Newer
Older
(**************************************************************************)
(* *)
(* This file is part of WP plug-in of Frama-C. *)
(* *)
(* CEA (Commissariat a l'energie atomique et aux energies *)
(* alternatives) *)
(* *)
(* you can redistribute it and/or modify it under the terms of the GNU *)
(* Lesser General Public License as published by the Free Software *)
(* Foundation, version 2.1. *)
(* *)
(* It is distributed in the hope that it will be useful, *)
(* but WITHOUT ANY WARRANTY; without even the implied warranty of *)
(* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *)
(* GNU Lesser General Public License for more details. *)
(* *)
(* See the GNU Lesser General Public License version 2.1 *)
(* for more details (enclosed in the file licenses/LGPLv2.1). *)
(* *)
(**************************************************************************)
(* -------------------------------------------------------------------------- *)
(* --- Floats Arithmetic Model --- *)
(* -------------------------------------------------------------------------- *)
open Ctypes
open Qed
open Lang
open Lang.F
(* -------------------------------------------------------------------------- *)
(* --- Library --- *)
(* -------------------------------------------------------------------------- *)
let library = "cfloat"
let f32 = datatype ~library "f32"
let f64 = datatype ~library "f64"
let t32 = Lang.(t_datatype f32 [])
let t64 = Lang.(t_datatype f64 [])
let ftau = function
| Float32 -> t32
| Float64 -> t64
let ft_suffix = function Float32 -> "f32" | Float64 -> "f64"
let pp_suffix fmt ft = Format.pp_print_string fmt (ft_suffix ft)
let link phi = Lang.infoprover (Qed.Engine.F_call phi)
(* Qed exact representations, linked to f32/f64 *)
let fq32 = extern_f ~library ~result:t32 ~link:(link "to_f32") "q32"
let fq64 = extern_f ~library ~result:t64 ~link:(link "to_f64") "q64"
let f_model ft = extern_f ~library ~result:(ftau ft) "model_%a" pp_suffix ft
let f_delta ft = extern_f ~library ~result:(ftau ft) "delta_%a" pp_suffix ft
let f_epsilon ft = extern_f ~library ~result:(ftau ft) "epsilon_%a" pp_suffix ft
(* -------------------------------------------------------------------------- *)
(* --- Model Setting --- *)
(* -------------------------------------------------------------------------- *)
type model = Real | Float
let model = Context.create ~default:Float "Cfloat.model"
let tau_of_float f =
match Context.get model with
| Real -> Logic.Real
| Float -> ftau f
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
type op =
| LT
| EQ
| LE
| NE
| NEG
| ADD
| MUL
| DIV
| REAL
| ROUND
| EXACT
[@@@ warning "-32"]
let op_name = function
| LT -> "flt"
| EQ -> "feq"
| LE -> "fle"
| NE -> "fne"
| NEG -> "fneg"
| ADD -> "fadd"
| MUL -> "fmul"
| DIV -> "fdiv"
| REAL -> "freal"
| ROUND -> "fround"
| EXACT -> "fexact"
[@@@ warning "+32"]
(* -------------------------------------------------------------------------- *)
(* --- Registry --- *)
(* -------------------------------------------------------------------------- *)
module REGISTRY = Model.Static
(struct
type key = lfun
type data = op * c_float
let name = "Wp.Cfloat.REGISTRY"
include Lang.Fun
end)
let find = REGISTRY.find
let () = Context.register
begin fun () ->
REGISTRY.define fq32 (EXACT,Float32) ;
REGISTRY.define fq64 (EXACT,Float64) ;
end
(* -------------------------------------------------------------------------- *)
(* --- Literals --- *)
(* -------------------------------------------------------------------------- *)
let rfloat = Floating_point.round_to_single_precision_float
let fmake ulp value = match ulp with
| Float32 -> F.e_fun fq32 [F.e_float (rfloat value)]
| Float64 -> F.e_fun fq64 [F.e_float value]
let qmake ulp q = fmake ulp (Transitioning.Q.to_float q)
let re_mantissa = "\\([-+]?[0-9]*\\)"
let re_comma = "\\(.\\(\\(0*[1-9]\\)*\\)0*\\)?"
let re_exponent = "\\([eE]\\([-+]?[0-9]*\\)\\)?"
let re_suffix = "\\([flFL]\\)?"
let re_real =
Str.regexp (re_mantissa ^ re_comma ^ re_exponent ^ re_suffix ^ "$")
if Str.string_match re_real r 0 then
let has_suffix =
try ignore (Str.matched_group 7 r) ; true
with Not_found -> false in
if has_suffix && model = Float then
Q.of_float v
else
let ma = Str.matched_group 1 r in
let mb = try Str.matched_group 3 r with Not_found -> "" in
let me = try Str.matched_group 6 r with Not_found -> "0" in
let n = int_of_string me - String.length mb in
let d n =
let s = Bytes.make (succ n) '0' in
Bytes.set s 0 '1' ; Q.of_string (Bytes.to_string s) in
let m = Q.of_string (ma ^ mb) in
if n < 0 then Q.div m (d (-n)) else
if n > 0 then Q.mul m (d n) else m
Warning.error "Unexpected constant literal %S" r
F.e_real (parse_literal ~model:(Context.get model) l.r_nearest l.r_literal)
let code_lit ulp value original =
match Context.get model , ulp , original with
| Float , Float32 , _ -> F.e_fun fq32 [F.e_float value]
| Float , Float64 , _ -> F.e_fun fq64 [F.e_float value]
| Real , _ , None -> F.e_float value
| Real , _ , Some r -> F.e_real (parse_literal ~model:Real value r)
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
let rec exact e =
match F.repr e with
| Qed.Logic.Kreal r -> r
| Qed.Logic.Kint z -> Q.of_bigint z
| Qed.Logic.Fun( f , [ q ] ) when f == fq32 || f == fq64 -> exact q
| _ -> raise Not_found
let compute op ulp xs =
match op , xs with
| NEG , [ x ] -> qmake ulp (Q.neg (exact x))
| ADD , [ x ; y ] -> qmake ulp (Q.add (exact x) (exact y))
| MUL , [ x ; y ] -> qmake ulp (Q.mul (exact x) (exact y))
| DIV , [ x ; y ] -> qmake ulp (Q.div (exact x) (exact y))
| ROUND , [ x ] -> qmake ulp (exact x)
| REAL , [ x ] -> F.e_real (exact x)
| LE , [ x ; y ] -> F.e_bool (Q.leq (exact x) (exact y))
| LT , [ x ; y ] -> F.e_bool (Q.lt (exact x) (exact y))
| EQ , [ x ; y ] -> F.e_bool (Q.equal (exact x) (exact y))
| NE , [ x ; y ] -> F.e_bool (not (Q.equal (exact x) (exact y)))
| _ -> raise Not_found
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
let make_fun_float ?result name op ft =
let result = match result with None -> ftau ft | Some r -> r in
let phi = extern_f ~library ~result "%s_%a" name pp_suffix ft in
Lang.F.set_builtin phi (compute op ft) ;
REGISTRY.define phi (op,ft) ; phi
let make_pred_float name op ft =
let prop = Pretty_utils.sfprintf "%s_%a" name pp_suffix ft in
let bool = Pretty_utils.sfprintf "%s_%ab" name pp_suffix ft in
let phi = extern_p ~library ~bool ~prop () in
Lang.F.set_builtin phi (compute op ft) ;
REGISTRY.define phi (op,ft) ; phi
let real_of_flt = f_memo (make_fun_float ~result:Logic.Real "of" REAL)
let flt_of_real = f_memo (make_fun_float "to" ROUND)
let flt_add = f_memo (make_fun_float "add" ADD)
let flt_mul = f_memo (make_fun_float "mul" MUL)
let flt_div = f_memo (make_fun_float "div" DIV)
let flt_neg = f_memo (make_fun_float "neg" NEG)
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
let flt_lt = f_memo (make_pred_float "lt" LT)
let flt_eq = f_memo (make_pred_float "eq" EQ)
let flt_le = f_memo (make_pred_float "le" LE)
let flt_neq = f_memo (make_pred_float "ne" NE)
(* -------------------------------------------------------------------------- *)
(* --- Builtins --- *)
(* -------------------------------------------------------------------------- *)
let register_builtin_comparison suffix ft =
begin
let open Qed.Logic in
let params = [Sdata;Sdata] in
let sort = Sprop in
let gt = generated_f ~params ~sort "\\gt_%s" suffix in
let ge = generated_f ~params ~sort "\\ge_%s" suffix in
let open LogicBuiltins in
let signature = [F ft;F ft] in
add_builtin ("\\eq_" ^ suffix) signature (flt_eq ft) ;
add_builtin ("\\ne_" ^ suffix) signature (flt_neq ft) ;
add_builtin ("\\lt_" ^ suffix) signature (flt_lt ft) ;
add_builtin ("\\le_" ^ suffix) signature (flt_le ft) ;
add_builtin ("\\gt_" ^ suffix) signature gt ;
add_builtin ("\\ge_" ^ suffix) signature ge ;
Context.register
begin fun () ->
let converse phi x y = e_fun phi [y;x] in
Lang.F.set_builtin_2 gt (converse (flt_lt ft)) ;
Lang.F.set_builtin_2 ge (converse (flt_le ft)) ;
end
end
let () =
begin
register_builtin_comparison "float" Float32 ;
register_builtin_comparison "double" Float64 ;
end
(* -------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------- *)
add_builtin "\\model" [F ft] (f_model ft) ;
add_builtin "\\delta" [F ft] (f_delta ft) ;
add_builtin "\\epsilon" [F ft] (f_epsilon ft) ;
in
register_builtin Float32 ;
register_builtin Float64 ;
end
(* -------------------------------------------------------------------------- *)
(* --- Conversion Symbols --- *)
(* -------------------------------------------------------------------------- *)
let real_of_float f a =
match Context.get model with
| Real -> a
| Float -> e_fun (real_of_flt f) [a]
| Float -> e_fun (flt_of_real f) [a]
let float_of_int f a = float_of_real f (Cmath.real_of_int a)
(* -------------------------------------------------------------------------- *)
(* --- Float Arithmetics --- *)
(* -------------------------------------------------------------------------- *)
let fbinop rop fop f x y =
match Context.get model with
| Real -> rop x y
| Float -> e_fun (fop f) [x;y]
let fcmp rop fop f x y =
match Context.get model with
| Real -> rop x y
| Float -> p_call (fop f) [x;y]
let fadd = fbinop e_add flt_add
let fmul = fbinop e_mul flt_mul
let fdiv = fbinop e_div flt_div
let fopp f x =
match Context.get model with
| Real -> e_opp x
| Float -> e_fun (flt_neg f) [x]
let fsub f x y = fadd f x (fopp f y)
let flt = fcmp p_lt flt_lt
let fle = fcmp p_leq flt_le
let feq = fcmp p_equal flt_eq
let fneq = fcmp p_neq flt_neq
(* -------------------------------------------------------------------------- *)
(* --- Registry --- *)
(* -------------------------------------------------------------------------- *)
let configure m =
begin
Context.set model m ;
Context.set Lang.floats tau_of_float ;
end
(* -------------------------------------------------------------------------- *)