Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
C
colibrics
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Terraform modules
Analyze
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
pub
colibrics
Commits
f4295aac
Commit
f4295aac
authored
3 years ago
by
Arthur Correnson
Browse files
Options
Downloads
Patches
Plain Diff
[ieee/coq] backup the wip on proofs
parent
285b1bc9
No related branches found
No related tags found
1 merge request
!16
Fp/ieee
Pipeline
#36246
waiting for manual action
Stage: test
Stage: deploy
Changes
3
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
src_common/ieee/coq/.nra.cache
+0
-0
0 additions, 0 deletions
src_common/ieee/coq/.nra.cache
src_common/ieee/coq/Finterval.v
+4
-0
4 additions, 0 deletions
src_common/ieee/coq/Finterval.v
src_common/ieee/coq/Rextended.v
+197
-15
197 additions, 15 deletions
src_common/ieee/coq/Rextended.v
with
201 additions
and
15 deletions
src_common/ieee/coq/.nra.cache
0 → 100644
+
0
−
0
View file @
f4295aac
File added
This diff is collapsed.
Click to expand it.
src_common/ieee/coq/Finterval.v
+
4
−
0
View file @
f4295aac
...
...
@@ -119,6 +119,8 @@ Axiom add_le_compat :
x2
<=
y2
->
Bplus
m
x1
x2
<=
Bplus
m
y1
y2
.
Check
(
Bplus_correct
).
Lemma
Iadd2_check
:
forall
m
I
₁
I
₂
,
check
I
₁
->
check
I
₂
->
check
(
Iadd2
m
I
₁
I
₂
).
Proof
.
...
...
@@ -176,6 +178,8 @@ Qed.
Ltac
classify
f
:=
destruct
(
classification
f
)
as
[
|
[
|
[
|
]]];
try
(
subst
;
easy
).
Lemma
Iadd2_correct
:
forall
m
(
x
y
:
float
)
I1
I2
,
check
I1
->
check
I2
->
x
∈
I1
->
y
∈
I2
->
...
...
This diff is collapsed.
Click to expand it.
src_common/ieee/coq/Rextended.v
+
197
−
15
View file @
f4295aac
...
...
@@ -20,21 +20,7 @@ Inductive Rx : Type :=
|
Real
:
R
->
Rx
|
Inf
:
bool
->
Rx
.
Definition
round
(
m
:
mode
)
(
r
:
Rx
)
:
Rx
:=
match
r
with
|
Real
x
=>
Real
(
Generic_fmt
.
round
Zaux
.
radix2
(
SpecFloat
.
fexp
prec
emax
)
(
round_mode
m
)
x
)
|
_
=>
r
end
.
Lemma
round_inf
:
forall
m
b
,
round
m
(
Inf
b
)
=
Inf
b
.
Proof
.
reflexivity
.
Qed
.
Lemma
round_real
:
forall
m
r
,
round
m
(
Real
r
)
=
Real
(
Generic_fmt
.
round
Zaux
.
radix2
(
SpecFloat
.
fexp
prec
emax
)
(
round_mode
m
)
r
).
Proof
.
reflexivity
.
Qed
.
Definition
fmax
:
R
:=
Raux
.
bpow
Zaux
.
radix2
emax
.
Definition
leb
(
x
y
:
Rx
)
:=
match
x
with
...
...
@@ -51,6 +37,202 @@ Definition leb (x y : Rx) :=
end
end
.
Definition
do_overflow
(
m
:
mode
)
(
x
:
R
)
:
bool
:=
let
fexp
:=
SpecFloat
.
fexp
prec
emax
in
let
rsum
:=
Generic_fmt
.
round
Zaux
.
radix2
fexp
(
round_mode
m
)
x
in
Raux
.
Rle_bool
fmax
(
Rabs
rsum
).
Definition
dont_overflow
(
m
:
mode
)
(
x
:
R
)
:
bool
:=
let
fexp
:=
SpecFloat
.
fexp
prec
emax
in
let
rsum
:=
Generic_fmt
.
round
Zaux
.
radix2
fexp
(
round_mode
m
)
x
in
Raux
.
Rlt_bool
(
Rabs
rsum
)
fmax
.
Lemma
do_overflow_false
:
forall
m
r
,
do_overflow
m
r
=
false
->
dont_overflow
m
r
=
true
.
Proof
.
intros
.
unfold
do_overflow
,
dont_overflow
in
*
.
now
rewrite
<-
Raux
.
negb_Rlt_bool
,
H
.
Qed
.
Definition
sign
(
r
:
R
)
:=
Raux
.
Rlt_bool
r
0.
Definition
round
(
m
:
mode
)
(
r
:
Rx
)
:
Rx
:=
match
r
with
|
Real
x
=>
if
do_overflow
m
x
then
if
overflow_to_inf
m
(
sign
x
)
then
Inf
(
sign
x
)
else
Real
(
if
(
sign
x
)
then
-
fmax
else
fmax
)
else
Real
(
Generic_fmt
.
round
Zaux
.
radix2
(
SpecFloat
.
fexp
prec
emax
)
(
round_mode
m
)
x
)
|
_
=>
r
end
.
Lemma
sign_le
:
forall
r1
r2
,
sign
r1
=
false
->
sign
r2
=
true
->
Raux
.
Rle_bool
r1
r2
=
false
.
Proof
.
intros
.
unfold
sign
in
*
.
destruct
(
Raux
.
Rlt_bool_spec
r1
0
);
try
easy
.
destruct
(
Raux
.
Rlt_bool_spec
r2
0
);
try
easy
.
apply
Raux
.
Rle_bool_false
;
lra
.
Qed
.
Lemma
Rle_le
:
forall
r1
r2
,
Raux
.
Rle_bool
r1
r2
=
true
->
(
r1
<=
r2
)
%
R
.
Proof
.
intros
.
now
destruct
(
Raux
.
Rle_bool_spec
r1
r2
).
Qed
.
Lemma
fmax_gt_0
:
(
fmax
>
0
)
%
R
.
apply
Raux
.
bpow_gt_0
.
Qed
.
Theorem
do_overflow_iff
:
forall
m
x
,
let
fexp
:=
SpecFloat
.
fexp
prec
emax
in
let
rx
:=
Generic_fmt
.
round
Zaux
.
radix2
fexp
(
round_mode
m
)
x
in
do_overflow
m
x
=
true
<->
(
Raux
.
Rle_bool
fmax
rx
=
true
\
/
Raux
.
Rle_bool
rx
(
-
fmax
)
%
R
=
true
).
Proof
.
intros
;
split
;
intros
.
-
unfold
do_overflow
in
H
.
unfold
Rabs
in
H
.
destruct
Rcase_abs
.
+
apply
Rle_le
in
H
.
right
.
apply
Raux
.
Rle_bool_true
.
apply
Ropp_le_contravar
in
H
.
replace
(
rx
)
with
(
--
rx
)
%
R
by
lra
.
subst
rx
;
auto
.
+
apply
Rle_le
in
H
.
left
.
apply
Raux
.
Rle_bool_true
.
auto
.
-
destruct
H
;
apply
Raux
.
Rle_bool_true
;
apply
Rle_le
in
H
.
+
eauto
using
Rle_trans
,
H
,
Rle_abs
.
+
apply
Ropp_le_contravar
in
H
.
replace
(
--
fmax
)
%
R
with
fmax
in
H
by
lra
.
pose
proof
fmax_gt_0
.
assert
(
0
<=
-
rx
)
%
R
by
lra
.
assert
(
0
>
rx
)
%
R
by
lra
.
assert
(
-
rx
>
rx
)
%
R
by
lra
.
assert
(
Rabs
rx
=
-
rx
)
%
R
by
auto
using
Rabs_left
.
rewrite
<-
H4
in
H
.
auto
.
Qed
.
Lemma
overflow_le
:
forall
m
r1
r2
,
(
r1
<=
r2
)
%
R
->
(
0
<=
r1
)
%
R
->
do_overflow
m
r1
=
true
->
do_overflow
m
r2
=
true
.
Proof
.
intros
m
r1
r2
Hle
Hr1
Ho
.
rewrite
do_overflow_iff
in
Ho
.
destruct
Ho
as
[
H
|
H
].
-
apply
Rle_le
in
H
.
rewrite
do_overflow_iff
.
left
.
apply
Raux
.
Rle_bool_true
.
eapply
Generic_fmt
.
round_le
in
Hle
.
+
eapply
Rle_trans
;
[
apply
H
|
apply
Hle
].
+
now
apply
fexp_correct
.
+
intuition
.
-
apply
Rle_le
in
H
.
assert
(
-
fmax
<
0
)
%
R
.
{
assert
(
fmax
>
0
)
%
R
by
apply
fmax_gt_0
.
lra
.
}
pose
proof
H0
.
apply
Rlt_le
in
H1
.
eapply
Generic_fmt
.
round_le
in
Hr1
.
+
erewrite
Generic_fmt
.
round_0
in
Hr1
.
assert
(
0
<
0
)
%
R
.
eapply
Rle_lt_trans
.
apply
Hr1
.
eapply
Rle_lt_trans
.
apply
H
.
apply
H0
.
lra
.
intuition
.
+
now
apply
fexp_correct
.
+
intuition
.
Qed
.
Lemma
sign_false_0
:
forall
r
,
sign
r
=
false
->
(
0
<=
r
)
%
R
.
Proof
.
intros
.
unfold
sign
in
H
.
now
destruct
(
Raux
.
Rlt_bool_spec
r
0
).
Qed
.
Theorem
round_le
:
forall
(
m
:
mode
)
(
r1
r2
:
Rx
),
leb
r1
r2
=
true
->
leb
(
round
m
r1
)
(
round
m
r2
)
=
true
.
Proof
.
intros
m
[
r1
|
s1
]
[
r2
|
s2
]
H
.
-
simpl
in
H
.
simpl
round
.
destruct
(
do_overflow
m
r1
)
eqn
:
Ho1
;
destruct
(
overflow_to_inf
m
(
sign
r1
))
eqn
:
Hi1
;
destruct
(
do_overflow
m
r2
)
eqn
:
Ho2
;
destruct
(
overflow_to_inf
m
(
sign
r2
))
eqn
:
Hi2
.
+
destruct
(
sign
r1
)
eqn
:
Hs1
,
(
sign
r2
)
eqn
:
Hs2
;
auto
.
now
rewrite
(
sign_le
_
_
Hs1
Hs2
)
in
H
.
+
destruct
(
sign
r1
)
eqn
:
Hs1
,
(
sign
r2
)
eqn
:
Hs2
;
simpl
;
auto
.
*
now
rewrite
(
sign_le
_
_
Hs1
Hs2
)
in
H
.
*
now
destruct
m
.
+
destruct
(
sign
r1
)
eqn
:
Hs1
,
(
sign
r2
)
eqn
:
Hs2
;
simpl
;
auto
.
*
now
rewrite
(
sign_le
_
_
Hs1
Hs2
)
in
H
.
*
apply
Rle_le
in
H
.
now
rewrite
(
overflow_le
m
H
(
sign_false_0
r1
Hs1
)
Ho1
)
in
Ho2
.
+
destruct
(
sign
r1
)
eqn
:
Hs1
,
(
sign
r2
)
eqn
:
Hs2
;
simpl
;
auto
.
*
now
rewrite
(
sign_le
_
_
Hs1
Hs2
)
in
H
.
*
apply
Rle_le
in
H
.
now
rewrite
(
overflow_le
m
H
(
sign_false_0
r1
Hs1
)
Ho1
)
in
Ho2
.
+
destruct
(
sign
r1
)
eqn
:
Hs1
,
(
sign
r2
)
eqn
:
Hs2
;
simpl
;
auto
.
*
now
destruct
m
.
*
now
rewrite
(
sign_le
_
_
Hs1
Hs2
)
in
H
.
+
destruct
(
sign
r1
)
eqn
:
Hs1
,
(
sign
r2
)
eqn
:
Hs2
;
simpl
;
auto
.
*
unfold
Raux
.
Rle_bool
.
destruct
Raux
.
Rcompare
eqn
:
E
;
try
easy
.
apply
Raux
.
Rcompare_Gt_inv
in
E
;
lra
.
*
unfold
Raux
.
Rle_bool
.
destruct
Raux
.
Rcompare
eqn
:
E
;
try
easy
.
apply
Raux
.
Rcompare_Gt_inv
in
E
.
assert
(
fmax
>
0
)
%
R
.
{
unfold
fmax
,
Zaux
.
radix2
;
red
in
Hemax
,
Hprec
.
assert
(
emax
>
0
)
%
Z
by
lia
.
apply
Raux
.
bpow_gt_0
;
auto
.
}
lra
.
*
now
rewrite
(
sign_le
_
_
Hs1
Hs2
)
in
H
.
*
unfold
Raux
.
Rle_bool
.
destruct
Raux
.
Rcompare
eqn
:
E
;
try
easy
.
apply
Raux
.
Rcompare_Gt_inv
in
E
;
lra
.
+
destruct
(
sign
r1
)
eqn
:
Hs1
,
(
sign
r2
)
eqn
:
Hs2
;
simpl
;
auto
.
*
apply
Raux
.
Rle_bool_true
.
*
apply
Raux
.
Rle_bool_true
;
admit
.
*
apply
Raux
.
Rle_bool_true
;
admit
.
*
apply
Raux
.
Rle_bool_true
;
admit
.
+
destruct
(
sign
r1
)
eqn
:
Hs1
,
(
sign
r2
)
eqn
:
Hs2
;
simpl
;
auto
.
*
destruct
(
do_overflow_iff
_
_
Ho1
).
**
apply
Raux
.
Rle_bool_true
.
apply
Rle_le
in
H
.
apply
Rle_le
in
H0
.
Admitted
.
Lemma
round_inf
:
forall
m
b
,
round
m
(
Inf
b
)
=
Inf
b
.
Proof
.
reflexivity
.
Qed
.
Lemma
round_real
:
forall
m
r
,
round
m
(
Real
r
)
=
Real
(
Generic_fmt
.
round
Zaux
.
radix2
(
SpecFloat
.
fexp
prec
emax
)
(
round_mode
m
)
r
).
Proof
.
reflexivity
.
Qed
.
Example
leb_infp_true
:
forall
x
,
leb
x
(
Inf
false
)
=
true
.
Proof
.
now
induction
x
as
[
|
[
]
].
Qed
.
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment