Skip to content
Snippets Groups Projects
Commit 028c7273 authored by Maxime Jacquemin's avatar Maxime Jacquemin Committed by David Bühler
Browse files

[Kernel] Optimizing Nat and Finite

Under the hood, it's just int. But only valid nat and finite can be
built through the given constructors.
parent 84d0102c
No related branches found
No related tags found
No related merge requests found
......@@ -23,37 +23,21 @@
open Nat.Types
module Types = struct
type 'n formal = First : 'n succ formal | Next : 'n formal -> 'n succ formal
type 'n finite = { value : int ; formal : 'n formal }
type 'n finite = int
end
open Types
let first = { value = 0 ; formal = First }
let next { value ; formal } = { value = value + 1 ; formal = Next formal }
let to_int { value ; _ } = value
let ( == ) l r = l.value = r.value
let first : type n. n succ finite = 0
let next : type n. n finite -> n succ finite = fun n -> n + 1
let weaken : type n. n finite -> n succ finite = fun n -> n
let ( == ) : type n. n finite -> n finite -> bool = fun l r -> l = r
let to_int : type n. n finite -> int = fun n -> n
let rec of_int : type n. n succ nat -> int -> n succ finite = fun limit n ->
match limit with
| Succ Zero -> first
| Succ Succ _ when n <= 0 -> first
| Succ Succ limit -> next (of_int (Succ limit) (n - 1))
let of_int : type n. n succ nat -> int -> n succ finite =
fun limit n -> min (max 0 n) (Nat.to_int limit)
let rec of_nat : type n. n succ nat -> n succ finite = function
| Succ Zero -> first
| Succ (Succ n) -> next (of_nat (Succ n))
(* We use Obj.magic here to avoid the O(n) long but trivial proof *)
let weaken : type n. n finite -> n succ finite =
fun { value ; formal } -> { value ; formal = Obj.magic formal }
(* Non tail-rec to perform the computation in the natural order *)
let rec fold f n acc =
match n with
| { formal = First ; _ } as n -> f n acc
| { formal = Next formal ; value } as n ->
f n (fold f (weaken { value = value - 1 ; formal }) acc)
let for_each (type n) acc (n : n nat) (f : n finite -> 'a -> 'a) =
match n with Zero -> acc | Succ _ as n -> fold f (of_nat n) acc
let for_each (type n) acc (limit : n nat) (f : n finite -> 'a -> 'a) =
let acc = ref acc in
for i = 0 to Nat.to_int limit - 1 do acc := f i !acc done ;
!acc
......@@ -23,29 +23,25 @@
module Types = struct
type zero = |
type 'n succ = |
type 'n nat = Zero : zero nat | Succ : 'n nat -> 'n succ nat
type 'n nat = int
type positive_or_null = PositiveOrNull : 'n nat -> positive_or_null
type strictly_positive = StrictlyPositive : 'n succ nat -> strictly_positive
end
open Types
let zero = Zero
let one = Succ Zero
let succ n = (Succ n)
let prev (Succ n) = n
let to_int n =
let rec aux : type n. int -> n nat -> int = fun acc ->
function Zero -> acc | Succ n -> aux (acc + 1) n
in aux 0 n
let zero : zero nat = 0
let one : zero succ nat = 1
let succ : type n. n nat -> n succ nat = fun n -> n + 1
let prev : type n. n succ nat -> n nat = fun n -> n - 1
let to_int : type n. n nat -> int = fun n -> n
let of_int n =
let next (PositiveOrNull n) = PositiveOrNull (Succ n) in
let next (PositiveOrNull n) = PositiveOrNull (succ n) in
let rec aux acc n = if n <= 0 then acc else aux (next acc) (n - 1) in
aux (PositiveOrNull zero) n
let of_strictly_positive_int n =
let next (StrictlyPositive n) = StrictlyPositive (Succ n) in
let next (StrictlyPositive n) = StrictlyPositive (succ n) in
let rec aux acc n = if n <= 1 then acc else aux (next acc) (n - 1) in
aux (StrictlyPositive one) n
......@@ -23,7 +23,7 @@
module Types : sig
type zero = |
type 'n succ = |
type 'n nat = Zero : zero nat | Succ : 'n nat -> 'n succ nat
type 'n nat
type positive_or_null = PositiveOrNull : 'n nat -> positive_or_null
type strictly_positive = StrictlyPositive : 'n succ nat -> strictly_positive
end
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment