Newer
Older
\chapter{Using the WP Plug-in}
\label{wp-plugin}
The \textsf{WP} plug-in can be used from the \textsf{Frama-C} command line
or within its graphical user interface. It is a
dynamically loaded plug-in, distributed with the kernel since the
\textsf{Carbon} release of \textsf{Frama-C}.
This plug-in computes proof obligations of programs annotated with
\textsf{ACSL} annotations by \emph{weakest precondition calculus},
using a parametrized memory model to represent pointers and heap
values. The proof obligations may then be discharged by external
automated theorem provers such as
\textsf{Alt-Ergo}~\cite{AltErgo2006},
\textsf{CVC4}~\cite{CVC4} and
\textsf{Z3}~\cite{Z3}
or by interactive proof assistants
like \textsf{Coq}~\cite{Coq84} and more generally, any automated or interactive
prover supported by \textsf{Why3}~\cite{Why3}.
\clearpage
%-----------------------------------------------------------------------------
\section{Graphical User Interface}
\label{wp-gui}
%-----------------------------------------------------------------------------
\newcommand{\loadicon}[1]{\raisebox{-3pt}{\rule{0pt}{13pt}\includegraphics[height=12pt]{#1}}}
To use the \textsf{WP} plug-in with the GUI, you simply need to run the
\textsf{Frama-C} graphical user interface. No additional option is
required, although you can preselect some of the \textsf{WP} options
described in section~\ref{wp-cmdline}:
\begin{shell}
\$ frama-c-gui [options...] *.c
\end{shell}
\begin{figure}[p]
\begin{center}
\includegraphics[width=\textwidth]{wp-gui-main.png}
\end{center}
\caption{\textsf{WP} in the Frama-C GUI}
\label{wp-gui-panel}
\end{figure}
\begin{figure}[p]
\begin{center}
\includegraphics[width=\textwidth]{wp-gui-run.png}
\end{center}
\caption{\textsf{WP} run from the GUI}
\label{wp-gui-run}
\end{figure}
As we can see in figure~\ref{wp-gui-panel}, the memory model, the
decision procedure, and some \textsf{WP} options can be tuned from the
\textsf{WP} side panel. Other options of the \textsf{WP} plug-in are still
modifiable from the \texttt{Properties} button in the main GUI toolbar.
To prove a property, just select it in the internal source view and
choose \textsf{WP} from the contextual menu. The \texttt{Console}
window outputs some information about the
computation. Figure~\ref{wp-gui-run} displays an example of such a
session.
If everything succeeds, a green bullet should appear on the left of
the property. The computation can also be run for a bundle of
properties if the contextual menu is open from a function or behavior
selection.
The options from the \textsf{WP} side panel correspond to some options
of the plug-in command-line. Please refer to section~\ref{wp-cmdline}
for more details. In the graphical user interface, there are also
specific panels that display more details related to the \textsf{WP} plug-in,
that we shortly describe below.
\paragraph{Source Panel.} On the center of the \textsf{Frama-C} window, the status
of each code annotation is reported in the left margin. The meaning of
icons is the same for all plug-ins in \textsf{Frama-C} and more precisely described
in the general user's manual of the platform. The status emitted by the \textsf{WP} plug-in are:
\begin{center}
\begin{tabular}{cl}
\multicolumn{2}{l}{\bf Icons for properties:} \\
\hline
\loadicon{feedback/never_tried.png} & No proof attempted. \\
\loadicon{feedback/unknown.png} & The property has not been validated. \\
\loadicon{feedback/valid_under_hyp.png} & The property is \emph{valid} but has dependencies. \\
\loadicon{feedback/surely_valid.png} & The property and \emph{all} its dependencies are \emph{valid}. \\
\hline
\end{tabular}
\end{center}
\paragraph{\textsf{WP} Goals Panel.}
This panel is dedicated to the \textsf{WP} plug-in. It shows the
generated proof obligations and their status for each prover.
By clicking on a prover
column, you can also submit a proof obligation to a prover by
hand. Right-click provides more options depending on the prover.
\paragraph{Interactive Proof Editor.}
From the Goals Panel view, you can double-click on a row and open the \emph{interactive proof editor} panel as described in section~\ref{wp-proof-editor}.
\paragraph{Properties Panel.} This panel summarizes the consolidated
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
status of properties, from various plug-ins. This panel is not
automatically refreshed. You should press the \texttt{Refresh} button
to update it. This panel is described in more details in the general
\textsf{Frama-C} platform user's manual.
\clearpage
%-----------------------------------------------------------------------------
\section{Interactive Proof Editor}
\label{wp-proof-editor}
%-----------------------------------------------------------------------------
This panel focus on one goal generated by \textsf{WP}, and allow the user to visualize the logical sequent to be proved, and to interactively decompose a complex proof into smaller pieces by applying \emph{tactics}.
\begin{figure}[htbp]
\begin{center}
\includegraphics[width=\textwidth]{wp-tip-run.png}
\end{center}
\caption{Interactive Proof Editing}
\label{wp-tip-run}
\end{figure}
The general structure of the panel is illustrated figure~\ref{wp-tip-run}. The central text area prints the logical sequent to proved. In consists of a formula to \verb+Prove+ under the hypotheses listed in the \verb+Assume+ section. Each hypothesis can consists of :
\begin{quote}
\begin{tabular}{ll}
\verb+Type:+& formula expressing a typing constraint;\\
\verb+Init:+& formula characterizing global variable initialisation;\\
\verb+Have:+& formula from an assertion or an instruction in the code;\\
\verb+When:+& condition from a simplification performed by \textsf{Qed};\\
\verb+If:+& structured hypothesis from a conditional statement;\\
\verb+Either:+& structured disjunction from a switch statement.\\
\verb+Stmt:+& labels and C-like instructions representing the memory updates during code execution;\\
\end{tabular}
\end{quote}
\subsection{Display Modes}
There are several modes to display the current goal:
\begin{quote}
\begin{tabular}{ll}
\verb+Autofocus:+ & filter out clauses not mentioning \emph{focused} terms (see below);\\
\verb+Full Context:+ & disable autofocus mode --- all clauses are visible; \\
\verb+Unmangled Memory:+ & autofocus mode with low-level details of memory model; \\
\verb+Raw Obligation:+ & no autofocus and low-level details of memory model.
\end{tabular}
\end{quote}
\paragraph{Remark:} the fold/unfold operations only affect the goal display. It does not \emph{transform} the goal to be proven.
The autofocus mode is based on a ring of \emph{focused terms}. Clicking a term of a clause automatically focus this term. Shift-clicking a term adds the term to the focus ring. When autofocus mode is active, only the clauses that contains a \emph{focused} term are displayed. Hidden clauses are mentioned by an ellipsis \texttt{[...]}.
Low-level details of the memory model are normally hidden, and represented by C-like instructions such as:
\begin{ccode}
Stmt { Label A: a.f[0] = y@Pre; }
\end{ccode}
This reads as follows: a program point is defined by the label \texttt{A}. At this point, the left-value \texttt{a.f[0]} receives the value that variable \texttt{y} holds at label \texttt{Pre}. More generally, \texttt{lv@L} means the value of l-value \texttt{lv} at label \texttt{L:}, and for more complex expression, \texttt{« e »@L} means the expression \texttt{e} evaluated at label \texttt{L}. Redundant labels are removed when possible. This is a short-hand for \textsf{ACSL} notation \lstinline{\at(e,L)} but is generally more readable.
Sometimes, some memory operations can not be rendered as C instructions, typically after transforming a goal so far. In such situations, the memory model encoding might appear with terms like \texttt{µ:Mint@L}.
With memory model unmangled, the encoding in logic formulae is revealed and no label are displayed.
\subsection{Tactics}
The right panel display a palette of tactics to be applied on the current goal. Tooltips are provided to help the user understanding how to configure and run tactics.
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
Only applicable tactics are displayed, with respect to current term or clause selected. Many tactics can be configured by the user to tune their effect. Click on the tactic button to toggle its control panel. Once a tactic is correctly configured, it can be applied by clicking its « Play » button.
\subsection{Term Composer}
Some tactic require one or several terms to be selected.
In such case, the normal view display the selected term.
It can be edited by buttons in the view, like a \texttt{RPN} calculator. More buttons appear with respect to already selected terms. Numerical constants can be composed, and combined with selected terms.
Typically, the composer displays a stack of values, like for instance:
\begin{ccode}
A: 45
B: a[0]@Pre (int)
\end{ccode}
In such a case, the user can select the value \texttt{45} with the \texttt{Select A} button, or add the two numbers with the \texttt{Add A+B} button.
Sometimes, like for the Instance tactic, a \emph{range} of numerical values can be selected. In such a case, when two numbers are selected, a special button \texttt{Select A..B} appears.
The list of all available composer buttons is displayed by the \texttt{Help} button.
A composer worth to be mentioned is \texttt{Destruct}, typically available on complex expressions. It allows to decompose a value into its sub-components. For instance, destructuring the value \texttt{B} above will reveal the address \texttt{« a+0 »@Pre} and memory \texttt{µ:Mint@Pre}.
\subsection{Proof Script}
The top toolbar upon the goal display show the current status of the goal and the number of pending goals. The media buttons allow to navigate in the proof tree.
\begin{quote}
\begin{tabular}{ll}
\verb+Next/Prev:+ & navigate among the list of pending (non proved) sub-goals; \\
\verb+Forward:+ & goes to the next pending sub-goal; \\
\verb+Backward:+ & cancel the current tactic and prover results; \\
\verb+Clear:+ & restart all the interactive proof from the initial goal.
\end{tabular}
\end{quote}
A sketch of current proof is displayed on top of the goal ; each step is clickable to navigate into the proof. Only the path leading to the current node is unfolded.
When all pending sub-goals have been proved, the initial goal is marked proved by \textsf{Tactical} in the goal list panel. It is time to save the script. A button is also available to replay the saved script, if any. Saving and replay are also accessible from the list of goals, in the popup menu of the \texttt{Script} prover column.
\subsection{Replaying Scripts}
Editing scripts interactively allows the user to finish the proofs. Once proofs are saved, he must be able to replay them from the command line. To ease the process, the following options are available to the user:
\begin{quote}
\begin{tabular}{ll}
\verb+-wp-session <dir>+ & to setup a directory where scripts are saved in; \\
\verb+-wp-prover tip+ & for incrementally building and updating the session scripts;\\
\verb+-wp-prover script+ & for replaying saved scripts only, as they are;\\
\end{tabular}
\end{quote}
The \verb+script+ prover only runs the proof scripts edited by the user from the TIP, including the scripts being complete or known to being stuck at some sub-goal. The other proof obligations are transmitted to other provers, if some are provided.
This mode is well suited for replaying a proof bench, by using a combination of provers such as \verb+-wp-prover script,alt-ergo+. Moreover, the \verb+script+ prover never modifies the proof session and the proof scripts.
The \verb+tip+ prover is similar, except that it never runs sub-goals that are known to be stuck but updates the proof scripts on success or when an automated proof fails. Using the \verb+tip+ prover is less time consuming and eventually prepares new scripts for failed proofs to be edited later under the TIP.
Notice that, as soon as you have setup a wp-session directory, you benefit from cache facilities to speedup your proofs. Consult Section~\ref{wp-cache} for details.
\clearpage
A typical proof session consists then in the following stages:
a. Collecting the automated proofs and preparing for the TIP.
\begin{logs}
frama-c [...] -wp-prover tip,alt-ergo
\end{logs}
This runs all existing scripts (none at the very beginning) in success-mode only, and try Alt-Ergo on the others. Failed proofs lead to new empty scripts created.
b. Running the TIP.
\begin{logs}
frama-c-gui [...] -wp-prover tip
\end{logs}
This mode only runs existing scripts (typically prepared in the previous phase) in success-mode only, which is quite fast. Finally, the GUI is opened and the user can enter the TIP and edit the proofs.
Most goals are reported not to be proved, because automated proof is deactivated since no other prover than \verb+tip+ is specified. However, by filtering only those proof scripts that requires completion, only the relevant goals appear. The user has to save its edited proof scripts to re-run them later.
Any number of phase a. and b. can be executed and interleaved. This incrementally builds the set of proof scripts that are required to complement the automated proofs.
c. Consolidating the Bench.
\begin{logs}
frama-c [...] -wp-prover script,alt-ergo
\end{logs}
This mode replays the automated proofs and the interactive ones, re-running Alt-Ergo on every \textsf{WP} goals and every proof tactic sub-goals. The user scripts are never modified — this is a replay mode only.
\clearpage
\subsection{Available Tactics}
\newcommand{\TACTIC}[2]{#1\quad\quad\triangleright\quad\quad#2}
\subsubsection{General}
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
\paragraph{Absurd} Contradict a Hypothesis\\
The user can select a hypothesis $H$, and change the goal to $\neg H$:
$$ \TACTIC{\Delta,H\models\,G}{\Delta\models\,\neg H} $$
\paragraph{Array} Decompose array access-update patterns\\
The use select an expression $e\equiv a[k_1\mapsto v][k_2]$. Then:
$$ \TACTIC{\Delta\models\,G}{%
\begin{array}[t]{ll}
\Delta,\,k_1=k_2,\,e = v &\models G \\
\Delta,\,k_1\neq k_2,\,e = a[k_2] &\models G
\end{array}} $$
\paragraph{Choice} Select a Goal Alternative\\
When the goal is a disjunction, the user select one alternative and discard the others:
$$ \TACTIC{\Delta\models\,\Gamma,G}{\Delta\models\,G} $$
\paragraph{Compound} Decompose compound equalities\\
When the user select an equality between two records, it is decomposed field by field.
$$ \TACTIC{ a = b }{ \bigwedge a.f_i = b.f_i } $$
\paragraph{Contrapose} Swap and Negate Hypothesis with Conclusion\\
The user select a hypothesis (typically, a negation) and swap it with the goal.
$$ \TACTIC{\Delta,H\models\,G}{\Delta,\neg G\models\,\neg H} $$
\paragraph{Cut} Use Intermerdiate Hypothesis
The user introduce a new clause $C$ with the composer to prove the goal. There two variants of the tactic, made available by a menu in the tactic panel.
The \textsf{Modus-Ponens} variant where the clause $C$ is used as an intermediate proof step:
$$\TACTIC{\Delta\models\,G}{%
\begin{array}[t]{ll}
\Delta &\models C \\
\Delta,C &\models G
\end{array}} $$
And the \textsf{Case Analysis} variant where the clause $C$ is used with a split:
$$\TACTIC{\Delta\models\,G}{%
\begin{array}[t]{ll}
\Delta,\phantom{\neg}C \models G \\
\Delta,\neg C \models G
\end{array}} $$
\paragraph{Definition} Unfold predicate and logic function definition\\
The user simply select a term $f(e_1,\ldots,e_n)$ or a predicate $P(e_1,\ldots,e_n)$ which is replaced by its definition, when available.
\paragraph{Filter} Erase Hypotheses \\
The tactic is always applicable. It removes hypotheses from the goal on a variable used basis. When variables are compounds (record and arrays) a finer heuristics is used to detect which parts of the variable is relevant. A transitive closure of dependencies is also used. However, it is always possible that too many hypotheses are removed.
The tactic also have a variant where only hypotheses \emph{not relevant} to the goal are retained. This is useful to find absurd hypotheses that are completely disjoint from the goal.
\paragraph{Havoc} Go Through Assigns \\
This is a variant of the \texttt{Lemma} tactic dedicated to \texttt{Havoc} predicate generate by complex assigns clause. The user select an address, and if the address is not assigned by the \texttt{Havoc} clause, the memory at this address is unchanged.
\paragraph{Instance} Instantiate properties\\
The user selects a hypothesis with one or several $\forall$ quantifiers, or an $\exists$ quantified goal. Then, with the composer, the use choose to instantiate one or several of the quantified parameters. In case of $\forall$ quantifier over integer, a range of values can be instantiated instead.
When instantiating hypothesis with an expression $e$:
$$\TACTIC{\Delta,\,\forall x\, P(x)\models G}{\Delta,P(e)\models G}$$
When instantiating with a range of values $n\ldots m$:
$$\TACTIC{\Delta,\,\forall x\, P(x)\models G}{\Delta,P(n)\ldots P(m)\models G}$$
When instantiating a goal with an expression $e$:
$$\TACTIC{\Delta\models \exists x\,G(x)}{\Delta\models G(e)}$$
\paragraph{Intuition} Decompose with Conjunctive/Disjunctive Normal Form\\
The user can select a hypothesis or a goal with nested conjunctions and disjunctions. The tactics then computes the conjunctive or disjunctive normal form of the selection and split the goal accordingly.
\paragraph{Lemma} Search \& Instantiate Lemma\\
The user start by selecting a term in the goal. Then, the search button in the tactic panel will display a list of lemma related to the term. Then, he can instantiate the parameters of the lemma, like with the Instance tactic.
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
\paragraph{Rewrite} Replace Terms\\
This tactic uses an equality in a hypothesis to replace each occurrence of term by another one.
The tactic exists with two variants: the left-variant which rewrites $a$ into $b$ from equality $a=b$,
and the right-variant which rewrites $b$ into $a$ from equality $a=b$.
The original equality hypothesis is removed from the goal.
$$\TACTIC{\Delta,a=b\models\,G}{\Delta[a\leftarrow b]\models\,G[a\leftarrow b]}$$
\paragraph{Separated} Expand Separation Cases\\
This tactic decompose a \texttt{separated}$(a,n,b,m)$ predicate into its four base cases: $a$ and $b$ have different bases, $a+n \leq b$, $b+m \leq a$, and $a[0..n-1]$ and $b[0..m-1]$ overlaps. The regions are separated in the first three cases, and not separated in the overlapping case. This is kind of normal disjunctive form of the separation clause.
\paragraph{Split} Decompose Logical Connectives and Conditionals\\
This is the most versatile available tactic. It decompose merely any logical operator following the sequent calculus rules. Typically:
\[
\begin{array}{c@{\quad\quad}c@{\quad\quad}c}
\Delta,(H_1\vee H_2)\models G & \triangleright &
\Delta,H_1 \models G \\
&& \Delta,H_2 \models G \\
\Delta\models(G_1\wedge G_2) & \triangleright &
\Delta\models G_1 \\
&& \Delta\models G_2 \\
\Delta,H?P:Q\models G & \triangleright &
\Delta,\phantom{\neg}H,P\models G \\
&& \Delta,\neg H,Q\models G \\
\ldots
\end{array}
\]
When the user selects a arbitrary boolean expression $e$, the tactic is similar to the Cut one:
\[\TACTIC{\Delta\models\,G}{%
\begin{array}[t]{l}
\Delta,\phantom{\neg}e\models G \\
\Delta,\neg e\models G
\end{array}} \]
Finally, when the user select a arithmetic comparison over $a$ and $b$, the tactics makes a split over $a=b$, $a<b$ and $a>b$:
\[\TACTIC{\Delta\models\,G}{%
\begin{array}[t]{ll}
\Delta,a<b&\models G \\
\Delta,a=b&\models G \\
\Delta,a>b&\models G
\end{array}} \]
\subsubsection{Over integers}
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
\paragraph{BitRange} Range of logical bitwise operators \\
This tactical applies the two following lemmas to the current goal.
The first lemma is on logical-or, and only applies to positive integers:
\[
\begin{array}{c}
\bigwedge_i 0 \leq x_i < 2^p
\\\hline
0 \leq \mathtt{lor}(x_1,\ldots,x_n) \leq 2^p
\end{array}
\]
The second lemma is on logical-and, and applies to at-least one positive integer:
\[
\begin{array}{c}
\bigvee_i 0 \leq x_i \quad\wedge\quad \bigwedge_i x_i \leq 2^p
\\\hline
0 \leq \mathtt{land}(x_1,\ldots,x_n) \leq 2^p
\end{array}
\]
The tactical rewrites range goals on logical and/or into the corresponding range over its parameters, by finding a suitable $2^p$
to apply the theorems. Such a strategy is \emph{not} complete in general.
Typically, $\mathtt{land}(x,y) < 38$ is true whenever both $x$ and $y$ are in range $0\ldots 31$, but this is also true
in other cases.
\paragraph{Bitwise} Decompose equalities over $N$-bits\\
The use selects an integer equality and a number of bits.
Providing the two members of the equality are in range $0..2^N-1$,
the equality is decomposed into $N$ bit-tests equalities:
\[\TACTIC{\Delta\models G}{%
\begin{array}[t]{rcl}
\Delta\phantom{)} &\models & 0 \leq a,b < 2^N \\
\sigma(\Delta) & \models & \sigma(G)
\end{array}
}\]
where $\sigma$ is the following subsitution:
\[ \sigma \equiv
\left[ a=b \quad \leftarrow
\bigwedge_{k\in 0..N-1} \mathtt{bit\_test}(a,k) = \mathtt{bit\_test}(b,k)
\right]
\]
The \lstinline{bit_test(a,b)} function is predefined in \textsf{WP} and is equivalent
to the \textsf{ACSL} expression \lstinline{(a & (1 << k)) != 0}. The
\textsf{Qed} engine has many simplification rules that applies to
such patterns, and the a tactic is good way to reason over bits.
\paragraph{Congruence} Simplify Divisions and Products \\
This tactic rewrites integer comparisons involving products and divisions.
The tactic applies one of the following theorems to the current goal.
In the following lemmas, $k$, $k'$, and $n$ are integer constants, $a$ and $b$ any integer terms.
The notation $k|n$ stands for $k$ divides $n$.
The lemmas are extended to non-strict inequalities and non-positive constants in a natural way.
\[
\begin{array}{crcl}
0<k, & a < n/k &\Longrightarrow& k.a < n \\
k|n, & a = n/k &\Longleftrightarrow& k.a = n \\
\neg(k|n), & k.a = n & \Longrightarrow & \mathtt{false} \\
0<k, & a < k.(b+1) &\Longrightarrow& a/k < b \\
0<k, 0<k', & k'.a < k.b &\Longrightarrow& a/k < b/k' \\
n|k, n|k', & (k/n).a = (k'/n).b &\Longleftrightarrow& k.a = k'.b
\end{array}
\]
\paragraph{Induction} Start a proof by integer induction \\
The user select any integer expression $e$ in the proof and a base value $b$ (which defaults to
0). The tactic generates a proof by strong (integer) induction on $e$, that is, the base case
$e = b$ and then the cases $e < b$ and $b < e$. Formally:
\[\TACTIC
Loading
Loading full blame...