Newer
Older
/**************************************************************************/
/* */
/* This file is part of Frama-Clang */
/* */
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/* CEA (Commissariat à l'énergie atomique et aux énergies */
/* alternatives) */
/* */
/* you can redistribute it and/or modify it under the terms of the GNU */
/* Lesser General Public License as published by the Free Software */
/* Foundation, version 2.1. */
/* */
/* It is distributed in the hope that it will be useful, */
/* but WITHOUT ANY WARRANTY; without even the implied warranty of */
/* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the */
/* GNU Lesser General Public License for more details. */
/* */
/* See the GNU Lesser General Public License version 2.1 */
/* for more details (enclosed in the file LICENSE). */
/* */
/**************************************************************************/
//
// Description:
// Definition of the ACSL terms and predicates.
//
#ifndef ACSL_TermOrPredicateH
#define ACSL_TermOrPredicateH
#include "ACSLParser.h"
// #include "DescentParse.h"
extern "C" {
#include "intermediate_format.h"
} // end of extern "C"
#include "ACSLLogicType.h"
namespace Acsl {
/*! @class TermOrPredicate
* @brief Component that parses a term, a predicate, a type, a set
* or a range with a state machine.
*
* The distinction between term and predicate is not possible since a
* predicate can encounter terms. Hence \c p defined by <tt>a <= b</tt>
* requires \c a to be a term whereas \c p define by <tt>a || b</tt> requires
* the subexpression \c a to be a predicate. \n
* The distinction between term and type is not possible since a term can
* be casted with a C cast. Hence \c t defined by <tt>(a) b</tt> requires
* \c a to be a type whereas \c t defined by <tt>(a) + b</tt> requires
* \c a to be a term. \n
* The distinction between a term and set and range is not possible since ACSL
* authorize the implicit conversion between a value and a singleton. \n \n
*
* The state is defined by the Parser::State::point() method and has
* additional information within the fields _operatorStack, _qualification,
* _labelOrIdentifier, _declContext, _doesRequireValue. \n \n
* Depending on _possibleTypeResults, the local parsing method readToken
* builds a term for extractTerm, extractTermOrSet or a set for extractSet,
* extractTermOrSet or a predicate for extractPredicate. For a type, the
* caller has to verify if the result is a type with the isType() method
* before calling extractType().
*/
class TermOrPredicate
: public ::Parser::Base::RuleResult, public ::Parser::Base {
// + set (including range) + type
private:
typedef ::Parser::Base::RuleResult inherited;
protected:
typedef ::Parser::Base::RuleResult RuleResult;
private:
term _node; //!< Can hold the parsed term for the extractTerm() method.
predicate_named _predicate;
//!< Can hold the parsed predicate for the extractPredicate() method.
location _loc; //!< location range of the term, predicate or type.
void absorbLoc(location l) { if (_loc) free_location(_loc); _loc = l; }
logic_type _typeResult;
//!< Hold the parsed logic_type for the extractType method.
// logic_type _type; // NULL for predicates = Boolean
// /* string */ list _names;
/*! @class Operator
* @brief class used as element of the _operatorStack field to explicitly
* have a stack parsing the expressions.
*
* When the parser encounters an Operator with a high Precedence, it pushes
* it. When it encounters an Operator with a low Precedence, it pops and
* reduces the previous stacked Operators until the last Operator has a
* lower Precedence. \n
* The Operator class handles unary prefix operators, binary operators,
* and ternary operators, function calls. The field _leftSubExpressions
* is an indication of how many subterms are lacking.
*/
class Operator {
private:
/* operator precedence:
->[1] naming ':'
->[2] binding 'forall' 'exists' 'let'
->[3] conditional expression ? :
->[...] assignment expression =, +=, ...
->[4] '<==>'
->[5] '==>'
->[6] '||'
->[7] '^^'
->[8] '&&'
->[9] '<-->'
->[10] '-->'
->[11] '|'
->[12] '^'
->[13] '&'
->[14] '==' | '!='
->[15] '<' | '>' | "<=" | '>='
->[16] '<<' | '>>'
->[17] '+' | '-'
->[18] '*' | '/' | '%'
->[19] casts
->[20] unary '&' | '*' | '+' | '-' | '~' | '!'
->[21] prefix '++' | '--'
->[22] postfix '++' | '--' | '->' | '.' | '[]' | '()' | 'with'
->[23] constant | identifier | '('term_node')'
*/
enum Precedence
{ PUndefined, PNaming, PBinding, PConditional, PLogicalEquiv,
PLogicalImply, PLogicalOr, PLogicalXOr, PLogicalAnd, PBitEquiv,
PBitImply, PBitOr, PBitExclusiveOr, PBitAnd, PEquality, PComparison,
PShift, PAddition, PMultiplication, PCast, PUnary, PPrefix, PPostFix
};
enum Type
{ TUndefined, TPlus, TMinus, TTimes, TDivide, TModulo, TLeftShift,
TRightShift, TEqual, TDifferent, TLessOrEqual, TGreaterOrEqual, TLess,
TGreater, TLogicalAnd, TLogicalOr, TLogicalImply, TLogicalEquiv,
TLogicalXOr, TBitAnd, TBitOr, TBitImply, TBitEquiv, TBitXOr,
TUnaryPlus,
TUnaryMinus, TNot, TComplement, TDereference, TAddressOf, TCast,
TSubType, TCoerce, TNaming, TStructAccess, TArrowStructAccess,
TIndirectMethodAccess, TArrowIndirectMethodAccess, TArrayAccess, TCall,
TStructCall, TArrowStructCall, TForall, TExists, TLet, TConditional
};
Precedence _precedence;
//!< enable to sort the operator by their Precedence.
Type _type; //!< Extract type of the operator.
bool isOverloadable() const
{ return (_type >= TPlus && _type <= TDereference)
|| (_type >= TSubType && _type <= TCoerce)
|| (_type == TArrowStructAccess)
|| (_type == TArrayAccess);
}
DLexer::OperatorPunctuatorToken queryOperatorToken() const;
// typ _ctypeCast; // if C-expr are integrated
logic_type _typeCast; //!< Type of the cast for _type == TCast
int _leftSubExpressions; //!< Number of lacking subterms.
bool _isRightAssociative;
//!< Indicates if the operator is right associative.
logic_type _ltypeFirstArgument;
//!< Type of _tfirstArgument => for implicit cast
// expression _cfirstArgument;
term _tfirstArgument; //!< First term for non-unary prefix operators
predicate_named _pfirstArgument;
//!< First predicate for non-unary prefix operators
logic_type _ltypeSecondArgument;
//!< Type of _tsecondArgument => for implicit cast
term _tsecondArgument; //!< Second term for ternary operators
predicate_named _psecondArgument; //! Second predicate for ternary operators
logic_type _ltypeThirdArgument;
//!< Type of _tthirdArgument => for implicit cast
term _tthirdArgument;
//!< Third term for ternary operators like with [array index]
predicate_named _pthirdArgument;
//!< Third predicate for ternary operators like with [array index]
location _startLocation; //!< Location of the operator if needed
// bool _isVariable; // optional constant evaluation => for array size
// bool _isFirstLValue; // optional => automatic translation into RValue
// bool _isSecondLValue; // optional => automatic translation into RValue
GlobalContext::NestedContext* _identifier;
//!< Qualification for function call as instance
std::list<std::pair<logic_type, term> > _arguments;
//!< Arguments of a function/method call
/* logic_label */ list _labelsArguments;
//!< labels for a logic_function call
struct Relation {
Type _type;
logic_type _ltype;
term _node;
Relation(Type type, logic_type ltype, term node)
: _type(type), _ltype(ltype), _node(node) {}
};
std::list<Relation> _endRelationList;
//!< End of a relation for predicates like <tt>a <= b <= c</tt>
std::string _fieldName; //!< Name of a field, a function call.
/* logic_var_def */ list _binders; //!< binders for exists, forall operators
friend class TermOrPredicate;
public:
Operator()
: _precedence(PUndefined), _type(TUndefined), _typeCast(NULL),
_leftSubExpressions(0), _isRightAssociative(false),
_ltypeFirstArgument(NULL), _tfirstArgument(NULL), _pfirstArgument(NULL),
_ltypeSecondArgument(NULL), _tsecondArgument(NULL),
_psecondArgument(NULL), _ltypeThirdArgument(NULL),
_tthirdArgument(NULL), _pthirdArgument(NULL), _startLocation(NULL),
_identifier(NULL), _labelsArguments(NULL), _binders(NULL)
// , _isVariable(false), _isFirstLValue(false), _isSecondLValue(false)
{}
// C++-11 makes possible the copy/destruction
// of _firstArgument and _secondArgument in the STL.
Operator(const Operator& source)
: _precedence(source._precedence), _type(source._type),
_typeCast(source._typeCast),
_leftSubExpressions(source._leftSubExpressions),
_isRightAssociative(source._isRightAssociative),
_ltypeFirstArgument(source._ltypeFirstArgument),
_tfirstArgument(source._tfirstArgument),
_pfirstArgument(source._pfirstArgument),
_ltypeSecondArgument(source._ltypeSecondArgument),
_tsecondArgument(source._tsecondArgument),
_psecondArgument(source._psecondArgument),
_ltypeThirdArgument(source._ltypeThirdArgument),
_tthirdArgument(source._tthirdArgument),
_pthirdArgument(source._pthirdArgument),
_startLocation(source._startLocation),
/*_isVariable(source._isVariable),
_isFirstLValue(source._isFirstLValue),
_isSecondLValue(source._isSecondLValue), */
_identifier(source._identifier),
_arguments(source._arguments),
_labelsArguments(source._labelsArguments),
_endRelationList(source._endRelationList),
_fieldName(source._fieldName), _binders(source._binders)
{}
~Operator() {}
void extractLastArgument(logic_type& ltargument, term& targument,
predicate_named& pargument /* , bool& isRValue, int* intResult,
double* doubleResult*/);
void extractSecondArgument(logic_type& ltargument, term& targument,
predicate_named& pargument /* , bool& isRValue, int* intResult,
double* doubleResult*/);
void extractFirstArgument(logic_type& ltargument, term& targument,
predicate_named& pargument /* , bool& isRValue, int* intResult,
double* doubleResult*/);
void retrieveFirstArgument(logic_type& ltargument, term& targument,
predicate_named& pargument);
void retrieveSecondArgument(logic_type& ltargument, term& targument,
predicate_named& pargument);
// bool isFirstRValue() const { return !_isFirstLValue; }
// bool isFirstLValue() const { return _isFirstLValue; }
// bool isSecondRValue() const { return !_isSecondLValue; }
// bool isSecondLValue() const { return _isSecondLValue; }
Precedence getPrecedence() const { return _precedence; }
int queryArgumentsNumber() const;
void addArgument(logic_type ltype, term node)
{ _arguments.push_back(std::make_pair(ltype, node)); }
void setField(const std::string& fieldName) { _fieldName = fieldName; }
Operator& setType(Type type, bool isPrefix=false);
Type getType() const { return _type; }
bool isBinaryOperator() const
{ return _type >= TPlus && _type <= TBitXOr; }
bool isRelation() const { return _type >= TEqual && _type <= TGreater; }
std::string queryOperatorName() const;
Operator& absorbTypeCast(logic_type typeCast)
{ assert(!_typeCast);
_typeCast = typeCast;
_type = TCast;
return *this;
}
logic_type extractTypeCast()
{ logic_type result = _typeCast; _typeCast = NULL; return result; }
bool changeTypeToCallAccess(Parser::Arguments& context);
Operator& setLeftSubExpressions(int leftSubExpressions)
{ _leftSubExpressions = leftSubExpressions; return *this; }
bool isFinished() const {
if (isRelation() && !_endRelationList.empty()) {
return _endRelationList.back()._node;
}
return _leftSubExpressions == 0;
}
bool BinaryOperatorHasSecondArgument() {
if (isRelation() && !_endRelationList.empty()) {
return _endRelationList.back()._node;
}
return _tsecondArgument || _psecondArgument;
}
void advance() { assert(_leftSubExpressions > 0); _leftSubExpressions--; }
bool isLeftAssociative() { return !_isRightAssociative; }
bool isRightAssociative() { return _isRightAssociative; }
// bool isConstant() const { return !_isVariable; }
// bool isVariable() const { return _isVariable; }
bool isCast() const { return _typeCast != NULL; }
bool isValid() const { return _precedence != PUndefined; }
// void setVariable() { _isVariable = true; }
int getLeftSubExpressions() const { return _leftSubExpressions; }
void setLocation(location loc)
{ assert(!_startLocation);
_startLocation = loc;
}
void changeLocation(location loc)
{ if (_startLocation && loc != _startLocation)
free_location(_startLocation);
_startLocation = loc;
}
Operator& setFirstArgument(logic_type ltype, term expression,
predicate_named pred /* , bool isRValue, bool isConstant,
int* intArgument=NULL, double* doubleArgument = NULL*/);
Operator& setSecondArgument(logic_type ltype, term expression,
predicate_named pred /* , bool isRValue, bool isConstant,
int* intArgument=NULL, double* doubleArgument = NULL*/);
Operator& setThirdArgument(logic_type ltype, term expression,
predicate_named pred /* , bool isRValue, bool isConstant,
int* intArgument=NULL, double* doubleArgument = NULL*/);
Operator& setIdentifier(GlobalContext::NestedContext* identifier)
{ _identifier = identifier; return *this; }
Operator& setBinders(/* logic_var_def */ list binders)
{ _binders = binders; return *this; }
};
std::list<Operator> _operatorStack;
//!< first part of the term expression, sorted by increasing Precedence.
GlobalContext::NestedContext* _qualification;
//!< Qualification of the expected identifier.
std::string _labelOrIdentifier;
//!< Stored identifier to determine if it is a label or a variable.
location _startLocation;
//!< Start location of our term/predicate if needed
const clang::DeclContext* _declContext;
//!< clang scope context
bool _doesRequireValue;
//!< Does the parser need a term/predicate to complete the parsing.
bool _doesStopTypeAmbiguity;
//!< Does the parser stop after it desambiguates a type from a term.
protected:
enum TypeResult { LTRTerm, LTRPredicate, LTRType, LTRSet };
unsigned short _possibleTypeResults;
//!< Possible expected types of results.
unsigned getSubExpressionPossibleTypes() const
{ unsigned result = _possibleTypeResults;
if ((result & ~(1U << LTRType)) == 0)
return result;
result |= ((1U << LTRTerm) | (1U << LTRPredicate));
// pred ? term : term // pred can be a subtype of term
// pred ? set : set // pred can be a subtype of set
// term <= term // term can be a subtype of pred
// term .. term // term can be a direct subtype of set
return result;
}
bool acceptSubExpressionTerm()
{ return _possibleTypeResults & ~(1U << LTRType); }
bool acceptSubExpressionPredicate()
{ return _possibleTypeResults & ~(1U << LTRType); }
bool acceptSubExpressionSet()
{ return _possibleTypeResults & ~(1U << LTRType); }
bool acceptSubExpressionType()
{ return _possibleTypeResults & (1U << LTRType); }
bool excludeTypeAsResult()
{ bool result = _possibleTypeResults & ~(1U << LTRType);
if (result)
_possibleTypeResults &= ~(1U << LTRType);
return result;
}
bool ensureTypeAsResult()
{ bool result = _possibleTypeResults & (1U << LTRType);
if (result)
_possibleTypeResults = (1U << LTRType);
return result;
}
public:
Operator& pushOperator(Operator::Type typeOperator, int leftSubExpressions,
Parser::Arguments& context, bool& hasFailed);
static term tinteger(location loc, unsigned long v) {
std::ostringstream buf;
buf << v;
return
term_cons(
term_node_TConst(logic_constant_LCInt(strdup(buf.str().c_str()))),
copy_loc(loc), NULL);
}
static term tzero(location loc) { return tinteger(loc,0); }
static term tone (location loc) { return tinteger(loc,1); }
static bool isCArray(const term& argument,const logic_type ltype,
Parser::Arguments& context);
static bool isLogicZero(const term& argument);
static bool isLogicStrictNull(const term& argument);
static bool isLogicNull(const term& argument)
{ return isLogicZero(argument) || isLogicStrictNull(argument); }
static logic_type computeType(term_node node);
static bool needLogicCast(logic_type oldType, logic_type newType);
static term makeLogicStartOf(term node, Parser::Arguments& context);
static bool isCType(logic_type ltype);
static bool isCPointerType(logic_type ltype, Parser::Arguments& context);
static bool isCReferenceType(logic_type ltype, Parser::Arguments& context);
static bool isCArrayType(logic_type ltype, Parser::Arguments& context);
static qualified_name makeCCompoundType(logic_type ltype,
Parser::Arguments& context, tkind* templateKind);
static bool isIntegralType(logic_type ctype, Parser::Arguments& context);
static bool isSignedInteger(logic_type ctype, Parser::Arguments& context);
static bool isPlainBooleanType(logic_type ctype, Parser::Arguments& context);
/// convert boolean or integral term to predicate
static predicate_named convertTermToPredicate(
logic_type,term,Parser::Arguments&);
static bool isArithmeticType(logic_type ctype, Parser::Arguments& context);
static bool isFloatingType(logic_type ctype, Parser::Arguments& context);
static logic_type logicArithmeticPromotion(logic_type source,
Parser::Arguments& context);
static qualified_name getClassType(logic_type ltype,
tkind* templateParameters=NULL);
static term typeBoolTerm(logic_type& ltype, term source,
Parser::Arguments& context);
static void addOffset(term_offset& source, term_offset shift);
static term makeMemoryShift(logic_type ltype, term source, term_offset shift,
location loc, logic_type& resultType, Parser::Arguments& context);
static term termLValAddressOf(logic_type ltype, term source, location loc,
logic_type& lresultType, Parser::Arguments& context);
static bool retrieveTypeOfField(logic_type structType,
const std::string& fieldName, term_offset& offset, logic_type& ltype,
Parser::Arguments& context);
static term makeDot(term source, location loc, term_offset offset,
Parser::Arguments& context);
static term makeMemory(term address, term_offset offset);
static term makeShift(term memoryAccess, logic_type laccessType,
term shift, location loc, Parser::Arguments& context);
static logic_type logicArithmeticConversion(logic_type t1, logic_type t2,
Parser::Arguments& context);
static logic_type integralPromotion(logic_type ltype,
Parser::Arguments& context);
static logic_type carithmeticConversion(logic_type first, logic_type second,
Parser::Arguments& context);
static logic_type conditionalConversion(logic_type first, logic_type second,
Parser::Arguments& context);
static bool hasImplicitConversion(logic_type ltypeResult, term node,
logic_type ltype, Parser::Arguments& context);
static bool isLogicVoidPointerType(logic_type ltype,
Parser::Arguments& context);
class SubstitutionLevel;
class Substitution;
static bool isSameType(logic_type lfirst, logic_type lsecond,
Substitution substitutionFirst, Substitution substitutionSecond,
Parser::Arguments& context);
/*! Checks whether lsecond is compatible with lfirst, modulo instantiation
of some type variables if needed.
returns instantiated first type if both are compatible, NULL otherwise
*/
static logic_type isCompatibleType(logic_type lfirst, logic_type lsecond,
Substitution substitutionFirst, Substitution substitutionSecond,
Parser::Arguments& context);
static bool isIntegralType(logic_type type, Substitution substitution,
Parser::Arguments& context);
static bool isPlainPointerType(logic_type type, Substitution substitution,
Parser::Arguments& context);
static bool isPlainArrayType(logic_type type, Substitution substitution,
Parser::Arguments& context);
static qualified_name makePlainCompoundType(logic_type type,
Substitution substitution, Parser::Arguments& context,
tkind* templateKind);
static bool isPointerType(logic_type ltype, Substitution substitution,
Parser::Arguments& context);
static bool isArrayType(logic_type ltype, Substitution substitution,
Parser::Arguments& context);
static qualified_name makeCompoundType(logic_type type,
Substitution substitution, Parser::Arguments& context,
tkind* templateKind);
static logic_type typeOfPointed(logic_type type, Substitution substitution,
Parser::Arguments& context);
static logic_type typeOfArrayElement(logic_type ltype,
Substitution substitution, Parser::Arguments& context);
static bool isPointerCharType(logic_type type, Substitution substitution,
Parser::Arguments& context);
static term logicCoerce(logic_type& ltype, term source);
static logic_type isSetType(logic_type ltype);
/*! tries to coerce the given node of type ltype into ltypeResult.
if isOverloaded is true, no error is raised if the conversion fails.
returns NULL in case the conversion fails. Note that an _implicit_
conversion always go from a smaller type into a bigger one. Casts from
e.g. long to int or double to float have to be inserted explicitly by
the user.
*/
static term implicitConversion(
logic_type& ltypeResult,
/*!< the expected targetted type. It may be simplified.
implicitConversion takes its ownership and gives it back at the end.
As a consequence ltypeResult is different from NULL at the end.
If ltypeResult shall not change (ex if present in a signature),
the caller should use fresh logic_types. If ltypeResult is allowed
to change to find a common target type between two arguments, the
caller should directly use ltypeResult.
*/
term node,
/*!< the term that should be converted to ltypeResult. implicitConversion
takes its ownership. The resulting term is likely to include node
as a subterm of the conversion.
*/
logic_type ltype,
/*!< the actual type of node. implicitConversion takes its ownership. */
bool isOverloaded, /*!< if true, indicates that we are trying to select
an instance of an overloaded operator, so that we
shouldn't output an error message if the conversion
is not possible, since another instance might match.*/
Substitution substitutionFirst, /*!< instantiations of type variables
occurring in ltypeResult. */
Substitution substitutionSecond, /*!< instantiations of type variables
occurring in ltype. */
Parser::Arguments& context, /*!< information about compilation context. */
bool emitMsg = true
);
static term implicitConversion(logic_type& ltypeResult, term node,
logic_type ltype, bool isOverloaded, Parser::Arguments& context);
static term makeCast(logic_type& ltype, term source, logic_type oldtype,
Substitution substitutionThis, Substitution substitutionSource,
Parser::Arguments& context);
protected:
Operator& queryLastOperator() { return _operatorStack.back(); }
static void setLastArgument(Operator& operation, logic_type ltype,
term targument, predicate_named pargument /* , bool isRValue,
bool isConstant, int* intArgument=NULL, double* doubleArgument=NULL*/);
void pushLastArgument(logic_type ltype, term targument,
predicate_named pargument /* , bool isRValue, bool isConstant,
int* intArgument=NULL, double* doubleArgument=NULL*/);
Operator& pushPrefixUnaryOperator(Operator::Type typeOperator, location loc)
{ _operatorStack.push_back(Operator());
Operator& result = _operatorStack.back();
result.setType(typeOperator, true).setLeftSubExpressions(1);
result.setLocation(loc);
return result;
}
Operator& pushPrefixBinaryOperator(Operator::Type typeOperator, location loc)
{ _operatorStack.push_back(Operator());
Operator& result = _operatorStack.back();
result.setType(typeOperator, true).setLeftSubExpressions(2);
result.setLocation(loc);
return result;
}
Operator& pushBinaryOperator(Operator::Type typeOperator,
Parser::Arguments& context, bool& hasFailed)
{ return pushOperator(typeOperator, 1, context, hasFailed); }
Operator& pushConditionalOperator(Parser::Arguments& context, bool& hasFailed)
{ return pushOperator(Operator::TConditional, 2, context, hasFailed); }
Operator& pushPostfixUnaryOperator(Operator::Type typeOperator,
Parser::Arguments& context, bool& hasFailed)
{ return pushOperator(typeOperator, 0, context, hasFailed); }
Operator& pushCastOperator(logic_type typeCast, location loc)
{ _operatorStack.push_back(Operator());
Operator& result = _operatorStack.back();
result.setType(Operator::TCast).absorbTypeCast(typeCast)
.setLeftSubExpressions(1);
result.setLocation(loc);
return result;
}
class GuardLogicType;
class GuardType;
class GuardTerm;
class TermOrPredicateMemoryExtension;
class TermOrPredicateList;
static term applyTermCast(
logic_type& ccastType,
/*!< the cast type. applyTermCast takes its ownership and put NULL
in it to avoid some "memory bugs" at the caller site.
*/
term targument,
/*!< the term that should be converted to ltypeResult. applyTermCast
takes its ownership. The resulting term is likely to include node
as a subterm of the conversion.
*/
logic_type ltype,
/*!< the actual type of targument. applyTermCast takes its ownership. */
Parser::Arguments& context);
static void applyOverloadOperatorIfAny(Operator& operation,
Parser::Arguments& context);
typedef GlobalContext::OverloadedLogicFunctions::Functions Functions;
/*!
selects the most precise signature among a list of overloaded functions.
returns NULL in case of ambiguity.
*/
static logic_info disambiguate(
const std::string& name, const Functions&, Parser::Arguments&);
// returns the list of arguments for the given call operation
// adding the this pointer if needed.
static list
create_argument_list(Operator& operation, logic_info f,
Parser::Arguments& context);
static bool apply(Operator& operation, logic_type& ltypeResult,
term& expressionResult, predicate_named& predicateResult,
/* bool& isRValue, bool& isConstant, int *intResult, double* doubleResult,
*/ Parser::Arguments& context, unsigned& possibleTypes);
bool clearStack(logic_type& ltypeResult, term& expressionResult,
predicate_named& predicateResult /* , bool& isRValue, bool& isConstant,
int* intResult, double* doubleResult*/, Parser::Arguments& context);
class Binders;
class WithConstruct;
class Range;
class SetComprehension;
friend class Binders;
friend class WithConstruct;
friend class Range;
friend class SetComprehension;
public:
TermOrPredicate()
: _node(NULL), _predicate(NULL), _loc(NULL), _typeResult(NULL),
/* _type(NULL), _names(NULL), */ _qualification(NULL),
_startLocation(NULL), _declContext(NULL), _doesRequireValue(true),
_doesStopTypeAmbiguity(false),
_possibleTypeResults((1U << LTRTerm) | (1U << LTRPredicate)) {}
TermOrPredicate(const TermOrPredicate& source)
: RuleResult(source), _node(NULL), _predicate(NULL), _loc(NULL),
_typeResult(NULL), /* _type(NULL), _names(NULL), */ _qualification(NULL),
_startLocation(NULL), _declContext(NULL), _doesRequireValue(true),
_doesStopTypeAmbiguity(false),
_possibleTypeResults(source._possibleTypeResults) {}
~TermOrPredicate()
{ if (_loc) { free_location(_loc); _loc = NULL; };
if (_startLocation)
{ free_location(_startLocation); _startLocation = NULL; }
if (_node) { free_term(_node); _node = NULL; };
if (_predicate) { free_predicate_named(_predicate); _predicate = NULL; };
if (_typeResult) { free_logic_type(_typeResult); _typeResult = NULL; };
}
void setStopOnTypeDesambiguition() { _doesStopTypeAmbiguity = true; }
// foresee to merge the _operatorStack = for SetComprehension.
TermOrPredicate& setPredicate()
{ _possibleTypeResults &= (1U << LTRPredicate); return *this; }
TermOrPredicate& setTerm()
{ _possibleTypeResults &= (1U << LTRTerm); return *this; }
TermOrPredicate& setSet()
{ _possibleTypeResults &= (1U << LTRSet); return *this; }
TermOrPredicate& setType()
{ _possibleTypeResults &= (1U << LTRType);
return *this;
}
virtual RuleResult* clone() const { return new TermOrPredicate(*this); }
/// the only ambiguous states where all results may be possible are Begin
/// and AfterLogicIdentifier.
/// To conform with LALR(1) rules, the state AfterLogicIdentifier should
/// correspond to a special class QualifiedIdentifier.
ReadResult readToken(Parser::State& state, Parser::Arguments& argument);
void clear()
{ assert(_operatorStack.empty());
if (_loc) {
_loc->linenum1 = _loc->linenum2;
_loc->charnum1 = _loc->charnum2;
};
/* _type = NULL; */ _doesRequireValue = true;
_doesStopTypeAmbiguity = false;
if (_node) { free_term(_node); _node = NULL; };
if (_predicate) { free_predicate_named(_predicate); _predicate = NULL; };
if (_typeResult) { free_logic_type(_typeResult); _typeResult = NULL; };
}
bool isTerm(Parser::Arguments& arguments);
bool isSureTerm(Parser::Arguments& arguments);
bool isSet(Parser::Arguments& arguments);
bool isSureSet(Parser::Arguments& arguments);
bool isPredicate(Parser::Arguments& arguments);
bool isSurePredicate(Parser::Arguments& arguments);
bool isType() const;
term extractTerm(Parser::Arguments& arguments);
term extractTerm(Parser::Arguments& arguments, logic_type& ltype);
term extractTermOrSet(Parser::Arguments& arguments, logic_type& ltype);
term extractSet(Parser::Arguments& arguments, logic_type& ltype);
void extractTermOrPredicate(Parser::Arguments& arguments,
logic_type& ltype, term& node, predicate_named& pred);
predicate_named extractPredicate(Parser::Arguments& arguments);
logic_type extractType();
location getLocation() const { return _loc; }
static term term_true(location loc)
{ return term_cons(term_node_TTrue(),copy_loc(loc),NULL); }
static term term_false(location loc)
{ return term_cons(term_node_TFalse(),copy_loc(loc),NULL); }
};
inline void
TermOrPredicate::Operator::extractLastArgument(logic_type& ltargument,
term& targument, predicate_named& pargument
/* , bool& isRValue, int* intResult, double* doubleResult*/)
{ ++_leftSubExpressions;
if (isRelation() && !_endRelationList.empty()) {
ltargument = _endRelationList.back()._ltype;
_endRelationList.back()._ltype = NULL;
targument = _endRelationList.back()._node;
_endRelationList.back()._node = NULL;
assert(targument);
pargument = NULL;
}
else if (_tthirdArgument != NULL || _pthirdArgument != NULL) {
// if (intResult)
// *intResult = _thirdArgument->intArgument();
// if (doubleResult)
// *doubleResult = _thirdArgument->doubleArgument();
ltargument = _ltypeThirdArgument;
_ltypeThirdArgument = NULL;
targument = _tthirdArgument;
_tthirdArgument = NULL;
pargument = _pthirdArgument;
_pthirdArgument = NULL;
// isRValue = !_isThirdLValue;
}
else if (_tsecondArgument != NULL || _psecondArgument != NULL) {
// if (intResult)
// *intResult = _secondArgument->intArgument();
// if (doubleResult)
// *doubleResult = _secondArgument->doubleArgument();
ltargument = _ltypeSecondArgument;
_ltypeSecondArgument = NULL;
targument = _tsecondArgument;
_tsecondArgument = NULL;
pargument = _psecondArgument;
_psecondArgument = NULL;
// isRValue = !_isSecondLValue;
}
else {
// if (intResult)
// *intResult = _firstArgument->intArgument();
// if (doubleResult)
// *doubleResult = _firstArgument->doubleArgument();
ltargument = _ltypeFirstArgument;
_ltypeFirstArgument = NULL;
targument = _tfirstArgument;
_tfirstArgument = NULL;
pargument = _pfirstArgument;
_pfirstArgument = NULL;
// isRValue = !_isFirstLValue;
};
}
inline void
TermOrPredicate::Operator::extractSecondArgument(logic_type& ltargument,
term& targument, predicate_named& pargument
/* , bool& isRValue, int* intResult, double* doubleResult*/)
{ ++_leftSubExpressions;
assert(_tthirdArgument == NULL && _pthirdArgument == NULL);
assert(_tsecondArgument != NULL || _psecondArgument != NULL);
// if (intResult)
// *intResult = _secondArgument->intArgument();
// if (doubleResult)
// *doubleResult = _secondArgument->doubleArgument();
ltargument = _ltypeSecondArgument;
_ltypeSecondArgument = NULL;
targument = _tsecondArgument;
_tsecondArgument = NULL;
pargument = _psecondArgument;
_psecondArgument = NULL;
// isRValue = !_isSecondLValue;
}
inline void
TermOrPredicate::Operator::extractFirstArgument(logic_type& ltargument,
term& targument, predicate_named& pargument
/* , bool& isRValue, int* intResult, double* doubleResult*/)
{ ++_leftSubExpressions;
assert(_tthirdArgument == NULL && _pthirdArgument == NULL);
assert(_tsecondArgument == NULL && _psecondArgument == NULL);
assert(_tfirstArgument != NULL || _pfirstArgument != NULL);
// if (intResult)
// *intResult = _firstArgument->intArgument();
// if (doubleResult)
// *doubleResult = _firstArgument->doubleArgument();
ltargument = _ltypeFirstArgument;
_ltypeFirstArgument = NULL;
targument = _tfirstArgument;
_tfirstArgument = NULL;
pargument = _pfirstArgument;
_pfirstArgument = NULL;
// isRValue = !_isFirstLValue;
}
inline void
TermOrPredicate::Operator::retrieveFirstArgument(logic_type& ltargument,
term& targument, predicate_named& pargument) {
assert(_tfirstArgument != NULL || _pfirstArgument != NULL);
ltargument = _ltypeFirstArgument;
targument = _tfirstArgument;
pargument = _pfirstArgument;
}
inline void
TermOrPredicate::Operator::retrieveSecondArgument(logic_type& ltargument,
term& targument, predicate_named& pargument) {
assert(_tsecondArgument != NULL || _psecondArgument != NULL);
ltargument = _ltypeSecondArgument;
targument = _tsecondArgument;
pargument = _psecondArgument;
}
inline int
TermOrPredicate::Operator::queryArgumentsNumber() const
{ int result = 0;
if (_type >= TPlus && _type <= TBitXOr)
result = 2;
else if (_type == TCall)
result = 1 + _arguments.size();
// TArrayAccess has 2 arguments, but it is handled as if it has only one
// (the second one being found in the _arguments list)
else if (_type == TArrayAccess)
result = 1;
else if (_type >= TUnaryPlus && _type < TCall)
result = 1;
else if (_type == TConditional)
result = 3;
else if (_type == TForall || _type == TExists)
result = 1;
return result;
}
inline TermOrPredicate::Operator&
TermOrPredicate::Operator::setFirstArgument(logic_type ltype, term expression,
predicate_named pred /* , bool isRValue, bool isConstant,
int* intArgument=NULL, double* doubleArgument = NULL*/)
{ // if (intArgument)
// _firstArgument->intArgument() = *intArgument;
// if (doubleArgument)
// _firstArgument->doubleArgument() = *doubleArgument;
_ltypeFirstArgument = ltype;
_tfirstArgument = expression;
_pfirstArgument = pred;
// _isFirstLValue = !isRValue;
// if (!isConstant)
// _isVariable = true;
return *this;
}
inline TermOrPredicate::Operator&
TermOrPredicate::Operator::setSecondArgument(logic_type ltype, term expression,
predicate_named pred /* , bool isRValue, bool isConstant,
int* intArgument=NULL, double* doubleArgument = NULL*/)
{ // if (intArgument)
// _secondArgument.intArgument() = *intArgument;
// if (doubleArgument)
// _secondArgument.doubleArgument() = *doubleArgument;
_ltypeSecondArgument = ltype;
_tsecondArgument = expression;
_psecondArgument = pred;
// _isSecondLValue = !isRValue;
// if (!isConstant)
// _isVariable = true;
return *this;
}
inline TermOrPredicate::Operator&
TermOrPredicate::Operator::setThirdArgument(logic_type ltype, term expression,
predicate_named pred /* , bool isRValue, bool isConstant,
int* intArgument=NULL, double* doubleArgument = NULL*/)
{ // if (intArgument)
// _thirdArgument.intArgument() = *intArgument;
// if (doubleArgument)
// _thirdArgument.doubleArgument() = *doubleArgument;
_ltypeThirdArgument = ltype;
_tthirdArgument = expression;
_pthirdArgument = pred;
// _isThirdLValue = !isRValue;
// if (!isConstant)
// _isVariable = true;
return *this;
}
inline void
TermOrPredicate::setLastArgument(Operator& operation, logic_type ltype,
term targument, predicate_named pargument /* , bool isRValue,
bool isConstant, int* intArgument=NULL, double* doubleArgument=NULL*/)
{ if (operation._tfirstArgument == NULL && operation._pfirstArgument == NULL) {
operation._ltypeFirstArgument = ltype;
operation._tfirstArgument = targument;
operation._pfirstArgument = pargument;
// operation._isFirstLValue = !isRValue;
// if (!isConstant)
// operation._isVariable = true;
// if (intArgument)
// operation._firstArgument->intArgument() = *intArgument;
// if (doubleArgument)
// operation._firstArgument->doubleArgument() = *doubleArgument;
}
else if (operation._tsecondArgument == NULL
&& operation._psecondArgument == NULL) {
assert(operation._tsecondArgument == NULL
&& operation._psecondArgument == NULL);
operation._ltypeSecondArgument = ltype;
operation._tsecondArgument = targument;
operation._psecondArgument = pargument;
// operation._isSecondLValue = !isRValue;
// if (!isConstant)
// operation._isVariable = true;
// if (intArgument)
// operation._secondArgument->intArgument() = *intArgument;
// if (doubleArgument)
// operation._secondArgument->doubleArgument() = *doubleArgument;
}
else {
if (operation.isRelation() && !operation._endRelationList.empty()
&& operation._endRelationList.back()._node == NULL) {
// we know that this argument won't be used as predicate.
if (pargument) free_predicate_named(pargument);
operation._endRelationList.back()._ltype = ltype;
operation._endRelationList.back()._node = targument;
}
else {
assert(operation._tthirdArgument == NULL
&& operation._pthirdArgument == NULL);
operation._ltypeThirdArgument = ltype;
operation._tthirdArgument = targument;
operation._pthirdArgument = pargument;
// operation._isThirdLValue = !isRValue;
// if (!isConstant)
// operation._isVariable = true;
// if (intArgument)
// operation._thirdArgument->intArgument() = *intArgument;
// if (doubleArgument)
// operation._thirdArgument->doubleArgument() = *doubleArgument;
};
};
if (operation.isValid()) { operation.advance (); }
}
inline void
TermOrPredicate::pushLastArgument(logic_type ltype, term targument,
predicate_named pargument /* , bool isRValue, bool isConstant,
int* intArgument=NULL, double* doubleArgument=NULL*/)
{ assert(_doesRequireValue);
if (_operatorStack.empty())
_operatorStack.push_back(Operator());
Operator& operation = _operatorStack.back();
setLastArgument(operation, ltype, targument, pargument
/* , isRValue, isConstant, intArgument, doubleArgument*/);
_doesRequireValue = false;
}
inline bool
TermOrPredicate::isTerm(Parser::Arguments& arguments)
{ assert(_possibleTypeResults & (1U << LTRTerm));
bool isOk = true;
if (_typeResult == NULL && _node == NULL && _predicate == NULL) {
isOk = clearStack(_typeResult, _node, _predicate, arguments);
if (!isOk)
_operatorStack.clear();
};
return isOk && _node && !isSetType(_typeResult);
}
inline bool
TermOrPredicate::isSureTerm(Parser::Arguments& arguments)
{ assert(_possibleTypeResults & (1U << LTRTerm));
bool isOk = true;
if (_typeResult == NULL && _node == NULL && _predicate == NULL) {
isOk = clearStack(_typeResult, _node, _predicate, arguments);
if (!isOk)
_operatorStack.clear();
};
return isOk && _node && !isSetType(_typeResult) && !_predicate;
}
inline bool
TermOrPredicate::isSet(Parser::Arguments& arguments)
{ assert(_possibleTypeResults & (1U << LTRSet));
bool isOk = true;
if (_typeResult == NULL && _node == NULL && _predicate == NULL) {
isOk = clearStack(_typeResult, _node, _predicate, arguments);
if (!isOk)
_operatorStack.clear();
};
return isOk && _node && isSetType(_typeResult);
}
inline bool
TermOrPredicate::isSureSet(Parser::Arguments& arguments)
{ assert(_possibleTypeResults & (1U << LTRSet));
bool isOk = true;
if (_typeResult == NULL && _node == NULL && _predicate == NULL) {
isOk = clearStack(_typeResult, _node, _predicate, arguments);
if (!isOk)
_operatorStack.clear();
};
return isOk && _node && isSetType(_typeResult) && !_predicate;
}
inline bool
TermOrPredicate::isPredicate(Parser::Arguments& arguments)
{ assert(_possibleTypeResults & (1U << LTRPredicate));
bool isOk = true;