Newer
Older
/**************************************************************************/
/* */
/* This file is part of Frama-Clang */
/* */
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
/* CEA (Commissariat à l'énergie atomique et aux énergies */
/* alternatives) */
/* */
/* you can redistribute it and/or modify it under the terms of the GNU */
/* Lesser General Public License as published by the Free Software */
/* Foundation, version 2.1. */
/* */
/* It is distributed in the hope that it will be useful, */
/* but WITHOUT ANY WARRANTY; without even the implied warranty of */
/* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the */
/* GNU Lesser General Public License for more details. */
/* */
/* See the GNU Lesser General Public License version 2.1 */
/* for more details (enclosed in the file LICENSE). */
/* */
/**************************************************************************/
//
// Description:
// Implementation of the ACSL logic types.
//
#include "ACSLTermOrPredicate.h"
#include "ACSLParser.h"
namespace Acsl {
bool is_signed(ikind i, Parser::Arguments &context) {
switch (i) {
case IBOOL:
case ICHAR_U:
case IUCHAR:
case IWCHAR_U:
case IWUCHAR:
case IUSHORT:
case IUINT:
case IULONG:
case ICHAR16:
case ICHAR32:
return false;
case ICHAR:
return context.is_char_signed();
case IWCHAR:
return context.is_wchar_signed();
default:
return true;
}
}
bool equivalent_int_kind(ikind i1, ikind i2, Parser::Arguments &context) {
if (i1 == i2) return true;
if (is_signed(i1,context) != is_signed(i2,context)) return false;
if ((i1 == IWCHAR || i1 == IWCHAR_U || i1 == IWCHAR_S) &&
(i2 == IWCHAR || i2 == IWCHAR_U || i2 == IWCHAR_S)) return true;
if ((i1 == ICHAR || i1 == ICHAR_U || i1 == ICHAR_S) &&
(i2 == ICHAR || i2 == ICHAR_U || i2 == ICHAR_S)) return true;
return false;
}
bool compatible_int_kind(ikind i1, ikind i2, Parser::Arguments &context) {
if (equivalent_int_kind(i1,i2,context)) return true;
if (i1 >= ISHORT && i2 < ISHORT)
// char and bool are compatible with anything longer than short
return true;
if (is_signed(i1, context) != is_signed(i2, context)) return false;
if (i1 == IULONG || i1 == ILONG) return true;
if (i2 == IULONG || i2 == ILONG) return false;
if (i1 == IUINT || i1 == IINT) return true;
if (i2 == IUINT || i2 == IINT) return false;
if (i1 == ISHORT || i1 == IUSHORT) return true;
if (i2 == ISHORT || i2 == IUSHORT) return false;
if (i1 == ICHAR || i1 == IUCHAR || i1 == ISCHAR) return true;
// i1 is bool, i2 is not compatible with it
return false;
}
bool compatible_float_kind(fkind f1, fkind f2) {
if (f1 == FLONGDOUBLE) return true;
if (f2 == FLONGDOUBLE) return false;
if (f1 == FDOUBLE) return true;
if (f2 == FDOUBLE) return false;
// f1 == f2 == FFLOAT
return true;
}
// true if v2 is compatible with v1, i.e. is a subtype of v1
// note that we don't use inheritance relation here to check for
// compatibility.
bool
logic_type_compatible(logic_type v1, logic_type v2,
Parser::Arguments &context) {
while (v1->tag_logic_type == LREFERENCE)
v1 = v1->cons_logic_type.Lreference.subtype;
while (v2->tag_logic_type == LREFERENCE)
v2 = v2->cons_logic_type.Lreference.subtype;
tag_logic_type first = v1->tag_logic_type;
tag_logic_type second = v2->tag_logic_type;
// VP: technically, any int is compatible with a real, the test below
// should be improved...
if (first == LINT)
first = LINTEGER;
else if (first == LFLOAT)
first = LREAL;
if (second == LINT)
second = LINTEGER;
else if (second == LFLOAT)
second = LREAL;
if (second == LPOINTER && first == LARRAY) {
v2 = v2->cons_logic_type.Lpointer.subtype;
v1 = v1->cons_logic_type.Larray.subtype;
first = v1->tag_logic_type;
second = v2->tag_logic_type;
};
if (first == LENUM && second != LENUM)
first = LINTEGER;
if (first == LREAL && second == LINTEGER) second = LREAL;
if (first != second)
return false;
switch (v1->tag_logic_type) {
case LVOID:
return true;
case LINTEGER:
return true;
case LREAL:
return true;
case LINT: {
if (v2->tag_logic_type == LINT) {
return
compatible_int_kind(
v1->cons_logic_type.Lint.kind,
v2->cons_logic_type.Lint.kind,
context);
}
return false; // v2 is a LINTEGER
}
case LFLOAT: {
if (v2->tag_logic_type == LFLOAT) {
return
compatible_float_kind(
v1->cons_logic_type.Lfloat.kind, v2->cons_logic_type.Lfloat.kind);
}
return false; // v2 is a LREAL
}
case LARRAY:
if (!logic_type_compatible(
v1->cons_logic_type.Larray.subtype,
v2->cons_logic_type.Larray.subtype,
context))
return false;
if (v1->cons_logic_type.Larray.dim->is_some
!= v2->cons_logic_type.Larray.dim->is_some) {
if (v2->cons_logic_type.Larray.dim->is_some)
return false;
}
if (v1->cons_logic_type.Larray.dim->is_some) {
if (!logic_constant_equal((logic_constant) v1->cons_logic_type
.Larray.dim->content.container,
(logic_constant)v2->cons_logic_type.Larray.dim->content.container))
return false;
};
return true;
case LPOINTER:
return logic_type_compatible(
v1->cons_logic_type.Lpointer.subtype,
v2->cons_logic_type.Lpointer.subtype,
context);
case LENUM:
return qualified_name_equal(v1->cons_logic_type.Lenum.name,
v2->cons_logic_type.Lenum.name);
case LSTRUCT:
return qualified_name_equal(v1->cons_logic_type.Lstruct.name,
v2->cons_logic_type.Lstruct.name)
&& tkind_equal(v1->cons_logic_type.Lstruct.template_kind,
v2->cons_logic_type.Lstruct.template_kind);
case LUNION:
return qualified_name_equal(v1->cons_logic_type.Lunion.name,
v2->cons_logic_type.Lunion.name)
&& tkind_equal(v1->cons_logic_type.Lunion.template_kind,
v2->cons_logic_type.Lunion.template_kind);
case LCNAMED:
return qualified_name_equal(v1->cons_logic_type.LCnamed.name,
v2->cons_logic_type.LCnamed.name);
case LVARIABLE:
return qualified_name_equal(v1->cons_logic_type.Lvariable.name,
v2->cons_logic_type.Lvariable.name);
case LNAMED:
if (!qualified_name_equal(v1->cons_logic_type.Lnamed.name,
v2->cons_logic_type.Lnamed.name))
return false;
{ list l1 = v1->cons_logic_type.Lnamed.template_arguments,
l2 = v2->cons_logic_type.Lnamed.template_arguments;
while (l1 != NULL || l2 != NULL) {
if (l1 == NULL || l2 == NULL)
return false;
if (!logic_type_equal((logic_type)l1->element.container,
(logic_type)l2->element.container))
return false;
l1 = l1 -> next;
l2 = l2 -> next;
}
}
return true;
case LARROW:
{ list l1 = v1->cons_logic_type.Larrow.left,
l2 = v2->cons_logic_type.Larrow.left;
while (l1 != NULL || l2 != NULL) {
if (l1 == NULL || l2 == NULL)
return false;
if (!logic_type_compatible(
(logic_type)l1->element.container,
(logic_type)l2->element.container,
context))
return false;
l1 = l1 -> next;
l2 = l2 -> next;
}
}
return logic_type_compatible(
v1->cons_logic_type.Larrow.right,
v2->cons_logic_type.Larrow.right,
context);
default:
return false;
}
return false;
}
using namespace DLexer;
#if defined(__clang__) || defined(__GNUC__)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-label"
#endif
bool is_type_synonym(logic_type_info info) {
option def = info->definition;
return
def->is_some &&
((logic_type_def)def->content.container)->tag_logic_type_def == LTSYN;
}
logic_type make_set_type(logic_type base_type) {
return
logic_type_Lnamed(
qualified_name_cons(NULL,strdup("set")),true,
cons_container(base_type,NULL));
}
logic_type remove_set_type(logic_type set_type) {
assert(TermOrPredicate::isSetType(set_type));
return
(logic_type)
set_type->cons_logic_type.Lnamed.template_arguments->element.container;
}
// Extract a definition. is_type_synonym(info) must be true.
logic_type extract_synonym_def(logic_type_info info) {
option def = info -> definition;
assert(def->is_some);
logic_type_def ltdef = (logic_type_def)def->content.container;
assert(ltdef->tag_logic_type_def == LTSYN);
return ltdef->cons_logic_type_def.LTsyn.def;
}
logic_type from_c_named_type(
const clang::NamedDecl* type, const Clang_utils* utils) {
clang::Decl::Kind kind = type->getKind();
assert (kind >= clang::Decl::firstType && kind <= clang::Decl::lastType);
if (kind >= clang::Decl::firstTypedefName &&
kind <= clang::Decl::lastTypedefName) {
const clang::TypedefNameDecl* tidentifier =
static_cast<const clang::TypedefNameDecl*>(type);
return
logic_type_LCnamed(
utils-> makeQualifiedName(*tidentifier),
utils->isExternCContext(tidentifier->getDeclContext()));
} else {
return
utils->makeLogicType(
type->getLocation(),
static_cast<const clang::TypeDecl*>(type)->getTypeForDecl());
}
}
Parser::ReadResult
LogicType::readToken(Parser::State& state, Parser::Arguments& arguments) {
enum Delimiters
{ DBegin, DAfterLogicIdentifier, DAfterLogicAndCContextIdentifier,
DAfterQualifiedLogicIdentifier, DAfterQualifiedLogicAndCContextIdentifier,
DAfterCContextIdentifier, DAfterQualifiedCContextIdentifier,
DCTypeSignedSuffix, DCTypeUnsignedSuffix, DCTypeSuffix, DTypeSuffix,
DLogicTypeSuffix, DTypeSuffixArray,
DTypeProduct, DTypeRecord, DTypeRecordItem, DTypeSumIdent, DEndTypeSum,
DTypeConstructorParam
};
ReadResult result = RRNeedChars;
switch (state.point()) {
DefineParseCase(Begin)
{ AbstractToken token = arguments.queryToken();
if (!_loc)
absorbLoc(arguments.newTokenLocation());
KeywordToken::Type prefixedToken = KeywordToken::TUndefined;
if (token.getType() == AbstractToken::TKeyword) {
KeywordToken::Type kw = ((const KeywordToken&) token).getType();
if (kw == KeywordToken::TStruct || kw == KeywordToken::TClass || kw == KeywordToken::TUnion) {
// A struct/union/class keyword at the beginning of a type is permitted but not necessary.
// So we skip it if the next token is an identifier
prefixedToken = kw;
result = arguments.lexer().readToken();
if (result == RRFinished) {
DefineAddError("unexpected end of input after a struct/union/class token, beginning a type");
return result;
}
token = arguments.queryToken();
if (!_loc) absorbLoc(arguments.newTokenLocation());
if (token.getType() != AbstractToken::TIdentifier) {
DefineAddError("expected an identifier after the struct, union, or class token at the beginning of a type");
return RRFinished;
}
}
}
switch (token.getType()) {
case AbstractToken::TIdentifier:
{ std::string identifier = ((const IdentifierToken&)
arguments.getContentToken()).content();
bool hasFoundLogicQualification = false;
arguments.extendLocationWithToken(_loc);
if ((_qualification = arguments.findLogicName(identifier))
!= NULL) {
if (_qualification->ssons())
hasFoundLogicQualification = true;
};
const clang::TemplateArgument* templateArgument=NULL;
const clang::NamedDecl* cidentifier
= arguments.isCodeName(identifier, &templateArgument);
if (cidentifier) {
clang::Decl::Kind kind = cidentifier->getKind();
if (kind >= clang::Decl::firstRecord
&& kind <= clang::Decl::lastRecord) {
const clang::RecordDecl* decl =
llvm::dyn_cast<clang::RecordDecl>(cidentifier);
assert(decl);
_declContext = decl;
switch (prefixedToken) {
case KeywordToken::TUndefined: break;
case KeywordToken::TUnion:
if (!decl->isUnion()) {
DefineAddError(identifier + " is not an union.");
return RRFinished;
}
break;
case KeywordToken::TStruct:
case KeywordToken::TClass:
if (!(decl->isStruct() || decl->isClass())) {
DefineAddError(
identifier + " is not a struct or class.");
return RRFinished;
}
break;
default: break;
}
if (!hasFoundLogicQualification)
DefineGotoCase(AfterCContextIdentifier)
else
DefineGotoCase(AfterLogicAndCContextIdentifier)
};
if (kind >= clang::Decl::firstType
&& kind <= clang::Decl::lastType) {
if (prefixedToken != KeywordToken::TUndefined) {
DefineAddError(
identifier + " is not a struct, class, or union.");
return RRFinished;
}
if (hasFoundLogicQualification) /* else issue a conflict */
DefineGotoCase(AfterLogicIdentifier);
_typeResult =
from_c_named_type(cidentifier,arguments.get_clang_utils());
DefineGotoCase(TypeSuffix)
};
if ((kind >= clang::Decl::firstTemplate
&& kind <= clang::Decl::lastTemplate)
|| kind == clang::Decl::NonTypeTemplateParm) {
DefineAddError(
"unsupported: templates in logic annotations");
return RRFinished;
// the following is completely false: we have Foo<Bar> in
// ACSL++ and translate it as Bar in IR...
// assert(templateArgument);
// switch (templateArgument->getKind()) {
// case clang::TemplateArgument::Type:
// _typeResult =
// arguments.get_clang_utils()->makeLogicType(
// arguments.tokenSourceLocation(),
// templateArgument->getAsType().getTypePtr());
// DefineGotoCase(TypeSuffix)
// default:
// break;
// };
if (prefixedToken != KeywordToken::TUndefined) {
DefineAddError(
identifier + " is a namespace.");
return RRFinished;
}
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
switch (kind) {
// case clang::Decl::Label:
case clang::Decl::Namespace:
assert(llvm::dyn_cast<clang::NamespaceDecl>(cidentifier));
_declContext = static_cast<const clang::NamespaceDecl*>(
cidentifier);
if (!hasFoundLogicQualification)
DefineGotoCase(AfterCContextIdentifier)
else
DefineGotoCase(AfterLogicAndCContextIdentifier)
case clang::Decl::NamespaceAlias:
assert(llvm::dyn_cast<clang::NamespaceAliasDecl>(
cidentifier));
_declContext = static_cast<const clang::NamespaceAliasDecl*>
(cidentifier)->getNamespace();
if (!hasFoundLogicQualification)
DefineGotoCase(AfterCContextIdentifier)
else
DefineGotoCase(AfterLogicAndCContextIdentifier);
default:
break;
};
};
if (hasFoundLogicQualification)
DefineGotoCase(AfterLogicIdentifier);
if (_qualification) {
if (_qualification->isLogicType()) {
logic_type_info ti =
_qualification->asLogicType().type_info();
_typeResult =
logic_type_Lnamed(
qualified_name_dup(ti->type_name), ti->is_extern_c, NULL);
DefineGotoCase(LogicTypeSuffix)
};
DefineGotoCase(AfterLogicIdentifier)
};
_typeResult = logic_type_Linteger();
DefineAddError(std::string("unknown identifier '")
.append(identifier).append("'"));
DefineReduce
};
break;
case AbstractToken::TKeyword:
switch (((const KeywordToken&) token).getType()) {
case KeywordToken::TBool:
_typeResult = logic_type_Lint(IBOOL);
arguments.extendLocationWithToken(_loc);
DefineGotoCase(TypeSuffix)
case KeywordToken::TChar:
_typeResult = logic_type_Lint(ICHAR);
arguments.extendLocationWithToken(_loc);
DefineGotoCase(CTypeSuffix)
case KeywordToken::TChar16:
_typeResult = logic_type_Lint(ICHAR16);
arguments.extendLocationWithToken(_loc);
DefineGotoCase(CTypeSuffix)
case KeywordToken::TChar32:
_typeResult = logic_type_Lint(ICHAR32);
arguments.extendLocationWithToken(_loc);
DefineGotoCase(CTypeSuffix);
case KeywordToken::TConst:
case KeywordToken::TVolatile:
// don't know how to translate this in logic_type _typeResult
DefineGotoCase(Begin)
case KeywordToken::TDouble:
_typeResult = logic_type_Lfloat(FDOUBLE);
arguments.extendLocationWithToken(_loc);
DefineGotoCase(CTypeSuffix)
case KeywordToken::TFloat:
_typeResult = logic_type_Lfloat(FFLOAT);
arguments.extendLocationWithToken(_loc);
DefineGotoCase(TypeSuffix)
case KeywordToken::TInt:
_typeResult = logic_type_Lint(IINT);
_seenInt = true;
arguments.extendLocationWithToken(_loc);
DefineGotoCase(CTypeSuffix)
case KeywordToken::TLong:
_typeResult = logic_type_Lint(ILONG);
arguments.extendLocationWithToken(_loc);
DefineGotoCase(CTypeSuffix)
case KeywordToken::TShort:
_typeResult = logic_type_Lint(ISHORT);
arguments.extendLocationWithToken(_loc);
DefineGotoCase(CTypeSuffix)
case KeywordToken::TSigned:
_typeResult = logic_type_Lint(IINT);
_seenSigned = true;
arguments.extendLocationWithToken(_loc);
DefineGotoCase(CTypeSuffix)
case KeywordToken::TUnsigned:
_typeResult = logic_type_Lint(IUINT);
arguments.extendLocationWithToken(_loc);
DefineGotoCase(CTypeSuffix)
case KeywordToken::TVoid:
_typeResult = logic_type_Lvoid();
arguments.extendLocationWithToken(_loc);
DefineGotoCase(TypeSuffix)
case KeywordToken::TInteger:
_typeResult = logic_type_Linteger();
arguments.extendLocationWithToken(_loc);
DefineGotoCase(LogicTypeSuffix)
case KeywordToken::TReal:
_typeResult = logic_type_Lreal();
arguments.extendLocationWithToken(_loc);
DefineGotoCase(LogicTypeSuffix)
case KeywordToken::TBoolean:
_typeResult = arguments.boolean_type();
arguments.extendLocationWithToken(_loc);
DefineGotoCase(LogicTypeSuffix)
case KeywordToken::TWcharT:
_typeResult = logic_type_Lint(IWCHAR);
arguments.extendLocationWithToken(_loc);
DefineGotoCase(CTypeSuffix)
default:
break;
};
{ std::ostringstream outToken;
arguments.lexer().assumeContentToken();
arguments.getContentToken().write(outToken,
AbstractToken::PersistentFormat().setPretty());
DefineAddError(std::string("keyword '")
.append(outToken.str())
.append("' encountered when parsing a type"));
};
DefineReduce
case AbstractToken::TOperatorPunctuator:
{ OperatorPunctuatorToken::Type type
= ((const OperatorPunctuatorToken&) token).getType();
switch (type) {
case OperatorPunctuatorToken::TOpenParen:
DefineAddError("product type is not implemented");
{ LogicType* rule = new LogicType;
state.absorbRuleResult(rule);
DefineShift(TypeProduct, *rule, &LogicType::readToken);
};
case OperatorPunctuatorToken::TOpenBrace:
DefineAddError("record type is not implemented");
{ LogicType* rule = new LogicType;
state.absorbRuleResult(rule);
DefineShift(TypeRecord, *rule, &LogicType::readToken);
};
case OperatorPunctuatorToken::TBitOr:
if (_superTypeName) {
_typedefResult = logic_type_def_LTsum(NULL);
DefineGotoCase(TypeSumIdent);
};
default:
break;
};
};
default:
break;
};
{
arguments.lexer().assumeContentToken();
DefineAddError(std::string("unexpected token '")
.append(arguments.getContentToken().str())
.append("' when starting to parse a type"));
};
DefineReduce;
};
DefineParseCase(AfterLogicIdentifier)
{ AbstractToken token = arguments.queryToken();
if (token.getType() == AbstractToken::TOperatorPunctuator) {
if (((const OperatorPunctuatorToken&) token).getType()
== OperatorPunctuatorToken::TColonColon) {
if (_qualification && !_qualification->ssons()) {
std::string errorMessage = "unknown logic qualification ";
errorMessage.append(_qualification->getName());
DefineAddError(errorMessage)
};
DefineGotoCase(AfterQualifiedLogicIdentifier)
};
};
std::string errorMessage = "unable to build a type from qualification ";
errorMessage.append(_qualification->getName());
DefineAddError(errorMessage)
DefineReduceAndParse
};
DefineParseCase(AfterLogicAndCContextIdentifier)
{ AbstractToken token = arguments.queryToken();
if (token.getType() == AbstractToken::TOperatorPunctuator) {
if (((const OperatorPunctuatorToken&) token).getType()
== OperatorPunctuatorToken::TColonColon) {
if (_qualification && !_qualification->ssons()) {
_qualification = NULL;
DefineGotoCase(AfterQualifiedCContextIdentifier)
}
DefineGotoCase(AfterQualifiedLogicAndCContextIdentifier)
};
};
if (_declContext->isRecord()) {
const clang::RecordDecl* recordDecl =
static_cast<const clang::RecordDecl*>(_declContext);
_typeResult =
arguments.get_clang_utils()->makeLogicType(
arguments.tokenSourceLocation(),
recordDecl->getTypeForDecl());
DefineGotoCaseAndParse(TypeSuffix)
};
std::string errorMessage = "unable to build a type from qualification ";
errorMessage.append(_qualification->getName());
DefineAddError(errorMessage)
DefineReduceAndParse
};
DefineParseCase(AfterQualifiedLogicIdentifier)
if (arguments.queryToken().getType() == AbstractToken::TIdentifier) {
const std::string& identifier = ((const IdentifierToken&)
arguments.getContentToken()).content();
assert(_qualification && _qualification->ssons());
GlobalContext::NestedContext locateSon(identifier);
const GlobalContext::NestedContext::SonsSet& sons =
*_qualification->ssons();
GlobalContext::NestedContext::SonsSet::const_iterator found =
sons.find(&locateSon);
if (found != sons.end()) {
_qualification = *found;
if (_qualification->ssons())
DefineGotoCase(AfterLogicIdentifier)
if (_qualification->isLogicType()) {
logic_type_info ti = _qualification->asLogicType().type_info();
_typeResult =
logic_type_Lnamed(
qualified_name_dup(ti->type_name),ti->is_extern_c,NULL);
arguments.extendLocationWithToken(_loc);
DefineGotoCase(LogicTypeSuffix)
};
};
arguments.extendLocationWithToken(_loc);
DefineAddError(std::string("identifier '").append(identifier)
.append("' does not appear to be a type"));
DefineTReduce
};
arguments.extendLocationWithToken(_loc);
DefineAddError(std::string("expecting idendifier "
"after parsing a qualification '::'"));
DefineTReduce
DefineParseCase(AfterQualifiedLogicAndCContextIdentifier)
if (arguments.queryToken().getType() == AbstractToken::TIdentifier) {
const std::string& identifier = ((const IdentifierToken&)
arguments.getContentToken()).content();
assert(_qualification && _qualification->ssons() && _declContext);
GlobalContext::NestedContext locateSon(identifier);
const GlobalContext::NestedContext::SonsSet& sons =
*_qualification->ssons();
GlobalContext::NestedContext::SonsSet::const_iterator found =
sons.find(&locateSon);
bool hasFoundLogicQualification = false;
if (found != sons.end()) {
_qualification = *found;
if (_qualification->ssons())
hasFoundLogicQualification = true;
if (_qualification->isLogicType()) {
logic_type_info ti = _qualification->asLogicType().type_info();
_typeResult =
logic_type_Lnamed(
qualified_name_dup(ti->type_name),ti->is_extern_c,NULL);
arguments.extendLocationWithToken(_loc);
DefineGotoCase(LogicTypeSuffix)
};
};
const clang::NamedDecl* cidentifier = arguments.findQualifiedName(
identifier, _declContext);
if (cidentifier) {
clang::Decl::Kind kind = cidentifier->getKind();
if (kind >= clang::Decl::firstRecord
&& kind <= clang::Decl::lastRecord) {
assert(llvm::dyn_cast<clang::RecordDecl>(cidentifier));
_declContext = static_cast<const clang::RecordDecl*>(cidentifier);
arguments.extendLocationWithToken(_loc);
if (!hasFoundLogicQualification)
DefineGotoCase(AfterCContextIdentifier)
else
DefineGotoCase(AfterLogicAndCContextIdentifier);
};
if (kind >= clang::Decl::firstType && kind <= clang::Decl::lastType) {
if (hasFoundLogicQualification)
DefineGotoCase(AfterLogicIdentifier);
_typeResult =
from_c_named_type(cidentifier,arguments.get_clang_utils());
arguments.extendLocationWithToken(_loc);
DefineGotoCase(TypeSuffix)
};
switch (kind) {
// case clang::Decl::Label:
case clang::Decl::Namespace:
assert(llvm::dyn_cast<clang::NamespaceDecl>(cidentifier));
_declContext = static_cast<const clang::NamespaceDecl*>(
cidentifier);
if (!hasFoundLogicQualification)
DefineGotoCase(AfterCContextIdentifier)
else
DefineGotoCase(AfterLogicAndCContextIdentifier);
case clang::Decl::NamespaceAlias:
assert(llvm::dyn_cast<clang::NamespaceAliasDecl>(cidentifier));
_declContext = static_cast<const clang::NamespaceAliasDecl*>(
cidentifier)->getNamespace();
if (!hasFoundLogicQualification)
DefineGotoCase(AfterCContextIdentifier)
else
DefineGotoCase(AfterLogicAndCContextIdentifier)
default:
break;
};
};
if (hasFoundLogicQualification)
DefineGotoCase(AfterLogicIdentifier);
arguments.extendLocationWithToken(_loc);
DefineAddError(std::string("identifier '").append(identifier)
.append("' does not appear to be a type"));
DefineTReduce
};
arguments.extendLocationWithToken(_loc);
DefineAddError(std::string("expecting idendifier "
"after parsing a qualification '::'"));
DefineTReduce
DefineParseCase(AfterCContextIdentifier)
{ AbstractToken token = arguments.queryToken();
if (token.getType() == AbstractToken::TOperatorPunctuator) {
if (((const OperatorPunctuatorToken&) token).getType()
== OperatorPunctuatorToken::TColonColon)
DefineGotoCase(AfterQualifiedCContextIdentifier)
};
if (_declContext->isRecord()) {
const clang::RecordDecl* recordDecl =
static_cast<const clang::RecordDecl*>(_declContext);
_typeResult =
arguments.get_clang_utils()->makeLogicType(
arguments.tokenSourceLocation(),
recordDecl->getTypeForDecl());
DefineGotoCaseAndParse(TypeSuffix)
};
std::string errorMessage = "unable to build a C/C++ type "
"from qualification ";
errorMessage.append(_qualification->getName());
DefineAddError(errorMessage)
DefineReduceAndParse
};
DefineParseCase(AfterQualifiedCContextIdentifier)
if (arguments.queryToken().getType() == AbstractToken::TIdentifier) {
const std::string& identifier = ((const IdentifierToken&)
arguments.getContentToken()).content();
assert(_declContext);
const clang::NamedDecl* cidentifier = arguments.findQualifiedName(
identifier, _declContext);
if (cidentifier) {
clang::Decl::Kind kind = cidentifier->getKind();
if (kind >= clang::Decl::firstRecord
&& kind <= clang::Decl::lastRecord) {
assert(llvm::dyn_cast<clang::RecordDecl>(cidentifier));
_declContext = static_cast<const clang::RecordDecl*>(cidentifier);
arguments.extendLocationWithToken(_loc);
DefineGotoCase(AfterCContextIdentifier);
};
if (kind >= clang::Decl::firstType && kind <= clang::Decl::lastType) {
_typeResult =
from_c_named_type(cidentifier,arguments.get_clang_utils());
arguments.extendLocationWithToken(_loc);
DefineGotoCase(TypeSuffix)
};
switch (kind) {
// case clang::Decl::Label:
case clang::Decl::Namespace:
assert(llvm::dyn_cast<clang::NamespaceDecl>(cidentifier));
_declContext = static_cast<const clang::NamespaceDecl*>(
cidentifier);
DefineGotoCase(AfterCContextIdentifier);
case clang::Decl::NamespaceAlias:
assert(llvm::dyn_cast<clang::NamespaceAliasDecl>(cidentifier));
_declContext = static_cast<const clang::NamespaceAliasDecl*>(
cidentifier)->getNamespace();
DefineGotoCase(AfterCContextIdentifier);
default:
break;
};
};
DefineAddError(std::string("unknown identifier '").append(identifier)
.append("'"));
DefineReduce
};
DefineAddError(std::string("expecting type idendifier "
"after parsing a qualification '::'"));
DefineReduce
DefineParseCase(CTypeSuffix) {// there might be more than one C specifier
AbstractToken token = arguments.queryToken();
if (token.getType() == AbstractToken::TKeyword) {
switch (((const KeywordToken&) token).getType()) {
case KeywordToken::TChar: {
// can only be mixed with signed and unsigned
if (unspecifiedKind()) {
if (_typeResult->cons_logic_type.Lint.kind == IINT)
_typeResult->cons_logic_type.Lint.kind =
_seenSigned?ISCHAR:ICHAR;
else
_typeResult->cons_logic_type.Lint.kind = IUCHAR;
arguments.extendLocationWithToken(_loc);
DefineGotoCase(TypeSuffix) }
else {
DefineAddError(
"conflicting C type specification in logic type: char");
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
DefineReduceAndParse
}
}
case KeywordToken::TConst:
case KeywordToken::TVolatile:
// just ignore these arguments, they are irrelevant in the logic
arguments.extendLocationWithToken(_loc);
DefineGotoCase(CTypeSuffix)
case KeywordToken::TInt: {
// can be mixed with long, short, unsigned, and signed
if (_typeResult->tag_logic_type == LINT) {
if (_seenInt) {
DefineAddErrorAndParse(
"duplicated 'int' type specification")
}
switch (_typeResult->cons_logic_type.Lint.kind) {
case ISHORT:
case IUSHORT:
case IINT:
case IUINT:
case ILONG:
case IULONG:
case ILONGLONG:
case IULONGLONG:
break;
default:
DefineAddErrorAndParse(
"unexpected 'int' type specification")
}
_seenInt = true;
arguments.extendLocationWithToken(_loc);
DefineGotoCase(CTypeSuffix)
} else {
DefineAddErrorAndParse(
"conflicting C type specification in logic type: int")
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
}
}
case KeywordToken::TUnsigned: {
if (_seenSigned) {
DefineAddErrorAndParse(
"mixing signed and unsigned type specification")
} else if (_typeResult->tag_logic_type == LFLOAT) {
DefineAddErrorAndParse(
"'unsigned' meaningless for floating point")
} else {
switch (_typeResult->cons_logic_type.Lint.kind) {
case IBOOL:
DefineAddErrorAndParse("'unsigned' meaningless for boolean")
case ICHAR16:
DefineAddErrorAndParse("'unsigned' meaningless for char16_t")
case ICHAR32:
DefineAddErrorAndParse("'unsigned' meaningless for char32_t")
case IUCHAR:
case IWUCHAR:
case IUSHORT:
case IUINT:
case IULONG:
case IULONGLONG:
DefineAddErrorAndParse("found 'unsigned' twice")
case ICHAR:
_typeResult->cons_logic_type.Lint.kind = IUCHAR;
break;
case IWCHAR:
_typeResult->cons_logic_type.Lint.kind = IWUCHAR;
break;
case ISHORT:
_typeResult->cons_logic_type.Lint.kind = IUSHORT;
break;
case ILONG:
_typeResult->cons_logic_type.Lint.kind = IULONG;
break;
case ILONGLONG:
_typeResult->cons_logic_type.Lint.kind = IULONGLONG;
break;
default:
// architecture dependent char types. can't be generated
assert(false);
}
arguments.extendLocationWithToken(_loc);
DefineGotoCase(CTypeSuffix)
}
}
case KeywordToken::TSigned: {
if (_seenSigned) {
DefineAddErrorAndParse("duplicated signed type specification")
} else if (_typeResult->tag_logic_type == LFLOAT) {
DefineAddErrorAndParse(
"'signed' meaningless for floating point")
} else {
switch (_typeResult->cons_logic_type.Lint.kind) {
case IBOOL:
DefineAddErrorAndParse("'signed' meaningless for boolean")
case ICHAR16:
DefineAddErrorAndParse("'signed' meaningless for char16_t")
case ICHAR32:
DefineAddErrorAndParse("'signed' meaningless for char32_t")
case IUCHAR:
case IWUCHAR:
case IUSHORT:
case IUINT:
case IULONG:
case IULONGLONG:
DefineAddErrorAndParse(
"mixing 'signed' and 'unsigned' in type specification")
case ICHAR:
case IWCHAR:
case ISHORT:
case ILONG:
case ILONGLONG:
break;
default:
// architecture dependent char types. can't be generated
assert(false);
}
_seenSigned = true;
arguments.extendLocationWithToken(_loc);
}
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
}
case KeywordToken::TLong: {
if (_typeResult->tag_logic_type == LFLOAT) {
switch(_typeResult->cons_logic_type.Lfloat.kind) {
case FFLOAT:
DefineAddErrorAndParse(
"unexpected 'long' specification for a float")
case FDOUBLE:
_typeResult->cons_logic_type.Lfloat.kind = FLONGDOUBLE;
DefineGotoCase(TypeSuffix)
case FLONGDOUBLE:
DefineAddErrorAndParse(
"cannot have long long double type in Frama-Clang")
}
} else { // integer type
switch(_typeResult->cons_logic_type.Lint.kind) {
case IINT:
_typeResult->cons_logic_type.Lint.kind = ILONG;
break;
case IUINT:
_typeResult->cons_logic_type.Lint.kind = IULONG;
break;
case ILONG:
_typeResult->cons_logic_type.Lint.kind = ILONGLONG;
break;
case IULONG:
_typeResult->cons_logic_type.Lint.kind = IULONGLONG;
break;
case ILONGLONG:
case IULONGLONG:
DefineAddErrorAndParse(
"long long long integer type does not exist")
default:
DefineAddErrorAndParse(
"unexpected 'long' type specification")
}
arguments.extendLocationWithToken(_loc);
}
}
case KeywordToken::TShort: {
// can only be mixed with signed, unsigned, and int
if (unspecifiedKind()) {
if (_typeResult->cons_logic_type.Lint.kind == IUINT)
_typeResult->cons_logic_type.Lint.kind = IUSHORT;
else
_typeResult->cons_logic_type.Lint.kind = ISHORT;
arguments.extendLocationWithToken(_loc);
DefineGotoCase(CTypeSuffix)
}
else
DefineAddErrorAndParse(
"unexpected 'short' type specification")
}
case KeywordToken::TDouble: {
// only possibility is 'long double'
if (_typeResult->tag_logic_type == LINT &&
_typeResult->cons_logic_type.Lint.kind == ILONG) {
free_logic_type(_typeResult);
_typeResult=logic_type_Lfloat(FLONGDOUBLE);