Newer
Older
(**************************************************************************)
(* *)
(* This file is part of WP plug-in of Frama-C. *)
(* *)
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
(* CEA (Commissariat a l'energie atomique et aux energies *)
(* alternatives) *)
(* *)
(* you can redistribute it and/or modify it under the terms of the GNU *)
(* Lesser General Public License as published by the Free Software *)
(* Foundation, version 2.1. *)
(* *)
(* It is distributed in the hope that it will be useful, *)
(* but WITHOUT ANY WARRANTY; without even the implied warranty of *)
(* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *)
(* GNU Lesser General Public License for more details. *)
(* *)
(* See the GNU Lesser General Public License version 2.1 *)
(* for more details (enclosed in the file licenses/LGPLv2.1). *)
(* *)
(**************************************************************************)
(* -------------------------------------------------------------------------- *)
(** {1 First Order Logic Definition} *)
(* -------------------------------------------------------------------------- *)
type 'a element =
| E_none
| E_true
| E_false
| E_int of int
| E_fun of 'a * 'a element list
(** Algebraic properties for user operators. *)
type 'a operator = {
invertible : bool ; (* x+y = x+z <-> y=z (on both side) *)
associative : bool ; (* x+(y+z)=(x+y)+z *)
commutative : bool ; (* x+y=y+x *)
idempotent : bool ; (* x+x = x *)
neutral : 'a element ;
absorbant : 'a element ;
}
(** Algebraic properties for functions. *)
type 'a category =
| Function (** logic function *)
| Constructor (** [f xs = g ys] iff [f=g && xi=yi] *)
| Injection (** [f xs = f ys] iff [xi=yi] *)
| Operator of 'a operator
(** Quantifiers and Binders *)
type binder =
| Forall
| Exists
| Lambda
type ('f,'a) datatype =
| Prop
| Bool
| Int
| Real
| Tvar of int (** ranges over [1..arity] *)
| Array of ('f,'a) datatype * ('f,'a) datatype
| Record of ('f * ('f,'a) datatype) list
| Data of 'a * ('f,'a) datatype list
type sort =
| Sprop
| Sbool
| Sint
| Sreal
| Sdata
| Sarray of sort
type maybe = Yes | No | Maybe
(** Ordered, hash-able and pretty-printable symbols *)
module type Symbol =
sig
type t
val hash : t -> int
val equal : t -> t -> bool
val compare : t -> t -> int
val pretty : Format.formatter -> t -> unit
val debug : t -> string (** for printing during debug *)
end
(** {2 Abstract Data Types} *)
module type Data =
sig
include Symbol
val basename : t -> string (** hint for generating fresh names *)
end
(** {2 Field for Record Types} *)
module type Field =
sig
include Symbol
val sort : t -> sort (** of field *)
end
(** {2 User Defined Functions} *)
module type Function =
sig
include Symbol
val category : t -> t category
val params : t -> sort list (** params ; exceeding params use Sdata *)
val sort : t -> sort (** result *)
end
(** {2 Bound Variables} *)
module type Variable =
sig
include Symbol
val sort : t -> sort
val basename : t -> string
val dummy : t
end
(** {2 Representation of Patterns, Functions and Terms} *)
type ('f,'a) funtype = {
result : ('f,'a) datatype ; (** Type of returned value *)
params : ('f,'a) datatype list ; (** Type of parameters *)
}
(** representation of terms. type arguments are the following:
- 'z: representation of integral constants
- 'f: representation of fields
- 'a: representation of abstract data types
- 'd: representation of functions
- 'x: representation of free variables
- 'b: representation of bound term (phantom type equal to 'e)
- 'e: sub-expression
*)
type ('f,'a,'d,'x,'b,'e) term_repr =
| True
| False
| Kint of Z.t
| Kreal of Q.t
| Times of Z.t * 'e (** mult: k1 * e2 *)
| Add of 'e list (** add: e11 + ... + e1n *)
| Mul of 'e list (** mult: e11 * ... * e1n *)
| Div of 'e * 'e
| Mod of 'e * 'e
| Eq of 'e * 'e
| Neq of 'e * 'e
| Leq of 'e * 'e
| Lt of 'e * 'e
| Aget of 'e * 'e (** access: array1[idx2] *)
| Aset of 'e * 'e * 'e (** update: array1[idx2 -> elem3] *)
| Acst of ('f,'a) datatype * 'e (** constant array [ type -> value ] *)
| Rget of 'e * 'f
| Rdef of ('f * 'e) list
| And of 'e list (** and: e11 && ... && e1n *)
| Or of 'e list (** or: e11 || ... || e1n *)
| Not of 'e
| Imply of 'e list * 'e (** imply: (e11 && ... && e1n) ==> e2 *)
| If of 'e * 'e * 'e (** ite: if c1 then e2 else e3 *)
| Fun of 'd * 'e list (** Complete call (no partial app.) *)
| Fvar of 'x
| Bvar of int * ('f,'a) datatype
| Apply of 'e * 'e list (** High-Order application (Cf. binder) *)
| Bind of binder * ('f,'a) datatype * 'b
type 'a affine = { constant : Z.t ; factors : (Z.t * 'a) list }
(** {2 Formulae} *)
module type Term =
sig
module ADT : Data
module Field : Field
module Fun : Function
module Var : Variable
type term
type lc_term
(** Loosely closed terms. *)
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
module Term : Symbol with type t = term
(** Non-structural, machine dependent,
but fast comparison and efficient merges *)
module Tset : Idxset.S with type elt = term
(** Non-structural, machine dependent,
but fast comparison and efficient merges *)
module Tmap : Idxmap.S with type key = term
(** Structuraly ordered, but less efficient access and non-linear merges *)
module STset : Set.S with type elt = term
(** Structuraly ordered, but less efficient access and non-linear merges *)
module STmap : Map.S with type key = term
(** {3 Variables} *)
type var = Var.t
type tau = (Field.t,ADT.t) datatype
module Tau : Data with type t = tau
module Vars : Idxset.S with type elt = var
module Vmap : Idxmap.S with type key = var
type pool
val pool : ?copy:pool -> unit -> pool
val add_var : pool -> var -> unit
val add_vars : pool -> Vars.t -> unit
val add_term : pool -> term -> unit
val fresh : pool -> ?basename:string -> tau -> var
val alpha : pool -> var -> var
val tau_of_var : var -> tau
val sort_of_var : var -> sort
val base_of_var : var -> string
(** {3 Terms} *)
type 'a expression = (Field.t,ADT.t,Fun.t,var,lc_term,'a) term_repr
type repr = term expression
type record = (Field.t * term) list
val decide : term -> bool (** Return [true] if and only the term is [e_true]. Constant time. *)
val is_true : term -> maybe (** Constant time. *)
val is_false : term -> maybe (** Constant time. *)
val is_prop : term -> bool (** Boolean or Property *)
val is_int : term -> bool (** Integer sort *)
val is_real : term -> bool (** Real sort *)
val is_arith : term -> bool (** Integer or Real sort *)
val are_equal : term -> term -> maybe (** Computes equality *)
val eval_eq : term -> term -> bool (** Same as [are_equal] is [Yes] *)
val eval_neq : term -> term -> bool (** Same as [are_equal] is [No] *)
val eval_lt : term -> term -> bool (** Same as [e_lt] is [e_true] *)
val eval_leq : term -> term -> bool (** Same as [e_leq] is [e_true] *)
val repr : term -> repr (** Constant time *)
val sort : term -> sort (** Constant time *)
val vars : term -> Vars.t (** Constant time *)
(** Path-positioning access
This part of the API is DEPRECATED
*)
type path = int list (** position of a subterm in a term. *)
val subterm: term -> path -> term
[@@deprecated "Path-access might be unsafe in presence of binders"]
val change_subterm: term -> path -> term -> term
[@@deprecated "Path-access might be unsafe in presence of binders"]
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
(** {3 Basic constructors} *)
val e_true : term
val e_false : term
val e_bool : bool -> term
val e_literal : bool -> term -> term
val e_int : int -> term
val e_float : float -> term
val e_zint : Z.t -> term
val e_real : Q.t -> term
val e_var : var -> term
val e_opp : term -> term
val e_times : Z.t -> term -> term
val e_sum : term list -> term
val e_prod : term list -> term
val e_add : term -> term -> term
val e_sub : term -> term -> term
val e_mul : term -> term -> term
val e_div : term -> term -> term
val e_mod : term -> term -> term
val e_eq : term -> term -> term
val e_neq : term -> term -> term
val e_leq : term -> term -> term
val e_lt : term -> term -> term
val e_imply : term list -> term -> term
val e_equiv : term -> term -> term
val e_and : term list -> term
val e_or : term list -> term
val e_not : term -> term
val e_if : term -> term -> term -> term
val e_const : tau -> term -> term
val e_get : term -> term -> term
val e_set : term -> term -> term -> term
val e_getfield : term -> Field.t -> term
val e_record : record -> term
val e_fun : Fun.t -> term list -> term
val e_repr : repr -> term
(** @raise Invalid_argument on [Bvar] and [Bind] *)
val e_forall : var list -> term -> term
val e_exists : var list -> term -> term
val e_lambda : var list -> term -> term
val e_apply : term -> term list -> term
val e_bind : binder -> var -> term -> term
(** Bind the given variable if it appears free in the term,
or return the term unchanged. *)
val lc_open : var -> lc_term -> term
[@@deprecated "Use e_unbind instead"]
val e_unbind : var -> lc_term -> term
(** Opens the top-most bound variable with a (fresh) variable.
Can be only applied on top-most lc-term from `Bind(_,_,_)`,
thanks to typing. *)
val e_open : pool:pool -> ?forall:bool -> ?exists:bool -> ?lambda:bool ->
term -> (binder * var) list * term
(** Open all the specified binders (flags default to `true`, so all
consecutive top most binders are opened by default).
The pool must contain all free variables of the term. *)
val e_close : (binder * var) list -> term -> term
(** Closes all specified binders *)
(** {3 Generalized Substitutions} *)
type sigma
module Subst :
sig
type t = sigma
val create : ?pool:pool -> unit -> t
val fresh : t -> tau -> var
val get : t -> term -> term
val add : t -> term -> term -> unit
(** Must bind lc-closed terms, or raise Invalid_argument *)
val add_map : t -> term Tmap.t -> unit
(** Must bind lc-closed terms, or raise Invalid_argument *)
val add_fun : t -> (term -> term) -> unit
(** Must bind lc-closed terms, or raise Invalid_argument *)
val add_filter : t -> (term -> bool) -> unit
val add_var : t -> var -> unit
(** To the pool *)
val add_vars : t -> Vars.t -> unit
(** To the pool *)
val add_term : t -> term -> unit
(** To the pool *)
end
val e_subst : sigma -> term -> term
(**
The environment sigma must be prepared with the desired substitution.
Its pool of fresh variables must covers the entire domain and co-domain
of the substitution, and the transformed values.
*)
val e_subst_var : var -> term -> term -> term
(** {3 Locally Nameless Representation} *)
val lc_closed : term -> bool (** All bound variables are under their binder *)
val lc_vars : term -> Bvars.t
val lc_term : term -> lc_term
val lc_repr : lc_term -> term
(** {3 Iteration Scheme} *)

Patrick Baudin
committed
val f_map : ?pool:pool -> ?forall:bool -> ?exists:bool -> ?lambda:bool
-> (term -> term) -> term -> term
(** Pass and open binders, maps its direct sub-terms
and then close then opened binders
Raises Invalid_argument in case of a bind-term without pool.
The optional pool must contain all free variables of the term. *)

Patrick Baudin
committed
val f_iter : ?pool:pool -> ?forall:bool -> ?exists:bool -> ?lambda:bool
-> (term -> unit) -> term -> unit
(** Iterates over its direct sub-terms (pass and open binders)
Raises Invalid_argument in case of a bind-term without pool.
The optional pool must contain all free variables of the term. *)
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
val lc_iter : (term -> unit) -> term -> unit
(** {3 Partial Typing} *)
(** Try to extract a type of term.
Parameterized by optional extractors for field and functions.
Extractors may raise [Not_found] ; however, they are only used when
the provided kinds for fields and functions are not precise enough.
@param field type of a field value
@param record type of the record containing a field
@param call type of the values returned by the function
@raise Not_found if no type is found. *)
val typeof :
?field:(Field.t -> tau) ->
?record:(Field.t -> tau) ->
?call:(Fun.t -> tau option list -> tau) -> term -> tau
(** {3 Support for Builtins} *)
val set_builtin : Fun.t -> (term list -> term) -> unit
(** Register a simplifier for function [f]. The computation code
may raise [Not_found], in which case the symbol is not interpreted.
If [f] is an operator with algebraic rules (see type
[operator]), the children are normalized {i before} builtin
call.
Highest priority is [0].
Recursive calls must be performed on strictly smaller terms.
*)
val set_builtin_map : Fun.t -> (term list -> term list) -> unit
(** Register a builtin for rewriting [f a1..an] into [f b1..bm].
This is short cut for [set_builtin], where the head application of [f] avoids
to run into an infinite loop.
*)
val set_builtin_get : Fun.t -> (term list -> term -> term) -> unit
(** [set_builtin_get f rewrite] register a builtin
for rewriting [(f a1..an)[k]] into [rewrite (a1..an) k].
*)
val set_builtin_eq : Fun.t -> (term -> term -> term) -> unit
(** Register a builtin equality for comparing any term with head-symbol.
{b Must} only use recursive comparison for strictly smaller terms.
The recognized term with head function symbol is passed first.
Highest priority is [0].
Recursive calls must be performed on strictly smaller terms.
*)
val set_builtin_leq : Fun.t -> (term -> term -> term) -> unit
(** Register a builtin for comparing any term with head-symbol.
{b Must} only use recursive comparison for strictly smaller terms.
The recognized term with head function symbol can be on both sides.
Strict comparison is automatically derived from the non-strict one.
Highest priority is [0].
Recursive calls must be performed on strictly smaller terms.
*)
(** {3 Specific Patterns} *)
val consequence : term -> term -> term
(** Knowing [h], [consequence h a] returns [b] such that [h -> (a<->b)] *)
val literal : term -> bool * term
val affine : term -> term affine
val record_with : record -> (term * record) option
(** {3 Symbol} *)
type t = term
val id : t -> int (** unique identifier (stored in t) *)
val hash : t -> int (** constant access (stored in t) *)
val equal : t -> t -> bool (** physical equality *)
val compare : t -> t -> int (** atoms are lower than complex terms ; otherwise, sorted by id. *)
val pretty : Format.formatter -> t -> unit
val weigth : t -> int (** Informal size *)
(** {3 Utilities} *)
val is_closed : t -> bool (** No bound variables *)
val is_simple : t -> bool (** Constants, variables, functions of arity 0 *)
val is_atomic : t -> bool (** Constants and variables *)
val is_primitive : t -> bool (** Constants only *)
val is_neutral : Fun.t -> t -> bool
val is_absorbant : Fun.t -> t -> bool
val size : t -> int
val basename : t -> string
val debug : Format.formatter -> t -> unit
val pp_id : Format.formatter -> t -> unit (** internal id *)
val pp_rid : Format.formatter -> t -> unit (** head symbol with children id's *)
val pp_repr : Format.formatter -> repr -> unit (** head symbol with children id's *)
(** {2 Shared sub-terms} *)
val is_subterm : term -> term -> bool
(** Occurrence check. [is_subterm a b] returns [true] iff [a] is a subterm
of [b]. Optimized {i wrt} shared subterms, term size, and term
variables. *)
val shared :
?shared:(term -> bool) ->
?shareable:(term -> bool) ->
?subterms:((term -> unit) -> term -> unit) ->
term list -> term list
(** Computes the sub-terms that appear several times.
[shared marked linked e] returns the shared subterms of [e].
The list of shared subterms is consistent with
order of definition: each trailing terms only depend on heading ones.
The traversal is controlled by two optional arguments:
- [shared] those terms are not traversed (considered as atomic, default to none)
- [shareable] those terms ([is_simple] excepted) that can be shared (default to all)
- [subterms] those sub-terms a term to be considered during
traversal ([lc_iter] by default)
*)
(** Low-level shared primitives: [shared] is actually a combination of
building marks, marking terms, and extracting definitions:
{[ let share ?... e =
let m = marks ?... () in
List.iter (mark m) es ;
defs m ]} *)
type marks
(** Create a marking accumulator.
Same defaults than [shared]. *)
val marks :
?shared:(term -> bool) ->
?shareable:(term -> bool) ->
?subterms:((term -> unit) -> term -> unit) ->
unit -> marks
(** Mark a term to be printed *)
val mark : marks -> term -> unit
(** Mark a term to be explicitly shared *)
val share : marks -> term -> unit
(** Returns a list of terms to be shared among all {i shared} or {i
marked} subterms. The order of terms is consistent with
definition order: head terms might be used in tail ones. *)
val defs : marks -> term list
end