-
Basile Desloges authoredBasile Desloges authored
linear.mli 5.21 KiB
(**************************************************************************)
(* *)
(* This file is part of Frama-C. *)
(* *)
(* Copyright (C) 2007-2025 *)
(* CEA (Commissariat à l'énergie atomique et aux énergies *)
(* alternatives) *)
(* *)
(* you can redistribute it and/or modify it under the terms of the GNU *)
(* Lesser General Public License as published by the Free Software *)
(* Foundation, version 2.1. *)
(* *)
(* It is distributed in the hope that it will be useful, *)
(* but WITHOUT ANY WARRANTY; without even the implied warranty of *)
(* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *)
(* GNU Lesser General Public License for more details. *)
(* *)
(* See the GNU Lesser General Public License version 2.1 *)
(* for more details (enclosed in the file licenses/LGPLv2.1). *)
(* *)
(**************************************************************************)
open Nat
open Finite
(** Definition of a linear space over a field. Used by {!Linear_filter} to
represent and compute linear filters invariants. *)
module Space (Field : Field.S) : sig
(** The type of scalars in the field 𝕂. *)
type scalar = Field.scalar
(** The type of matrices in 𝕂ⁿˣᵐ *)
type ('n, 'm) matrix
(** Type representing a column vector of 𝕂ⁿ. One can use {!Matrix.transpose}
if one needs a row vector, for example when printing it. *)
type 'n vector = ('n, zero succ) matrix
module Vector : sig
val pretty : Format.formatter -> 'n vector -> unit
(** The call [zero n] returns the 0 vector in 𝕂ⁿ. *)
val zero : 'n succ nat -> 'n succ vector
(** The call [repeat x n] returns a vector in 𝕂ⁿ which each dimension
containing the scalar x. *)
val repeat : scalar -> 'n succ nat -> 'n succ vector
(** The call [base i n] returns the i-th base vector in the orthonormal
space of 𝕂ⁿ. In other words, the returned vector contains zero except
for the i-th coordinate, which contains one. *)
val base : 'n succ finite -> 'n succ nat -> 'n succ vector
(** The call [set i x v] returns a new vector of the same linear space as
[v], and with the same coordinates, except for the i-th one, which is
set to the scalar [x]. *)
val set : 'n finite -> scalar -> 'n vector -> 'n vector
(** The call [size v] for [v] a vector of 𝕂ⁿ returns n. *)
val size : 'n vector -> 'n nat
(** The call [norm v] computes the ∞-norm of [v], i.e the maximum of the
absolute values of its coordinates. *)
val norm : 'n vector -> scalar
end
module Matrix : sig
val pretty : Format.formatter -> ('n, 'm) matrix -> unit
(** The call [id n] returns the identity matrix in 𝕂ⁿˣⁿ. *)
val id : 'n succ nat -> ('n succ, 'n succ) matrix
(** The call [zero n m] returns the 0 matrix in 𝕂ⁿˣᵐ. *)
val zero : 'n succ nat -> 'm succ nat -> ('n succ, 'm succ) matrix
(** The call [get i j m] returns the coefficient of the i-th row and
the j-th column. *)
val get : 'n finite -> 'm finite -> ('n, 'm) matrix -> scalar
(** The call [set i j x m] returns a new matrix of the same linear space as
[m], and with the same coefficients, except for the one of the i-th row
and the j-th column, which is set to the scalar [x]. *)
val set : 'n finite -> 'm finite -> scalar -> ('n, 'm) matrix -> ('n, 'm) matrix
(** The call [norm m] computes the ∞-norm of [m], i.e the maximum of the
absolute sums of the rows of [m]. *)
val norm : ('n, 'm) matrix -> scalar
(** The call [transpose m] for m in 𝕂ⁿˣᵐ returns a new matrix in 𝕂ᵐˣⁿ with
all the coefficients transposed. *)
val transpose : ('n, 'm) matrix -> ('m, 'n) matrix
(** The call [dimensions m] for m in 𝕂ⁿˣᵐ returns the pair (n, m). *)
val dimensions : ('m, 'n) matrix -> 'm nat * 'n nat
(** Matrices addition. The dimensions compatibility is statically ensured. *)
val ( + ) : ('n, 'm) matrix -> ('n, 'm) matrix -> ('n, 'm) matrix
(** Matrices multiplication. The dimensions compatibility is statically
ensured. *)
val ( * ) : ('n, 'm) matrix -> ('m, 'p) matrix -> ('n, 'p) matrix
(** Matrix exponentiation. The call [power m] returns a memoized function.
When one needs to compute several exponentiations of the same matrix,
one should perform the call [power m] once and used the returned
function each times one needs it. *)
val power : ('n, 'n) matrix -> (int -> ('n, 'n) matrix)
end
end