Skip to content
Snippets Groups Projects
Commit 81168609 authored by Thibaut's avatar Thibaut Committed by Julien Signoles
Browse files

[e-acsl] normalization and hashtable to store guards

parent 6623ec6f
No related branches found
No related tags found
No related merge requests found
...@@ -46,6 +46,77 @@ let error_msg quantif msg pp x = ...@@ -46,6 +46,77 @@ let error_msg quantif msg pp x =
in in
msg1 ^ msg2 msg1 ^ msg2
(** A module to work with quantifiers at preprocessing time. We create
a datatype to hash quantified predicates by simply giving the hash
of their first variable.
*)
module Quantified_predicate =
Datatype.Make_with_collections
(struct
include Cil_datatype.Predicate
let name = "E_ACSL.Quantified_predicate"
let hash (p:predicate) = match p.pred_content with
| Pforall(lvs,_)
| Pexists(lvs,_) ->
begin match lvs with
|[] -> 0
|lv::_ -> Cil_datatype.Logic_var.hash lv
end
| _ -> assert false
let compare (p1:predicate) p2 =
if p1 == p2 then 0 else 1
let equal (p1:predicate) p2 = p1 == p2
let structural_descr = Structural_descr.t_abstract
let rehash = Datatype.identity
let mem_project = Datatype.never_any_project
end)
(******************************************************************************)
(** Storing the preprocessed quantifiers *)
(******************************************************************************)
(** In order to retrieve the preprocessed form of a quantified predicate
* we store it in a hash table. *)
module Quantifier: sig
val add: predicate -> (term * logic_var * term) list -> predicate -> unit
val get: predicate -> (term * logic_var * term) list * predicate
(** getter and setter for the additional guard that intersects with the type
of the variable *)
val get_guard_for_small_type : logic_var -> predicate option
val add_guard_for_small_type : logic_var -> predicate option -> unit
end = struct
let tbl = Quantified_predicate.Hashtbl.create 97
let guard_tbl = Cil_datatype.Logic_var.Hashtbl.create 97
let get p =
(* Options.feedback "Get preprocessed form of predicate %a" Printer.pp_predicate p; *)
try Quantified_predicate.Hashtbl.find tbl p
with Not_found ->
Options.fatal
"The preprocessed form of predicate %a was not found."
Printer.pp_predicate p
let add p guarded_vars goal =
(* Options.feedback "Adding preprocessed form of predicate %a" Printer.pp_predicate p; *)
Quantified_predicate.Hashtbl.add tbl p (guarded_vars, goal)
let get_guard_for_small_type x =
try Cil_datatype.Logic_var.Hashtbl.find guard_tbl x
with Not_found ->
Options.fatal
"The typing guard for the variable %a was not found."
Printer.pp_logic_var x
let add_guard_for_small_type lv p =
Cil_datatype.Logic_var.Hashtbl.add guard_tbl lv p
end
let get_preprocessed_quantifier = Quantifier.get
let get_guard_for_small_type = Quantifier.get_guard_for_small_type
(** Helper module to process the constraints in the quantification and extract (** Helper module to process the constraints in the quantification and extract
guards for the quantified variables. *) guards for the quantified variables. *)
module Constraints: sig module Constraints: sig
...@@ -561,14 +632,12 @@ let compute_quantif_guards ~is_forall quantif bounded_vars p = ...@@ -561,14 +632,12 @@ let compute_quantif_guards ~is_forall quantif bounded_vars p =
- Case 3: B \not\subseteq R and the bounds of B are NOT inferred exactly - Case 3: B \not\subseteq R and the bounds of B are NOT inferred exactly
Example: [\let m = n > 0 ? 4 : 341; \forall char u; 1 < u < m ==> u > 0] Example: [\let m = n > 0 ? 4 : 341; \forall char u; 1 < u < m ==> u > 0]
Return: R with a guard guaranteeing that [lv] does not overflow *) Return: R with a guard guaranteeing that [lv] does not overflow *)
let bounds_for_small_type ~loc (t1, lv, t2) = let bounds_for_small_types ~loc (t1, lv, t2) =
match lv.lv_type with match lv.lv_type with
| Ltype _ | Lvar _ | Lreal | Larrow _ -> | Ltype _ | Lvar _ | Lreal | Larrow _ ->
Options.abort "quantification over non-integer type is not part of E-ACSL" Error.not_yet "quantification over non-integer type"
| Linteger -> | Linteger ->
t1, t2, None t1, t2, None
| Ctype ty -> | Ctype ty ->
let iv1 = Interval.(extract_ival (infer t1)) in let iv1 = Interval.(extract_ival (infer t1)) in
let iv2 = Interval.(extract_ival (infer t2)) in let iv2 = Interval.(extract_ival (infer t2)) in
...@@ -576,7 +645,7 @@ let bounds_for_small_type ~loc (t1, lv, t2) = ...@@ -576,7 +645,7 @@ let bounds_for_small_type ~loc (t1, lv, t2) =
Eg: (Ival.join [-3..-3] [300..300]) gives {-3, 300} Eg: (Ival.join [-3..-3] [300..300]) gives {-3, 300}
but NOT [-3..300] *) but NOT [-3..300] *)
let iv = Ival.inject_range (Ival.min_int iv1) (Ival.max_int iv2) in let iv = Ival.inject_range (Ival.min_int iv1) (Ival.max_int iv2) in
let ity = Interval.extract_ival (Interval.interv_of_typ ty) in let ity = Interval.extract_ival (Interval.extended_interv_of_typ ty) in
if Ival.is_included iv ity then if Ival.is_included iv ity then
(* case 1 *) (* case 1 *)
t1, t2, None t1, t2, None
...@@ -603,8 +672,45 @@ let bounds_for_small_type ~loc (t1, lv, t2) = ...@@ -603,8 +672,45 @@ let bounds_for_small_type ~loc (t1, lv, t2) =
let guard_upper = Logic_const.tint ~loc max in let guard_upper = Logic_const.tint ~loc max in
let lv_term = Logic_const.tvar ~loc lv in let lv_term = Logic_const.tvar ~loc lv in
let guard_lower = Logic_const.prel ~loc (Rle, guard_lower, lv_term) in let guard_lower = Logic_const.prel ~loc (Rle, guard_lower, lv_term) in
let guard_upper = Logic_const.prel ~loc (Rle, lv_term, guard_upper) in let guard_upper = Logic_const.prel ~loc (Rlt, lv_term, guard_upper) in
let guard = Logic_const.pand ~loc (guard_lower, guard_upper) in let guard = Logic_const.pand ~loc (guard_lower, guard_upper) in
t1, t2, Some guard t1, t2, Some guard
let () = Typing.compute_quantif_guards_ref := compute_quantif_guards let () = Typing.compute_quantif_guards_ref := compute_quantif_guards
(** Take a guard and put it in normal form
[t1 <= x < t2] so that [t1] is the first value
taken by [x] and [t2] is the last one.
This step also adds the extra guard if the type
of the quantified variable is small *)
let normalize_guard ~loc (t1, rel1, lv, rel2, t2) =
let t_plus_one t =
let tone = Cil.lone ~loc () in
Logic_const.term ~loc (TBinOp(PlusA, t, tone)) Linteger
in
(* this function only manipulate guards that were already
processed by compute_quantif_guards, which only outputs
guards with the constructors Rlt and Rle*)
let t1 = match rel1 with
| Rlt ->
t_plus_one t1
| Rle ->
t1
| Rgt | Rge | Req | Rneq ->
assert false in
let t2 = match rel2 with
| Rlt ->
t2
| Rle ->
t_plus_one t2
| Rgt | Rge | Req | Rneq ->
assert false in
let t1, t2, guard_for_small_type = bounds_for_small_types ~loc (t1, lv, t2) in
Quantifier.add_guard_for_small_type lv guard_for_small_type;
t1, lv, t2
let compute_guards loc ~is_forall p bounded_vars hyps =
let guards,goal = compute_quantif_guards p ~is_forall bounded_vars hyps in
(* transform [guards] into [lscope_var list] *)
let normalized_guards = List.map (normalize_guard ~loc) guards
in Quantifier.add p normalized_guards goal
...@@ -20,3 +20,14 @@ ...@@ -20,3 +20,14 @@
(* *) (* *)
(**************************************************************************) (**************************************************************************)
open Cil_types
open Cil_datatype
val compute_guards: location -> is_forall:bool -> predicate -> Logic_var.t list -> predicate -> unit
(** Takes a predicate starting with a quantifier and store the scope of its variable *)
val get_preprocessed_quantifier: predicate -> (term * logic_var * term) list * predicate
(** Returns the preprocessed form of a quantifier *)
val get_guard_for_small_type : logic_var -> predicate option
...@@ -231,6 +231,17 @@ let rec interv_of_typ ty = match Cil.unrollType ty with ...@@ -231,6 +231,17 @@ let rec interv_of_typ ty = match Cil.unrollType ty with
| TNamed _ -> | TNamed _ ->
assert false assert false
let rec extended_interv_of_typ ty = match interv_of_typ ty with
| Ival iv ->
let l,u = Ival.min_int iv, Ival.max_int iv in
let u = match u with
| Some u -> Some (Integer.add u Integer.one)
| None -> None
in
Ival (Ival.inject_range l u);
| Rational | Real | Nan | Float (_,_) as i
-> i
(* Compute the interval of the extended quantifier \sum, \product and \numof. (* Compute the interval of the extended quantifier \sum, \product and \numof.
[lbd_ival] is the interval of the lambda term, [k_ival] is the interval of the [lbd_ival] is the interval of the lambda term, [k_ival] is the interval of the
quantifier and [name] is the identifier of the extended quantifier (\sum, quantifier and [name] is the identifier of the extended quantifier (\sum,
......
...@@ -79,6 +79,13 @@ val interv_of_typ: Cil_types.typ -> t ...@@ -79,6 +79,13 @@ val interv_of_typ: Cil_types.typ -> t
@raise Is_a_real if the given type is a float type. @raise Is_a_real if the given type is a float type.
@raise Not_a_number if the given type does not represent any number. *) @raise Not_a_number if the given type does not represent any number. *)
val extended_interv_of_typ: Cil_types.typ -> t
(** @return the interval [n..m+1] when interv_of_typ returns [n..m].
It is in particular useful for computing bounds of quantified variables.
@raise Is_a_real if the given type is a float type.
@raise Not_a_number if the given type does not represent any number. *)
(* ************************************************************************** *) (* ************************************************************************** *)
(** {3 Environment for interval computations} *) (** {3 Environment for interval computations} *)
(* ************************************************************************** *) (* ************************************************************************** *)
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment