Skip to content
Snippets Groups Projects
Commit 84d0102c authored by Maxime Jacquemin's avatar Maxime Jacquemin Committed by David Bühler
Browse files

[Kernel] Field as datatype and improved complexity for finite

parent f84e36a4
No related branches found
No related tags found
No related merge requests found
...@@ -23,12 +23,9 @@ ...@@ -23,12 +23,9 @@
module type S = sig module type S = sig
module Types : sig type scalar end module Types : sig type scalar end
include Datatype.S_with_collections with type t = Types.scalar
open Types open Types
val compare : scalar -> scalar -> int
val equal : scalar -> scalar -> bool
val pretty : Format.formatter -> scalar -> unit
val zero : scalar val zero : scalar
val one : scalar val one : scalar
val infinity : scalar val infinity : scalar
......
...@@ -23,33 +23,37 @@ ...@@ -23,33 +23,37 @@
open Nat.Types open Nat.Types
module Types = struct module Types = struct
type 'n finite = First : 'n succ finite | Next : 'n finite -> 'n succ finite type 'n formal = First : 'n succ formal | Next : 'n formal -> 'n succ formal
type 'n finite = { value : int ; formal : 'n formal }
end end
open Types open Types
let rec weaken : type n. n finite -> n succ finite = let first = { value = 0 ; formal = First }
function First -> First | Next n -> Next (weaken n) let next { value ; formal } = { value = value + 1 ; formal = Next formal }
let to_int { value ; _ } = value
let ( == ) l r = l.value = r.value
let rec of_int : type n. n succ nat -> int -> n succ finite = fun limit n -> let rec of_int : type n. n succ nat -> int -> n succ finite = fun limit n ->
match limit with match limit with
| Succ Zero -> First | Succ Zero -> first
| Succ (Succ _) when n <= 0 -> First | Succ Succ _ when n <= 0 -> first
| Succ (Succ limit) -> Next (of_int (Succ limit) (n - 1)) | Succ Succ limit -> next (of_int (Succ limit) (n - 1))
let to_int finite =
let rec aux : type n. int -> n finite -> int = fun acc ->
function First -> acc | Next n -> aux (acc + 1) n
in aux 0 finite
let rec of_nat : type n. n succ nat -> n succ finite = function let rec of_nat : type n. n succ nat -> n succ finite = function
| Succ Zero -> First | Succ Zero -> first
| Succ (Succ n) -> Next (of_nat (Succ n)) | Succ (Succ n) -> next (of_nat (Succ n))
(* We use Obj.magic here to avoid the O(n) long but trivial proof *)
let weaken : type n. n finite -> n succ finite =
fun { value ; formal } -> { value ; formal = Obj.magic formal }
(* Non tail-rec to perform the computation in the natural order *)
let rec fold f n acc = let rec fold f n acc =
match n with match n with
| First -> f First acc | { formal = First ; _ } as n -> f n acc
| Next n -> f (Next n) (fold f (weaken n) acc) | { formal = Next formal ; value } as n ->
f n (fold f (weaken { value = value - 1 ; formal }) acc)
let for_each (type n) acc (n : n nat) (f : n finite -> 'a -> 'a) = let for_each (type n) acc (n : n nat) (f : n finite -> 'a -> 'a) =
match n with Zero -> acc | Succ _ as n -> fold f (of_nat n) acc match n with Zero -> acc | Succ _ as n -> fold f (of_nat n) acc
...@@ -22,12 +22,14 @@ ...@@ -22,12 +22,14 @@
open Nat.Types open Nat.Types
module Types : sig module Types : sig type 'n finite end
type 'n finite = First : 'n succ finite | Next : 'n finite -> 'n succ finite
end
open Types open Types
val first : 'n succ finite
val next : 'n finite -> 'n succ finite
val ( == ) : 'n finite -> 'n finite -> bool
val weaken : 'n finite -> 'n succ finite val weaken : 'n finite -> 'n succ finite
val of_int : 'n succ nat -> int -> 'n succ finite val of_int : 'n succ nat -> int -> 'n succ finite
val to_int : 'n finite -> int val to_int : 'n finite -> int
......
...@@ -47,8 +47,9 @@ module Space (Field : Field.S) = struct ...@@ -47,8 +47,9 @@ module Space (Field : Field.S) = struct
Parray.pretty ~pp_sep Field.pretty fmt data Parray.pretty ~pp_sep Field.pretty fmt data
let init size f = let init size f =
let index n = Finite.of_int size n |> f in let data = Parray.init (Nat.to_int size) (fun _ -> Field.zero) in
let data = Parray.init (Nat.to_int size) index in let set i data = Parray.set data (Finite.to_int i) (f i) in
let data = Finite.for_each data size set in
M { data ; rows = size ; cols = Nat.one } M { data ; rows = size ; cols = Nat.one }
let size (type n) (M vector : n vector) : n nat = vector.rows let size (type n) (M vector : n vector) : n nat = vector.rows
...@@ -92,14 +93,15 @@ module Space (Field : Field.S) = struct ...@@ -92,14 +93,15 @@ module Space (Field : Field.S) = struct
let pretty (type n m) fmt (M m : (n, m) matrix) = let pretty (type n m) fmt (M m : (n, m) matrix) =
Finite.for_each () m.rows @@ fun i () -> Finite.for_each () m.rows @@ fun i () ->
(match i with First -> () | Next _ -> Format.fprintf fmt "@ ") ; (if Finite.(i == first) then () else Format.fprintf fmt "@ ") ;
Format.fprintf fmt "@[<h>%a@]" Vector.pretty (row i (M m)) Format.fprintf fmt "@[<h>%a@]" Vector.pretty (row i (M m))
let init n m init = let init n m init =
let rows = Nat.to_int n and cols = Nat.to_int m in let rows = Nat.to_int n and cols = Nat.to_int m in
let row i = Finite.of_int n (i / cols) in let t = Parray.init (rows * cols) (fun _ -> Field.zero) in
let col i = Finite.of_int m (i mod cols) in let index i j = Finite.to_int i * cols + Finite.to_int j in
let data = Parray.init (rows * cols) @@ fun i -> init (row i) (col i) in let set i j data = Parray.set data (index i j) (init i j) in
let data = Finite.(for_each t n @@ fun i t -> for_each t m (set i)) in
M { data ; rows = n ; cols = m } M { data ; rows = n ; cols = m }
let zero n m = init n m (fun _ _ -> Field.zero) let zero n m = init n m (fun _ _ -> Field.zero)
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment