Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
C
colibrics
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Terraform modules
Analyze
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
pub
colibrics
Commits
97517dd9
Commit
97517dd9
authored
3 years ago
by
Arthur Correnson
Browse files
Options
Downloads
Patches
Plain Diff
cleaner intervals
parent
f2c345ce
No related branches found
No related tags found
1 merge request
!16
Fp/ieee
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
src_common/ieee/coq/Colibri2_interval.v
+127
-0
127 additions, 0 deletions
src_common/ieee/coq/Colibri2_interval.v
src_common/ieee/coq/Interval.v
+10
-16
10 additions, 16 deletions
src_common/ieee/coq/Interval.v
src_common/ieee/coq/_CoqProject
+1
-0
1 addition, 0 deletions
src_common/ieee/coq/_CoqProject
with
138 additions
and
16 deletions
src_common/ieee/coq/Colibri2_interval.v
0 → 100644
+
127
−
0
View file @
97517dd9
From
Coq
Require
Import
ZArith
Extraction
Bool
.
From
F
Require
Import
Utils
Interval
.
From
Flocq
Require
Import
IEEE754
.
BinarySingleNaN
FLX
.
Section
Colibri2_interval
.
Variable
prec
:
Z
.
Variable
emax
:
Z
.
Context
(
Hprec
:
Prec_gt_0
prec
).
Context
(
Hemax
:
Prec_lt_emax
prec
emax
).
Definition
float
:=
binary_float
prec
emax
.
Inductive
Interval
'
:=
|
Inan
:
Interval
'
|
Intv
:
forall
(
lo
hi
:
float
)
(
nan
:
bool
),
Interval
'
.
Definition
valid
(
I
:
option
Interval
'
)
:=
match
I
with
|
Some
(
Intv
lo
hi
_
)
=>
lo
<=
hi
|
_
=>
True
end
.
Definition
Interval
:=
{
I
:
option
Interval
'
|
valid
I
}
.
Program
Definition
contains
(
I
:
option
Interval
'
)
(
x
:
float
)
:
Prop
:=
match
I
with
|
None
=>
False
|
Some
Inan
=>
is_nan
x
=
true
|
Some
(
Intv
lo
hi
nan
)
=>
lo
<=
x
<=
hi
\
/
(
is_nan
x
&&
nan
=
true
)
end
.
Program
Definition
inter
'
(
I1
I2
:
option
Interval
'
)
:
option
Interval
'
:=
match
I1
,
I2
with
|
None
,
_
=>
None
|
_
,
None
=>
None
|
Some
Inan
,
Some
Inan
=>
Some
Inan
|
Some
Inan
,
Some
(
Intv
_
_
nan
)
=>
if
nan
then
Some
Inan
else
None
|
Some
(
Intv
_
_
nan
),
Some
(
Inan
)
=>
if
nan
then
Some
(
Inan
)
else
None
|
Some
(
Intv
lo1
hi1
nan1
),
Some
(
Intv
lo2
hi2
nan2
)
=>
if
Bltb
hi1
lo2
||
Bltb
hi2
lo1
then
if
nan1
&&
nan2
then
Some
Inan
else
None
else
Some
(
Intv
(
Bmax
lo1
lo2
)
(
Bmin
hi1
hi2
)
(
nan1
&&
nan2
))
end
.
Ltac
ieasy
:=
simpl
in
*
;
try
easy
;
try
(
intuition
;
fail
).
Ltac
sdestruct
x
:=
try
destruct
x
;
simpl
;
easy
.
Program
Definition
inter
(
I1
I2
:
Interval
)
:
Interval
:=
inter
'
I1
I2
.
Next
Obligation
with
auto
.
destruct
I1
as
[[[
|
lo1
hi1
nan1
]
|
]
H1
],
I2
as
[[[
|
lo2
hi2
nan2
]
|
]
H2
];
ieasy
;
try
(
now
destruct
nan1
||
now
destruct
nan2
).
case
(
Bltb
(
hi1
)
(
lo2
))
eqn
:?
,
(
Bltb
(
hi2
)
(
lo1
))
eqn
:?
;
simpl
;
try
(
destruct
nan1
,
nan2
;
simpl
;
easy
).
pose
proof
(
le_not_nan_l
_
_
H1
).
pose
proof
(
le_not_nan_r
_
_
H2
).
pose
proof
(
le_not_nan_r
_
_
H1
).
pose
proof
(
le_not_nan_l
_
_
H2
).
auto
using
Bmax_le
,
Bmin_le
,
Bltb_false_Bleb
.
Defined
.
Program
Lemma
inter_precise_l
:
forall
I1
I2
,
forall
x
,
contains
(
inter
I1
I2
)
x
->
contains
I1
x
.
Proof
with
auto
.
intros
[[[
|
lo1
hi1
[
]]
|
]
H1
]
[[[
|
lo2
hi2
[
]]
|
]
H2
]
x
Hx
;
simpl
in
*
...
+
intuition
.
+
case
(
Bltb
hi1
lo2
)
eqn
:?
,
(
Bltb
hi2
lo1
)
eqn
:?
;
simpl
in
*
;
intuition
.
left
;
split
;
[
apply
(
Bmax_le_inv
_
_
_
_
_
H0
)
|
apply
(
Bmin_le_inv
_
_
_
_
_
H3
)
].
+
case
(
Bltb
hi1
lo2
)
eqn
:?
,
(
Bltb
hi2
lo1
)
eqn
:?
;
simpl
in
*
;
intuition
.
-
left
;
split
;
[
apply
(
Bmax_le_inv
_
_
_
_
_
H0
)
|
apply
(
Bmin_le_inv
_
_
_
_
_
H3
)
].
-
destruct
x
...
+
case
(
Bltb
hi1
lo2
)
eqn
:?
,
(
Bltb
hi2
lo1
)
eqn
:?
;
simpl
in
*
;
intuition
.
left
;
split
;
[
apply
(
Bmax_le_inv
_
_
_
_
_
H0
)
|
apply
(
Bmin_le_inv
_
_
_
_
_
H3
)
].
+
case
(
Bltb
hi1
lo2
)
eqn
:?
,
(
Bltb
hi2
lo1
)
eqn
:?
;
simpl
in
*
;
intuition
.
left
;
split
;
[
apply
(
Bmax_le_inv
_
_
_
_
_
H0
)
|
apply
(
Bmin_le_inv
_
_
_
_
_
H3
)
].
Qed
.
Program
Lemma
inter_precise_r
:
forall
I1
I2
,
forall
x
,
contains
(
inter
I1
I2
)
x
->
contains
I2
x
.
Proof
with
auto
.
intros
[[[
|
lo1
hi1
[
]]
|
]
H1
]
[[[
|
lo2
hi2
[
]]
|
]
H2
]
x
Hx
;
simpl
in
*
...
+
intuition
.
+
case
(
Bltb
hi1
lo2
)
eqn
:?
,
(
Bltb
hi2
lo1
)
eqn
:?
;
simpl
in
*
;
intuition
.
left
;
split
;
[
apply
(
Bmax_le_inv
_
_
_
_
_
H0
)
|
apply
(
Bmin_le_inv
_
_
_
_
_
H3
)
].
+
case
(
Bltb
hi1
lo2
)
eqn
:?
,
(
Bltb
hi2
lo1
)
eqn
:?
;
simpl
in
*
;
intuition
.
left
;
split
;
[
apply
(
Bmax_le_inv
_
_
_
_
_
H0
)
|
apply
(
Bmin_le_inv
_
_
_
_
_
H3
)
].
+
case
(
Bltb
hi1
lo2
)
eqn
:?
,
(
Bltb
hi2
lo1
)
eqn
:?
;
simpl
in
*
;
intuition
.
-
left
;
split
;
[
apply
(
Bmax_le_inv
_
_
_
_
_
H0
)
|
apply
(
Bmin_le_inv
_
_
_
_
_
H3
)
].
-
destruct
x
...
+
case
(
Bltb
hi1
lo2
)
eqn
:?
,
(
Bltb
hi2
lo1
)
eqn
:?
;
simpl
in
*
;
intuition
.
left
;
split
;
[
apply
(
Bmax_le_inv
_
_
_
_
_
H0
)
|
apply
(
Bmin_le_inv
_
_
_
_
_
H3
)
].
Qed
.
Program
Lemma
inter_correct
:
forall
(
I1
I2
:
Interval
),
forall
x
,
contains
I1
x
->
contains
I2
x
->
contains
(
inter
I1
I2
)
x
.
Proof
with
auto
.
intros
[[[
|
lo1
hi1
nan1
]
|
]
H1
]
[[[
|
lo2
hi2
nan2
]
|
]
H2
]
x
Hx1
Hx2
;
simpl
in
*
...
-
fdestruct
x
;
destruct
nan2
,
Hx2
;
try
easy
.
-
fdestruct
x
;
destruct
nan1
,
Hx1
;
try
easy
.
-
pose
proof
(
le_not_nan_l
_
_
H1
).
pose
proof
(
le_not_nan_r
_
_
H1
).
pose
proof
(
le_not_nan_l
_
_
H2
).
pose
proof
(
le_not_nan_r
_
_
H2
).
destruct
Hx1
as
[[
Hc1
Hc1
'
]
|
],
Hx2
as
[[
Hc2
Hc2
'
]
|
];
try
(
fdestruct
x
;
fail
).
+
pose
proof
(
Hlt1
:=
Bleb_trans
_
_
_
_
_
Hc2
Hc1
'
).
apply
Bleb_true_Bltb
in
Hlt1
...
pose
proof
(
Hlt2
:=
Bleb_trans
_
_
_
_
_
Hc1
Hc2
'
).
apply
Bleb_true_Bltb
in
Hlt2
...
rewrite
Hlt1
,
Hlt2
;
simpl
;
left
;
split
;
auto
using
Bmax_le
,
Bmin_le
.
+
fdestruct
x
;
destruct
nan2
,
nan1
,
(
Bltb
hi1
_
),
(
Bltb
hi2
);
simpl
;
try
easy
.
now
right
.
Qed
.
End
Colibri2_interval
.
Recursive
Extraction
Interval
.
This diff is collapsed.
Click to expand it.
src_common/ieee/coq/Interval.v
+
10
−
16
View file @
97517dd9
From
Flocq
Require
Import
IEEE754
.
BinarySingleNaN
.
From
Coq
Require
Import
QArith
Psatz
Reals
Extraction
.
Require
Import
F
.
Utils
F
.
Domains
F
.
Correction_thms
F
.
Rextended
.
Require
Import
F
.
Utils
F
.
Domains
F
.
Correction_thms
F
.
Rextended
.
(
*********************************************************
Interval
arithmetic
over
floatting
points
...
...
@@ -102,7 +102,7 @@ Program Lemma Iadd_correct :
Proof
.
intros
m
[[
|
|
l
h
n
]
H1
]
[[
|
|
l
'
h
'
n
'
]
H2
]
x
y
Hx
Hy
;
simpl
in
*
;
try
easy
.
-
now
(
fdestruct
x
;
rewrite
Hy
)
.
-
fdestruct
x
.
-
fdestruct
x
.
-
fdestruct
x
;
fdestruct
y
.
-
destruct
(
is_nan
(
Bplus
m
l
l
'
))
eqn
:
E1
,
(
is_nan
(
Bplus
m
h
h
'
))
eqn
:
E2
;
intuition
.
...
...
@@ -173,20 +173,14 @@ Definition inter_aux (I1 I2 : Interval_aux) : Interval_aux :=
Lemma
valid_interval_inter
:
forall
I1
I2
,
valid_interval
I1
->
valid_interval
I2
->
valid_interval
(
inter_aux
I1
I2
).
Proof
.
intros
[
|
|
l
h
]
[
|
|
l
'
h
'
]
H1
H2
;
simpl
in
*
;
try
easy
.
+
now
destruct
nan
.
+
now
destruct
nan
.
+
destruct
(
Bltb
h
l
'
)
eqn
:
Hhl
'
;
simpl
;
try
(
now
destruct
nan
,
nan0
).
destruct
(
Bltb
h
'
l
)
eqn
:
Hh
'
l
;
simpl
;
try
(
now
destruct
nan
,
nan0
).
apply
Bltb_false_Bleb
in
Hh
'
l
.
apply
Bltb_false_Bleb
in
Hhl
'
.
-
destruct
(
Bmax_max_1
l
l
'
)
as
[
->
|
->
];
destruct
(
Bmin_min_1
h
h
'
)
as
[
->
|
->
];
auto
.
-
fdestruct
h
;
fdestruct
l
.
-
fdestruct
l
'
.
-
fdestruct
h
'
;
fdestruct
l
'
.
-
fdestruct
l
.
Proof
with
auto
.
intros
[
|
|
l
h
]
[
|
|
l
'
h
'
]
H1
H2
;
simpl
in
*
;
try
(
now
destruct
nan
);
try
easy
.
case
(
Bltb
h
l
'
)
eqn
:?
,
(
Bltb
h
'
l
)
eqn
:?
;
simpl
;
try
(
now
destruct
nan
,
nan0
).
pose
proof
(
le_not_nan_r
_
_
H1
);
pose
proof
(
le_not_nan_l
_
_
H1
);
pose
proof
(
le_not_nan_r
_
_
H2
);
pose
proof
(
le_not_nan_l
_
_
H2
).
auto
using
Bmax_le
,
Bmin_le
,
Bltb_false_Bleb
.
Qed
.
Program
Definition
inter
(
I1
I2
:
Interval
)
:
Interval
:=
...
...
This diff is collapsed.
Click to expand it.
src_common/ieee/coq/_CoqProject
+
1
−
0
View file @
97517dd9
-R ./ F
./Domains.v
./Interval.v
./Colibri2_interval.v
./Tactics.v
./Rextended.v
./Utils.v
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment