Skip to content
Snippets Groups Projects
Commit 6510c2bd authored by Patrick Baudin's avatar Patrick Baudin
Browse files

[wp] replaces lc_open,lc_iter,lc_map by e_open,f_iter,f_map into Cint simplifier (oracle changes)

parent 583cf432
No related branches found
No related tags found
No related merge requests found
......@@ -204,7 +204,7 @@ Assume {
Have: (0 <= i) /\ (i <= j) /\ (j <= 19).
(* Exit Effects *)
Have: forall i_1 : Z. ((0 <= i_1) -> ((i_1 <= 19) ->
(((j < i_1) \/ (i_1 < 0)) -> (t4_0[i_1] = t4_1[i_1])))).
(((i_1 < 0) \/ (j < i_1)) -> (t4_0[i_1] = t4_1[i_1])))).
}
Prove: i <= 0.
......@@ -220,7 +220,7 @@ Assume {
Have: (0 <= i) /\ (i <= j) /\ (j <= 19).
(* Call Effects *)
Have: forall i_1 : Z. ((0 <= i_1) -> ((i_1 <= 19) ->
(((j < i_1) \/ (i_1 < 0)) -> (t4_0[i_1] = t4_1[i_1])))).
(((i_1 < 0) \/ (j < i_1)) -> (t4_0[i_1] = t4_1[i_1])))).
}
Prove: i <= 0.
......
......@@ -367,13 +367,15 @@ Assume {
(havoc(Mint_undef_0, Mint_1, shift_sint32(a_1, 0), 20)
[shift_sint32(a_1, i_3)] = v))).
}
Prove: (forall i_4,i_3 : Z. ((0 <= i_4) -> ((0 <= i_3) -> ((i_4 <= 9) ->
((i_3 <= 19) -> false))))) \/
(forall i_4,i_3 : Z. ((0 <= i_4) -> ((0 <= i_3) -> ((i_4 <= 9) ->
((i_3 <= 19) ->
(exists i_6,i_5 : Z. (i_6 <= i_4) /\ (i_5 <= i_3) /\ (0 <= i_6) /\
(i_4 <= i_6) /\ (0 <= i_5) /\ (i_3 <= i_5) /\ (i_6 <= 9) /\
(i_5 <= 19))))))).
Prove: (forall i_3 : Z. ((0 <= i_3) -> ((i_3 <= 9) ->
(forall i_4 : Z. ((0 <= i_3) -> ((0 <= i_4) -> ((i_3 <= 9) ->
((i_4 <= 19) -> false)))))))) \/
(forall i_3 : Z. ((0 <= i_3) -> ((i_3 <= 9) ->
(forall i_4 : Z. ((0 <= i_3) -> ((0 <= i_4) -> ((i_3 <= 9) ->
((i_4 <= 19) ->
(exists i_6,i_5 : Z. (i_6 <= i_3) /\ (i_5 <= i_4) /\ (0 <= i_6) /\
(i_3 <= i_6) /\ (0 <= i_5) /\ (i_4 <= i_5) /\ (i_6 <= 9) /\
(i_5 <= 19)))))))))).
------------------------------------------------------------
......@@ -421,8 +423,8 @@ Assume {
Have: i_2 <= 9.
Have: i_3 <= 19.
Have: 0 <= i.
Have: 0 <= i_1.
Have: i <= 9.
Have: 0 <= i_1.
Have: i_1 <= 19.
(* Loop assigns 'lack,Zone' *)
Have: forall a : addr.
......@@ -456,8 +458,8 @@ Assume {
Have: i_2 <= 9.
Have: i_3 <= 19.
Have: 0 <= i.
Have: 0 <= i_1.
Have: i <= 9.
Have: 0 <= i_1.
Have: i_1 <= 19.
(* Loop assigns 'lack,Zone' *)
Have: forall a : addr.
......@@ -1049,13 +1051,15 @@ Assume {
(* Invariant 'Partial_j' *)
Have: forall i_3 : Z. ((0 <= i_3) -> ((i_3 <= 19) -> (t2_2[i][i_3] = v))).
}
Prove: (forall i_4,i_3 : Z. ((0 <= i_4) -> ((0 <= i_3) -> ((i_4 <= 9) ->
((i_3 <= 19) -> false))))) \/
(forall i_4,i_3 : Z. ((0 <= i_4) -> ((0 <= i_3) -> ((i_4 <= 9) ->
((i_3 <= 19) ->
(exists i_6,i_5 : Z. (i_6 <= i_4) /\ (i_5 <= i_3) /\ (0 <= i_6) /\
(i_4 <= i_6) /\ (0 <= i_5) /\ (i_3 <= i_5) /\ (i_6 <= 9) /\
(i_5 <= 19))))))).
Prove: (forall i_3 : Z. ((0 <= i_3) -> ((i_3 <= 9) ->
(forall i_4 : Z. ((0 <= i_3) -> ((0 <= i_4) -> ((i_3 <= 9) ->
((i_4 <= 19) -> false)))))))) \/
(forall i_3 : Z. ((0 <= i_3) -> ((i_3 <= 9) ->
(forall i_4 : Z. ((0 <= i_3) -> ((0 <= i_4) -> ((i_3 <= 9) ->
((i_4 <= 19) ->
(exists i_6,i_5 : Z. (i_6 <= i_3) /\ (i_5 <= i_4) /\ (0 <= i_6) /\
(i_3 <= i_6) /\ (0 <= i_5) /\ (i_4 <= i_5) /\ (i_6 <= 9) /\
(i_5 <= 19)))))))))).
------------------------------------------------------------
......@@ -1088,13 +1092,15 @@ Assume {
(* Invariant 'Partial_j' *)
Have: forall i_3 : Z. ((0 <= i_3) -> ((i_3 <= 19) -> (t2_2[i][i_3] = v))).
}
Prove: (forall i_4,i_3 : Z. ((0 <= i_4) -> ((0 <= i_3) -> ((i_4 <= 9) ->
((i_3 <= 19) -> false))))) \/
(forall i_4,i_3 : Z. ((0 <= i_4) -> ((0 <= i_3) -> ((i_4 <= 9) ->
((i_3 <= 19) ->
(exists i_6,i_5 : Z. (i_6 <= i_4) /\ (i_5 <= i_3) /\ (0 <= i_6) /\
(i_4 <= i_6) /\ (0 <= i_5) /\ (i_3 <= i_5) /\ (i_6 <= 9) /\
(i_5 <= 19))))))).
Prove: (forall i_3 : Z. ((0 <= i_3) -> ((i_3 <= 9) ->
(forall i_4 : Z. ((0 <= i_3) -> ((0 <= i_4) -> ((i_3 <= 9) ->
((i_4 <= 19) -> false)))))))) \/
(forall i_3 : Z. ((0 <= i_3) -> ((i_3 <= 9) ->
(forall i_4 : Z. ((0 <= i_3) -> ((0 <= i_4) -> ((i_3 <= 9) ->
((i_4 <= 19) ->
(exists i_6,i_5 : Z. (i_6 <= i_3) /\ (i_5 <= i_4) /\ (0 <= i_6) /\
(i_3 <= i_6) /\ (0 <= i_5) /\ (i_4 <= i_5) /\ (i_6 <= 9) /\
(i_5 <= 19)))))))))).
------------------------------------------------------------
......@@ -1136,13 +1142,15 @@ Assume {
(* Then *)
Have: j <= 19.
}
Prove: (forall i_4,i_3 : Z. ((0 <= i_4) -> ((0 <= i_3) -> ((i_4 <= 9) ->
((i_3 <= 19) -> false))))) \/
(forall i_4,i_3 : Z. ((0 <= i_4) -> ((0 <= i_3) -> ((i_4 <= 9) ->
((i_3 <= 19) ->
(exists i_6,i_5 : Z. (i_6 <= i_4) /\ (i_5 <= i_3) /\ (0 <= i_6) /\
(i_4 <= i_6) /\ (0 <= i_5) /\ (i_3 <= i_5) /\ (i_6 <= 9) /\
(i_5 <= 19))))))).
Prove: (forall i_3 : Z. ((0 <= i_3) -> ((i_3 <= 9) ->
(forall i_4 : Z. ((0 <= i_3) -> ((0 <= i_4) -> ((i_3 <= 9) ->
((i_4 <= 19) -> false)))))))) \/
(forall i_3 : Z. ((0 <= i_3) -> ((i_3 <= 9) ->
(forall i_4 : Z. ((0 <= i_3) -> ((0 <= i_4) -> ((i_3 <= 9) ->
((i_4 <= 19) ->
(exists i_6,i_5 : Z. (i_6 <= i_3) /\ (i_5 <= i_4) /\ (0 <= i_6) /\
(i_3 <= i_6) /\ (0 <= i_5) /\ (i_4 <= i_5) /\ (i_6 <= 9) /\
(i_5 <= 19)))))))))).
------------------------------------------------------------
......@@ -1175,8 +1183,8 @@ Assume {
(* Invariant 'Range_j' *)
Have: j <= 20.
}
Prove: exists i_2,i_1 : Z. (i_2 <= i) /\ (i_1 <= j) /\ (0 <= i_2) /\
(i <= i_2) /\ (0 <= i_1) /\ (j <= i_1) /\ (i_2 <= 9) /\ (i_1 <= 19).
Prove: exists i_2,i_1 : Z. (i_2 <= i) /\ (0 <= i_2) /\ (i <= i_2) /\
(0 <= i_1) /\ (j <= i_1) /\ (i_1 <= j) /\ (i_2 <= 9) /\ (i_1 <= 19).
------------------------------------------------------------
......@@ -1194,8 +1202,8 @@ Assume {
Have: i_2 <= 9.
Have: i_3 <= 19.
Have: 0 <= i.
Have: 0 <= i_1.
Have: i <= 9.
Have: 0 <= i_1.
Have: i_1 <= 19.
(* Loop assigns 'lack,Zone_i' *)
Have: forall i_5,i_4 : Z. ((0 <= i_5) -> ((0 <= i_4) -> ((i_5 <= 9) ->
......@@ -1642,8 +1650,8 @@ Assume {
(* Invariant 'Range_j' *)
Have: j <= 20.
}
Prove: exists i_2,i_1 : Z. (i_2 <= i) /\ (i_1 <= j) /\ (0 <= i_2) /\
(i <= i_2) /\ (j <= i_1) /\ (i_2 <= 9).
Prove: exists i_2,i_1 : Z. (i_2 <= i) /\ (0 <= i_2) /\ (i <= i_2) /\
(j <= i_1) /\ (i_1 <= j) /\ (i_2 <= 9).
------------------------------------------------------------
......
......@@ -367,13 +367,15 @@ Assume {
(havoc(Mint_undef_0, Mint_1, shift_sint32(a_1, 0), 20)
[shift_sint32(a_1, i_3)] = v))).
}
Prove: (forall i_4,i_3 : Z. ((0 <= i_4) -> ((0 <= i_3) -> ((i_4 <= 9) ->
((i_3 <= 19) -> false))))) \/
(forall i_4,i_3 : Z. ((0 <= i_4) -> ((0 <= i_3) -> ((i_4 <= 9) ->
((i_3 <= 19) ->
(exists i_6,i_5 : Z. (i_6 <= i_4) /\ (i_5 <= i_3) /\ (0 <= i_6) /\
(i_4 <= i_6) /\ (0 <= i_5) /\ (i_3 <= i_5) /\ (i_6 <= 9) /\
(i_5 <= 19))))))).
Prove: (forall i_3 : Z. ((0 <= i_3) -> ((i_3 <= 9) ->
(forall i_4 : Z. ((0 <= i_3) -> ((0 <= i_4) -> ((i_3 <= 9) ->
((i_4 <= 19) -> false)))))))) \/
(forall i_3 : Z. ((0 <= i_3) -> ((i_3 <= 9) ->
(forall i_4 : Z. ((0 <= i_3) -> ((0 <= i_4) -> ((i_3 <= 9) ->
((i_4 <= 19) ->
(exists i_6,i_5 : Z. (i_6 <= i_3) /\ (i_5 <= i_4) /\ (0 <= i_6) /\
(i_3 <= i_6) /\ (0 <= i_5) /\ (i_4 <= i_5) /\ (i_6 <= 9) /\
(i_5 <= 19)))))))))).
------------------------------------------------------------
......@@ -421,8 +423,8 @@ Assume {
Have: i_2 <= 9.
Have: i_3 <= 19.
Have: 0 <= i.
Have: 0 <= i_1.
Have: i <= 9.
Have: 0 <= i_1.
Have: i_1 <= 19.
(* Loop assigns 'lack,Zone' *)
Have: forall a : addr.
......@@ -456,8 +458,8 @@ Assume {
Have: i_2 <= 9.
Have: i_3 <= 19.
Have: 0 <= i.
Have: 0 <= i_1.
Have: i <= 9.
Have: 0 <= i_1.
Have: i_1 <= 19.
(* Loop assigns 'lack,Zone' *)
Have: forall a : addr.
......@@ -1049,13 +1051,15 @@ Assume {
(* Invariant 'Partial_j' *)
Have: forall i_3 : Z. ((0 <= i_3) -> ((i_3 <= 19) -> (t2_2[i][i_3] = v))).
}
Prove: (forall i_4,i_3 : Z. ((0 <= i_4) -> ((0 <= i_3) -> ((i_4 <= 9) ->
((i_3 <= 19) -> false))))) \/
(forall i_4,i_3 : Z. ((0 <= i_4) -> ((0 <= i_3) -> ((i_4 <= 9) ->
((i_3 <= 19) ->
(exists i_6,i_5 : Z. (i_6 <= i_4) /\ (i_5 <= i_3) /\ (0 <= i_6) /\
(i_4 <= i_6) /\ (0 <= i_5) /\ (i_3 <= i_5) /\ (i_6 <= 9) /\
(i_5 <= 19))))))).
Prove: (forall i_3 : Z. ((0 <= i_3) -> ((i_3 <= 9) ->
(forall i_4 : Z. ((0 <= i_3) -> ((0 <= i_4) -> ((i_3 <= 9) ->
((i_4 <= 19) -> false)))))))) \/
(forall i_3 : Z. ((0 <= i_3) -> ((i_3 <= 9) ->
(forall i_4 : Z. ((0 <= i_3) -> ((0 <= i_4) -> ((i_3 <= 9) ->
((i_4 <= 19) ->
(exists i_6,i_5 : Z. (i_6 <= i_3) /\ (i_5 <= i_4) /\ (0 <= i_6) /\
(i_3 <= i_6) /\ (0 <= i_5) /\ (i_4 <= i_5) /\ (i_6 <= 9) /\
(i_5 <= 19)))))))))).
------------------------------------------------------------
......@@ -1088,13 +1092,15 @@ Assume {
(* Invariant 'Partial_j' *)
Have: forall i_3 : Z. ((0 <= i_3) -> ((i_3 <= 19) -> (t2_2[i][i_3] = v))).
}
Prove: (forall i_4,i_3 : Z. ((0 <= i_4) -> ((0 <= i_3) -> ((i_4 <= 9) ->
((i_3 <= 19) -> false))))) \/
(forall i_4,i_3 : Z. ((0 <= i_4) -> ((0 <= i_3) -> ((i_4 <= 9) ->
((i_3 <= 19) ->
(exists i_6,i_5 : Z. (i_6 <= i_4) /\ (i_5 <= i_3) /\ (0 <= i_6) /\
(i_4 <= i_6) /\ (0 <= i_5) /\ (i_3 <= i_5) /\ (i_6 <= 9) /\
(i_5 <= 19))))))).
Prove: (forall i_3 : Z. ((0 <= i_3) -> ((i_3 <= 9) ->
(forall i_4 : Z. ((0 <= i_3) -> ((0 <= i_4) -> ((i_3 <= 9) ->
((i_4 <= 19) -> false)))))))) \/
(forall i_3 : Z. ((0 <= i_3) -> ((i_3 <= 9) ->
(forall i_4 : Z. ((0 <= i_3) -> ((0 <= i_4) -> ((i_3 <= 9) ->
((i_4 <= 19) ->
(exists i_6,i_5 : Z. (i_6 <= i_3) /\ (i_5 <= i_4) /\ (0 <= i_6) /\
(i_3 <= i_6) /\ (0 <= i_5) /\ (i_4 <= i_5) /\ (i_6 <= 9) /\
(i_5 <= 19)))))))))).
------------------------------------------------------------
......@@ -1136,13 +1142,15 @@ Assume {
(* Then *)
Have: j <= 19.
}
Prove: (forall i_4,i_3 : Z. ((0 <= i_4) -> ((0 <= i_3) -> ((i_4 <= 9) ->
((i_3 <= 19) -> false))))) \/
(forall i_4,i_3 : Z. ((0 <= i_4) -> ((0 <= i_3) -> ((i_4 <= 9) ->
((i_3 <= 19) ->
(exists i_6,i_5 : Z. (i_6 <= i_4) /\ (i_5 <= i_3) /\ (0 <= i_6) /\
(i_4 <= i_6) /\ (0 <= i_5) /\ (i_3 <= i_5) /\ (i_6 <= 9) /\
(i_5 <= 19))))))).
Prove: (forall i_3 : Z. ((0 <= i_3) -> ((i_3 <= 9) ->
(forall i_4 : Z. ((0 <= i_3) -> ((0 <= i_4) -> ((i_3 <= 9) ->
((i_4 <= 19) -> false)))))))) \/
(forall i_3 : Z. ((0 <= i_3) -> ((i_3 <= 9) ->
(forall i_4 : Z. ((0 <= i_3) -> ((0 <= i_4) -> ((i_3 <= 9) ->
((i_4 <= 19) ->
(exists i_6,i_5 : Z. (i_6 <= i_3) /\ (i_5 <= i_4) /\ (0 <= i_6) /\
(i_3 <= i_6) /\ (0 <= i_5) /\ (i_4 <= i_5) /\ (i_6 <= 9) /\
(i_5 <= 19)))))))))).
------------------------------------------------------------
......@@ -1175,8 +1183,8 @@ Assume {
(* Invariant 'Range_j' *)
Have: j <= 20.
}
Prove: exists i_2,i_1 : Z. (i_2 <= i) /\ (i_1 <= j) /\ (0 <= i_2) /\
(i <= i_2) /\ (0 <= i_1) /\ (j <= i_1) /\ (i_2 <= 9) /\ (i_1 <= 19).
Prove: exists i_2,i_1 : Z. (i_2 <= i) /\ (0 <= i_2) /\ (i <= i_2) /\
(0 <= i_1) /\ (j <= i_1) /\ (i_1 <= j) /\ (i_2 <= 9) /\ (i_1 <= 19).
------------------------------------------------------------
......@@ -1194,8 +1202,8 @@ Assume {
Have: i_2 <= 9.
Have: i_3 <= 19.
Have: 0 <= i.
Have: 0 <= i_1.
Have: i <= 9.
Have: 0 <= i_1.
Have: i_1 <= 19.
(* Loop assigns 'lack,Zone_i' *)
Have: forall i_5,i_4 : Z. ((0 <= i_5) -> ((0 <= i_4) -> ((i_5 <= 9) ->
......@@ -1642,8 +1650,8 @@ Assume {
(* Invariant 'Range_j' *)
Have: j <= 20.
}
Prove: exists i_2,i_1 : Z. (i_2 <= i) /\ (i_1 <= j) /\ (0 <= i_2) /\
(i <= i_2) /\ (j <= i_1) /\ (i_2 <= 9).
Prove: exists i_2,i_1 : Z. (i_2 <= i) /\ (0 <= i_2) /\ (i <= i_2) /\
(j <= i_1) /\ (i_1 <= j) /\ (i_2 <= 9).
------------------------------------------------------------
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment