Newer
Older
(**************************************************************************)
(* *)
(* This file is part of WP plug-in of Frama-C. *)
(* *)
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
(* CEA (Commissariat a l'energie atomique et aux energies *)
(* alternatives) *)
(* *)
(* you can redistribute it and/or modify it under the terms of the GNU *)
(* Lesser General Public License as published by the Free Software *)
(* Foundation, version 2.1. *)
(* *)
(* It is distributed in the hope that it will be useful, *)
(* but WITHOUT ANY WARRANTY; without even the implied warranty of *)
(* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *)
(* GNU Lesser General Public License for more details. *)
(* *)
(* See the GNU Lesser General Public License version 2.1 *)
(* for more details (enclosed in the file licenses/LGPLv2.1). *)
(* *)
(**************************************************************************)
(* -------------------------------------------------------------------------- *)
(* --- Variable Partitionning --- *)
(* -------------------------------------------------------------------------- *)
type param = NotUsed | ByAddr | ByValue | ByShift | ByRef | InContext | InArray
let pp_param fmt = function
| NotUsed -> Format.pp_print_string fmt "not used"
| ByAddr -> Format.pp_print_string fmt "in heap"
| ByValue -> Format.pp_print_string fmt "by value"
| ByShift -> Format.pp_print_string fmt "by value with shift"
| ByRef -> Format.pp_print_string fmt "by ref."
| InContext -> Format.pp_print_string fmt "in context"
| InArray -> Format.pp_print_string fmt "in array"
(* -------------------------------------------------------------------------- *)
(* --- Separation Hypotheses --- *)
(* -------------------------------------------------------------------------- *)
open Cil_types
type zone =
| Var of varinfo (* &x - the cell x *)
| Ptr of varinfo (* p - the cell pointed by p *)
| Arr of varinfo (* p+(..) - the cell and its neighbors pointed by p *)
type partition = {
globals : zone list ; (* [ &G , G[...], ... ] *)
to_heap : zone list ; (* [ p, ... ] *)
context : zone list ; (* [ p+(..), ... ] *)
assigned: identified_term list (* Must refer to pointed locations *)
}
(* -------------------------------------------------------------------------- *)
(* --- Partition --- *)
(* -------------------------------------------------------------------------- *)
let empty = {
globals = [] ;
context = [] ;
to_heap = [] ;
}
let set x p w =
match p with
| NotUsed -> w
| ByAddr -> w
| ByRef | InContext ->
if Cil.isFunctionType x.vtype then w else
{ w with context = Ptr x :: w.context }
| InArray ->
if Cil.isFunctionType x.vtype then w else
{ w with context = Arr x :: w.context }
| ByValue | ByShift ->
if x.vghost then w else
if Cil.isFunctionType x.vtype then w else
if x.vglob && (x.vstorage <> Static || x.vaddrof) then
let z = if Cil.isArrayType x.vtype then Arr x else Var x in
{ w with globals = z :: w.globals }
else
if x.vformal && Cil.isPointerType x.vtype then
let z = if p = ByShift then Arr x else Ptr x in
{ w with to_heap = z :: w.to_heap }
else w
let assigned t w =
let rec assigned_via_pointer t =
match t.term_node with
| TLval (TMem _, _) -> true
| Tif (_, t, _) | Tat (t, _)
| TCastE (_, t) | TLogic_coerce (_, t)
| Tunion (t :: _) | Tinter (t :: _)
| Tcomprehension(t, _, _) -> assigned_via_pointer t
| _ -> false
in
let assigned =
if assigned_via_pointer t.it_content then t :: w.assigned
else w.assigned
in
{ w with assigned = assigned }
(* -------------------------------------------------------------------------- *)
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
(* ANNOTS *)
(* -------------------------------------------------------------------------- *)
open Logic_const
let rec ptr_of = function
| Ctype t -> Ctype (TPtr(t, []))
| t when Logic_typing.is_set_type t ->
let t = Logic_typing.type_of_set_elem t in
Logic_const.make_set_type (ptr_of t)
| _ -> assert false
let rec addr_of_lval ?loc term =
let typ = ptr_of term.term_type in
match term.term_node with
| TLval lv ->
Logic_utils.mk_logic_AddrOf ?loc lv typ
| TCastE (_, t) | TLogic_coerce (_, t) ->
addr_of_lval ?loc t
| Tif(c, t, e) ->
let t = addr_of_lval ?loc t in
let e = addr_of_lval ?loc e in
Logic_const.term ?loc (Tif(c, t, e)) typ
| Tat( _, _) ->
term
| Tunion l ->
let l = List.map (addr_of_lval ?loc) l in
Logic_const.term ?loc (Tunion l) typ
| Tinter l ->
let l = List.map (addr_of_lval ?loc) l in
Logic_const.term ?loc (Tinter l) typ
| Tcomprehension (t, qs, p) ->
let t = addr_of_lval ?loc t in
Logic_const.term ?loc (Tcomprehension (t,qs,p)) typ
| _ -> term
let type_of_zone = function
| Ptr vi -> vi.vtype
| Var vi -> TPtr(vi.vtype, [])
| Arr vi when Cil.isPointerType vi.vtype -> vi.vtype
| Arr vi -> TPtr(Cil.typeOf_array_elem vi.vtype, [])
let zone_to_term ?(to_char=false) loc zone =
let typ = Ctype (type_of_zone zone) in
let lval vi = TVar (Cil.cvar_to_lvar vi), TNoOffset in
let loc_range ptr =
if not to_char then ptr
else
let pointed =
match typ with
| (Ctype (TPtr (t, []))) -> t
| _ -> assert false (* typ has been generated by type_of_zone *)
in
let len = Logic_utils.expr_to_term (Cil.sizeOf ~loc pointed) in
let last = term (TBinOp(MinusA, len, tinteger ~loc 1)) len.term_type in
let range = trange ~loc (Some (tinteger ~loc 0), Some last) in
let ptr = Logic_utils.mk_cast ~loc Cil.charPtrType ptr in
term ~loc (TBinOp(PlusPI, ptr, range)) ptr.term_type
in
match zone with
| Var vi -> loc_range (term ~loc (TAddrOf(lval vi)) typ)
| Ptr vi -> loc_range (term ~loc (TLval(lval vi)) typ)
| Arr vi ->
let ptr =
if Cil.isArrayType vi.vtype
then term ~loc (TStartOf (lval vi)) typ
else term ~loc (TLval(lval vi)) typ
in
let ptr =
if not to_char then ptr
else Logic_utils.mk_cast ~loc Cil.charPtrType ptr
in
let range = trange ~loc (None, None) in
term ~loc (TBinOp(PlusPI, ptr, range)) ptr.term_type
let region_to_term loc = function
| [] -> term ~loc Tempty_set (Ctype Cil.charPtrType)
| [z] -> zone_to_term loc z
| x :: tl as l ->
let fst = type_of_zone x in
let tl = List.map type_of_zone tl in
let to_char = not (List.for_all (Cil_datatype.Typ.equal fst) tl) in
let set_typ =
make_set_type (Ctype (if to_char then Cil.charPtrType else fst))
in
term ~loc (Tunion (List.map (zone_to_term ~to_char loc) l)) set_typ
let separated_list ?loc = function
| [] | [ _ ] -> ptrue
| l -> pseparated ?loc l
let separated_from_term loc assigned l =
separated_list ~loc (assigned :: List.map (region_to_term loc) l)
let separated_from_addr loc assigned =
separated_from_term loc (addr_of_lval ~loc assigned.it_content)
let valid_region loc r =
let t = region_to_term loc r in
pvalid ~loc (here_label, t)
let global_zones partition =
List.map (fun z -> [z]) partition.globals
let context_zones partition =
List.map (fun z -> [z]) partition.context
let heap_zones partition =
let comp a b = Cil_datatype.Typ.compare (type_of_zone a) (type_of_zone b) in
List.sort comp partition.to_heap
(* Note that this function does not return separated zone lists, but well-typed
zone lists.
*)
let heaps partition =
let rec partition_by_type t acc l =
match l, acc with
| [], _ ->
acc
| x :: l, [] ->
partition_by_type (type_of_zone x) [[x]] l
| x :: l, p :: acc' when Cil_datatype.Typ.equal t (type_of_zone x) ->
partition_by_type t ((x :: p) :: acc') l
| x :: l, acc ->
partition_by_type (type_of_zone x) ([x] :: acc) l
in
partition_by_type Cil.voidType [] (heap_zones partition)
let main_separation loc globals context heaps =
match heaps, context with
| [], [] ->
(* In this case, separation is completely trivial *)
[ ptrue ]
| [], context ->
let zones = globals @ context in
[ separated_list ~loc (List.map (region_to_term loc) zones) ]
| heaps, context ->
let for_typed_heap h =
let zones = h :: globals @ context in
separated_list ~loc (List.map (region_to_term loc) zones)
in
List.map for_typed_heap heaps
let clauses_of_partition loc p =
let globals = global_zones p in
let filter p = not (Logic_utils.is_trivially_true p) in
let main_sep =
main_separation loc globals (context_zones p) (heaps p)
in
let assigns_sep =
List.map (fun t -> separated_from_addr loc t globals) p.assigned
in
let context_validity =
List.map (valid_region loc) (context_zones p)
in
let reqs = main_sep @ assigns_sep @ context_validity in
let reqs = List.filter filter reqs in
let reqs = List.sort_uniq Logic_utils.compare_predicate reqs in
reqs, []
let emitter =
Emitter.(create "Wp.Hypotheses" [Funspec] ~correctness:[] ~tuning:[])
let get_behavior kf name partition =
let loc = Kernel_function.get_location kf in
let reqs,enss = clauses_of_partition loc partition in
let reqs = List.map Logic_const.new_predicate reqs in
let enss = List.map (fun p -> Normal, Logic_const.new_predicate p) enss in
match reqs,enss with
| [], [] -> None
| l1, l2 ->
Some {
b_name = name ;
b_requires = l1 ;
b_assumes = [] ;
b_post_cond = l2 ;
b_assigns = WritesAny ;
b_allocation = FreeAllocAny ;
b_extended = []
}
let add_behavior kf name partition =
match get_behavior kf name partition with
| None -> ()
| Some bhv -> Annotations.add_behaviors emitter kf [bhv]