ let add_used d cl' new_cl = Node.M.iter (fun used _ -> Node.HC.change (function | Some b -> Some (Bag.append b cl') | None -> (match Egraph.get_dom d dom used with | None -> (* If a used node have no polynome associated, we set it to itself. This allows to be warned when this node is merged. It is the reason why this module doesn't specifically wait for representative change *) Egraph.set_dom d dom used (P.of_one_node used) | Some p -> assert (P.equal (P.of_one_node used) p)); Some (Bag.elt cl')) used_in_poly d used) new_cl let subst_doms d cl (p : P.t) = let b = match Node.HC.find used_in_poly d cl with | exception Not_found -> Bag.empty | b -> b in Bag.iter (fun cl' -> match Egraph.get_dom d dom cl' with | None -> assert false (* absurd: can't be used and absent *) | Some q -> let new_cl = Node.M.set_diff (P.nodes p) (P.nodes q) in let q_new = P.subst q cl p in add_used d cl' new_cl; set_poly d cl' (Some q) q_new) b; add_used d cl (P.nodes p); set_poly d cl None p module Th = struct include P let merged v1 v2 = match (v1, v2) with | None, None -> true | Some v', Some v -> equal v' v | _ -> false let norm_dom cl = function | None -> let r = P.of_one_node cl in r | Some p -> p let add_itself d cl norm = add_used d cl (P.nodes norm); Egraph.set_dom d dom cl norm let merge d ((p1o, cl1) as a1) ((p2o, cl2) as a2) inv = assert (not (Egraph.is_equal d cl1 cl2)); assert (not (Option.is_none p1o && Option.is_none p2o)); let (pother, other), (prepr, repr) = if inv then (a2, a1) else (a1, a2) in let other = Egraph.find d other in let repr = Egraph.find d repr in let p1 = norm_dom other pother in let p2 = norm_dom repr prepr in (match P.solve p1 p2 with | AlreadyEqual -> ( (* no new equality already equal *) match (pother, prepr) with | Some _, Some _ | None, None -> assert false (* absurd: no need of merge *) | Some p, None -> (* p = repr *) add_itself d repr p | None, Some p -> (* p = other *) add_itself d other p) | Contradiction -> Egraph.contradiction d | Subst (x, p) -> Debug.dprintf2 debug "[Arith] @[pivot %a@]" Node.pp x; let add_if_default n norm = function | Some _ -> () | None -> add_itself d n norm in add_if_default other p1 pother; add_if_default repr p2 prepr; subst_doms d x p); assert ( Option.compare P.compare (Egraph.get_dom d dom repr) (Egraph.get_dom d dom other) = 0) let solve_one d cl p1 = let p2 = Egraph.get_dom d dom cl in if Option.is_some p2 || Node.M.mem cl (P.nodes p1) then ( let p2 = norm_dom cl p2 in match P.solve p1 p2 with | AlreadyEqual -> () | Contradiction -> Egraph.contradiction d | Subst (x, p) -> Debug.dprintf2 debug "[Arith] @[pivot %a@]" Node.pp x; subst_doms d x p) else (* This case allows to not substitute when not needed *) subst_doms d cl p1 let key = dom end let () = Dom.register (module Th) let normalize d (p : P.t) = P.normalize p ~f:(fun cl -> let cl = Egraph.find_def d cl in match Egraph.get_dom d dom cl with | None -> P.of_one_node cl | Some p -> p) let assume_equality d n (p : P.t) = let n = Egraph.find_def d n in let p = normalize d p in Th.solve_one d n p let get_repr d cl = Egraph.get_dom d dom cl let attach_repr_change d ?node f = match node with | Some x -> Daemon.attach_dom d x dom f | None -> Daemon.attach_any_dom d dom f let events_repr_change d ?node f = match node with | Some x -> Events.attach_dom d x dom f | None -> Events.attach_any_dom d dom f let init _ = () end