-
François Bobot authored
q.mlw proved only by colibri2_stage0
François Bobot authoredq.mlw proved only by colibri2_stage0
interval.mlw 18.40 KiB
module Bound
type t = Strict | Large
end
module Convexe
use bool.Bool
use option.Option
use q.Q as Q
use Bound
use real.RealInfix
type t =
| Finite Q.t Bound.t Q.t Bound.t
| InfFinite Q.t Bound.t
| FiniteInf Q.t Bound.t
| Inf
type t' = { a: t }
invariant {
match a with
| Inf | InfFinite _ _ | FiniteInf _ _ -> true
| Finite minv minb maxv maxb ->
if Q.(equal minv maxv)
then minb = Bound.Large /\ maxb = Bound.Large
else Q.(minv < maxv)
end
}
predicate cmp (x:real) (b:Bound.t) (y:real) =
match b with
| Bound.Large -> x <=. y
| Bound.Strict -> x <. y
end
predicate mem (x:real) (e:t') =
match e.a with
| Inf -> true
| InfFinite v b -> cmp x b v
| FiniteInf v b -> cmp v b x
| Finite v b v' b' -> cmp v b x /\ cmp x b' v'
end
let lemma exists_mem (e:t') : real
ensures { mem result e } =
match e.a with
| Inf -> 0.
| InfFinite v _ -> v.Q.real -. 1.
| FiniteInf v _ -> v.Q.real +. 1.
| Finite v _ v' _ ->
0.75 *. v.Q.real +. 0.25 *. v'.Q.real
end
let is_singleton e
ensures { forall q. mem q e -> (forall q'. mem q' e -> q = q') -> match result with | Some q'' -> mem q'' e | None -> false end }
ensures { (exists q q'. not (Q.equal q q') /\ mem q e /\ mem q' e) -> result = None }
=
match e.a with
| Inf -> assert { mem 0. e }; assert { mem 1. e }; None
| InfFinite v _ -> assert { mem (v.Q.real -. 2.) e }; assert { mem (v.Q.real -. 1.) e }; None
| FiniteInf v _ -> assert { mem (v.Q.real +. 2.) e }; assert { mem (v.Q.real +. 1.) e }; None
| Finite v b v' b' -> if Q.(v = v') then begin
assert { b = Bound.Large /\ b' = Bound.Large };
assert { forall q. mem q e -> q = v.Q.real };
Some v
end else begin
let ghost c = 0.75 *. v.Q.real +. 0.25 *. v'.Q.real in
let ghost c' = 0.25 *. v.Q.real +. 0.75 *. v'.Q.real in
assert { cmp v b c }; assert { cmp c b' v'};
assert { cmp v b c' }; assert { cmp c' b' v'};
assert { mem c e }; assert { mem c' e };
None
end
end
let singleton q
ensures { result.a = Finite q Bound.Large q Bound.Large }
ensures { mem q result }
ensures { forall q'. mem q' result -> q.Q.real = q' }
=
{ a = Finite q Bound.Large q Bound.Large }
let except e x
ensures {
forall q. mem q e -> q <> x.Q.real ->
match result with
| Some res -> mem q res
| None -> false
end
}
=
match e.a with
| Inf
| InfFinite _ Strict
| FiniteInf _ Strict -> Some e
| InfFinite v Large -> if Q.(v = x) then Some {a=InfFinite v Strict} else Some e
| FiniteInf v Large -> if Q.(v = x) then Some {a=FiniteInf v Strict} else Some e
| Finite _ Strict _ Strict -> Some e
| Finite v Strict v' Large -> if Q.(v' = x) then Some {a=Finite v Strict v' Strict} else Some e
| Finite v Large v' Strict -> if Q.(v = x) then Some {a=Finite v Strict v' Strict} else Some e
| Finite v Large v' Large ->
let is_min = Q.(v = x) in
let is_max = Q.(v' = x) in
if is_min && is_max then None
else if is_min
then Some {a = Finite v Strict v' Large }
else if is_max
then Some {a = Finite v Large v' Strict }
else Some e
end
type is_comparable =
| Gt
| Lt
| Ge
| Le
| Uncomparable
use q.Ord as Ord
let is_comparable e1 e2
ensures {
match result with
| Uncomparable -> true
| Lt -> forall q1 q2. mem q1 e1 -> mem q2 e2 -> q1 <. q2
| Gt -> forall q1 q2. mem q1 e1 -> mem q2 e2 -> q1 >. q2
| Le -> forall q1 q2. mem q1 e1 -> mem q2 e2 -> q1 <=. q2
| Ge -> forall q1 q2. mem q1 e1 -> mem q2 e2 -> q1 >=. q2
end
}
=
match e1.a, e2.a with
| Inf, Inf
| Inf, _
| _, Inf
| InfFinite _ _, InfFinite _ _
| FiniteInf _ _, FiniteInf _ _ -> Uncomparable
| FiniteInf v1 b1, InfFinite v2 b2
| Finite v1 b1 _ _, InfFinite v2 b2
| FiniteInf v1 b1, Finite _ _ v2 b2 ->
match Q.compare v1 v2 with
| Ord.Eq ->
match b1, b2 with
| Large, Large -> Ge
| _ -> Gt
end
| Ord.Lt -> Uncomparable
| Ord.Gt -> Gt
end
| Finite _ _ v1 b1, FiniteInf v2 b2
| InfFinite v1 b1, FiniteInf v2 b2
| InfFinite v1 b1, Finite v2 b2 _ _ ->
match Q.compare v1 v2 with
| Ord.Eq ->
match b1, b2 with
| Large, Large -> Le
| _ -> Lt
end
| Ord.Lt -> Lt
| Ord.Gt -> Uncomparable
end
| Finite v1 b1 v1' b1', Finite v2 b2 v2' b2' ->
match Q.compare v1' v2, Q.compare v1 v2' with
| Ord.Eq, _ ->
match b1', b2 with
| Large, Large -> Le
| _ -> Lt
end
| _, Ord.Eq ->
match b1, b2' with
| Large, Large -> Ge
| _ -> Gt
end
| Ord.Lt, _ -> Lt
| _, Ord.Gt -> Gt
| _ -> Uncomparable
end
end
let is_distinct e1 e2
ensures { result -> (forall q1 q2. mem q1 e1 -> mem q2 e2 -> q1 <> q2) }
=
match is_comparable e1 e2 with
| Uncomparable | Le | Ge -> false
| _ -> true
end
let is_included e1 e2
ensures { result -> (forall q. mem q e1 -> mem q e2) }
=
match e1.a, e2.a with
| Inf, Inf -> true
| Inf, _
| InfFinite _ _ , (FiniteInf _ _ | Finite _ _ _ _)
| FiniteInf _ _ , (InfFinite _ _ | Finite _ _ _ _) -> false
| _, Inf -> true
| InfFinite v1 b1, InfFinite v2 b2
| Finite _ _ v1 b1, InfFinite v2 b2 ->
match Q.compare v1 v2 with
| Ord.Eq ->
match b1, b2 with
| Large, Strict -> false
| _ -> true
end
| Ord.Lt -> true
| Ord.Gt -> false
end
| FiniteInf v1 b1, FiniteInf v2 b2
| Finite v1 b1 _ _, FiniteInf v2 b2 ->
match Q.compare v1 v2 with
| Ord.Eq ->
match b1, b2 with
| Large, Strict -> false
| _ -> true
end
| Ord.Lt -> false
| Ord.Gt -> true
end
| Finite v1 b1 v1' b1', Finite v2 b2 v2' b2' ->
match Q.compare v2 v1, Q.compare v1' v2', b1, b2, b1', b2' with
| Ord.Eq, _, Large, Strict, _,_ -> false
| _, Ord.Eq, _,_, Large, Strict -> false
| (Ord.Lt | Ord.Eq), (Ord.Lt | Ord.Eq), _, _, _, _ -> true
| _ -> false
end
end
let cmp (x:Q.t) (b:Bound.t) (y:Q.t) =
match b with
| Bound.Large -> Q.(x <= y)
| Bound.Strict -> Q.(x < y)
end
let mem (x:Q.t) (e:t')
ensures { result = mem x.Q.real e } =
match e.a with
| Inf -> true
| InfFinite v b -> cmp x b v
| FiniteInf v b -> cmp v b x
| Finite v b v' b' -> andb (cmp v b x) (cmp x b' v')
end
let absent (x:Q.t) (e:t')
ensures { result = not (mem x.Q.real e) } =
notb (mem x e)
let mult_pos q e
requires { Q.(0. <. q.real) }
ensures { forall q'. mem q' e -> mem (q.Q.real *. q') result }
=
assert { forall a b. (q.Q.real *. a) <. (q.Q.real *. b) <-> a <. b };
assert { forall a b. (q.Q.real *. a) <=. (q.Q.real *. b) <-> a <=. b };
match e.a with
| Inf -> { a = Inf }
| InfFinite v b -> { a = InfFinite Q.(q*v) b }
| FiniteInf v b -> { a = FiniteInf Q.(q*v) b }
| Finite v b v' b' ->
{ a = Finite Q.(q*v) b Q.(q*v') b' }
end
let mult_neg q e
requires { Q.(q.real <. 0.) }
ensures { forall q'. mem q' e -> mem (q.Q.real *. q') result }
=
assert { forall a b. (q.Q.real *. a) >. (q.Q.real *. b) <-> a <. b };
assert { forall a b. (q.Q.real *. a) >=. (q.Q.real *. b) <-> a <=. b };
match e.a with
| Inf -> { a = Inf }
| InfFinite v b -> { a = FiniteInf Q.(q*v) b }
| FiniteInf v b -> { a = InfFinite Q.(q*v) b }
| Finite v b v' b' -> { a = Finite Q.(q*v') b' Q.(q*v) b }
end
let mult_cst c e
ensures { forall q. mem q e -> mem (c.Q.real *. q) result }
=
if Q.(c = (of_int 0)) then singleton (Q.of_int 0)
else if Q.(of_int 0 < c) then mult_pos c e
else mult_neg c e
let add_cst q e
ensures { forall q'. mem q' e -> mem (q.Q.real +. q') result }
=
match e.a with
| Inf -> { a = Inf }
| InfFinite v b -> { a = InfFinite Q.(q+v) b }
| FiniteInf v b -> { a = FiniteInf Q.(q+v) b }
| Finite v b v' b' -> { a = Finite Q.(q+v) b Q.(q+v') b' }
end
let add_bound b1 b2
ensures { forall c d c' d'. cmp c b1 d -> cmp c' b2 d' -> cmp (c+.c') result (d +. d') }
ensures { b1 = Large -> b2 = Large -> result = Large }
=
match b1, b2 with
| Large, Large -> Large
| Large, Strict -> Strict
| Strict, Large -> Strict
| Strict, Strict -> Strict
end
let add e1 e2
ensures { forall q1 q2. mem q1 e1 -> mem q2 e2 -> mem (q1 +. q2) result }
=
match e1.a, e2.a with
| Inf, _ | _, Inf -> { a = Inf }
| InfFinite _ _, FiniteInf _ _ | FiniteInf _ _, InfFinite _ _ -> { a = Inf }
| InfFinite v1 b1, (InfFinite v2 b2 | Finite _ _ v2 b2)
| Finite _ _ v2 b2, InfFinite v1 b1
-> { a = InfFinite Q.(v1+v2) (add_bound b1 b2) }
| FiniteInf v1 b1, (FiniteInf v2 b2 | Finite v2 b2 _ _)
| Finite v2 b2 _ _, FiniteInf v1 b1
-> { a = FiniteInf Q.(v1+v2) (add_bound b1 b2) }
| Finite v1 b1 v1' b1', Finite v2 b2 v2' b2' ->
{ a = Finite Q.(v1+v2) (add_bound b1 b2) Q.(v1'+v2') (add_bound b1' b2') }
end
let minus e1 e2
ensures { forall q1 q2. mem q1 e1 -> mem q2 e2 -> mem (q1 -. q2) result }
=
add e1 (mult_neg Q.(of_int (-1)) e2)
let gt c
ensures { forall q. mem q result <-> q >. c }
=
{ a = FiniteInf c Strict }
let ge c
ensures { forall q. mem q result <-> q >=. c }
=
{ a = FiniteInf c Large }
let lt c
ensures { forall q. mem q result <-> q <. c }
=
{ a = InfFinite c Strict }
let le c
ensures { forall q. mem q result <-> q <=. c }
=
{ a = InfFinite c Large }
let gt' c
ensures { forall q. mem q result <-> (exists c. mem c result /\ q >. c) }
=
match c.a with
| Finite v _ _ _ -> { a = FiniteInf v Strict }
| InfFinite _ _ -> { a = Inf }
| FiniteInf _ Strict -> c
| FiniteInf v Large -> { a = FiniteInf v Strict }
| Inf -> { a = Inf }
end
let ge' c
ensures { forall q. mem q result <-> (exists c. mem c result /\ q >=. c) }
=
match c.a with
| Finite v b _ _ -> { a = FiniteInf v b }
| InfFinite _ _ -> { a = Inf }
| FiniteInf _ _-> c
| Inf -> { a = Inf }
end
let lt' c
ensures { forall q. mem q result <-> (exists c. mem c result /\ q <. c) }
=
match c.a with
| Finite _ _ v _ -> { a = InfFinite v Strict }
| InfFinite _ Strict -> c
| InfFinite v Large -> { a = InfFinite v Strict }
| FiniteInf _ _-> { a = Inf }
| Inf -> { a = Inf }
end
let le' c
ensures { forall q. mem q result <-> (exists c. mem c result /\ q <=. c) }
=
match c.a with
| Finite _ _ v b -> { a = InfFinite v b }
| InfFinite _ _ -> c
| FiniteInf _ _-> { a = Inf }
| Inf -> { a = Inf }
end
let min_bound_sup v1 b1 v2 b2: (v3:Q.t,b3:Bound.t)
ensures { forall q. (cmp q b1 v1 /\ cmp q b2 v2) <-> cmp q b3 v3 }
ensures { Q.(v3 <= v1) } ensures { Q.(v3 <= v2) }
ensures { b1 = Large -> b2 = Large -> b3 = Large }
=
match Q.compare v1 v2, b1, b2 with
| Ord.Eq, Large, Large -> (v1,Large)
| Ord.Eq, _ ,_ -> (v1,Strict)
| Ord.Lt, _, _ -> (v1,b1)
| Ord.Gt, _ ,_ -> (v2,b2)
end
let min_bound_inf v1 b1 v2 b2: (v3:Q.t,b3:Bound.t)
ensures { forall q. (cmp v1 b1 q \/ cmp v2 b2 q) <-> cmp v3 b3 q }
ensures { Q.(v3 <= v1) } ensures { Q.(v3 <= v2) }
ensures { b1 = Large -> b2 = Large -> b3 = Large }
=
match Q.compare v1 v2, b1, b2 with
| Ord.Eq, Strict, Strict -> (v1,Strict)
| Ord.Eq, _, _ -> (v1,Large)
| Ord.Lt, _, _ -> (v1,b1)
| Ord.Gt, _, _ -> (v2,b2)
end
let max_bound_sup v1 b1 v2 b2: (v3:Q.t,b3:Bound.t)
ensures { forall q. (cmp q b1 v1 \/ cmp q b2 v2) <-> cmp q b3 v3 }
ensures { Q.(v1 <= v3) } ensures { Q.(v2 <= v3) }
ensures { b1 = Large -> b2 = Large -> b3 = Large }
=
match Q.compare v1 v2, b1, b2 with
| Ord.Eq, Strict, Strict -> (v1,Strict)
| Ord.Eq, _, _ -> (v1,Large)
| Ord.Lt, _, _ -> (v2,b2)
| Ord.Gt, _, _ -> (v1,b1)
end
let max_bound_inf v1 b1 v2 b2: (v3:Q.t,b3:Bound.t)
ensures { forall q. (cmp v1 b1 q /\ cmp v2 b2 q) <-> cmp v3 b3 q }
ensures { Q.(v1 <= v3) } ensures { Q.(v2 <= v3) }
ensures { b1 = Large -> b2 = Large -> b3 = Large }
=
match Q.compare v1 v2, b1, b2 with
| Ord.Eq, Large, Large -> (v1,Large)
| Ord.Eq, _, _ -> (v1,Strict)
| Ord.Lt, _, _ -> (v2,b2)
| Ord.Gt, _, _ -> (v1,b1)
end
let union e1 e2
ensures { forall q. mem q e1 -> mem q result }
ensures { forall q. mem q e2 -> mem q result }
=
match e1.a, e2.a with
| Inf, _ | _, Inf -> { a = Inf }
| InfFinite _ _, FiniteInf _ _ | FiniteInf _ _, InfFinite _ _ -> { a = Inf }
| InfFinite v1 b1, (InfFinite v2 b2 | Finite _ _ v2 b2)
| Finite _ _ v2 b2, InfFinite v1 b1
->
let v3,b3 = max_bound_sup v1 b1 v2 b2 in
{ a = InfFinite v3 b3 }
| FiniteInf v1 b1, (FiniteInf v2 b2 | Finite v2 b2 _ _)
| Finite v2 b2 _ _, FiniteInf v1 b1
-> let v3,b3 = min_bound_inf v1 b1 v2 b2 in
{ a = FiniteInf v3 b3 }
| Finite v1 b1 v1' b1', Finite v2 b2 v2' b2' ->
let v3,b3 = min_bound_inf v1 b1 v2 b2 in
let v4,b4 = max_bound_sup v1' b1' v2' b2' in
{ a = Finite v3 b3 v4 b4 }
end
predicate mem_bottom (q:real) (e:option t') =
match e with
| Some e -> mem q e
| None -> false
end
lemma mem_bottom_som: forall q e [mem_bottom q (Some e)]. mem_bottom q (Some e) = mem q e
let mk_finite v1 b1 v2 b2
ensures { forall q. (cmp v1 b1 q /\ cmp q b2 v2) <-> mem_bottom q result }
ensures { match result with
| Some r -> r.a = (Finite v1 b1 v2 b2)
| _ -> false
end }
=
match Q.compare v1 v2 with
| Ord.Eq ->
match b1, b2 with
| Large, Large ->
assert { forall q. cmp v1 b1 q -> cmp q b2 v2 -> q = v1.Q.real};
Some { a = Finite v1 Large v2 Large }
| _ -> None
end
| Ord.Lt -> Some { a = Finite v1 b1 v2 b2 }
| Ord.Gt -> None
end
let inter e1 e2
ensures { forall q. (mem q e1 /\ mem q e2) <-> mem_bottom q result }
=
match e1.a, e2.a with
| Inf, _ -> Some e2
| _, Inf -> Some e1
| InfFinite v1 b1, FiniteInf v2 b2
| FiniteInf v2 b2, InfFinite v1 b1 ->
mk_finite v2 b2 v1 b1
| InfFinite v1 b1, InfFinite v2 b2 ->
let v3,b3 = min_bound_sup v1 b1 v2 b2 in
Some { a = InfFinite v3 b3 }
| InfFinite v1 b1, Finite v2 b2 v3 b3
| Finite v2 b2 v3 b3, InfFinite v1 b1
->
let v4,b4 = min_bound_sup v1 b1 v3 b3 in
mk_finite v2 b2 v4 b4
| FiniteInf v1 b1, FiniteInf v2 b2 ->
let v3,b3 = max_bound_inf v1 b1 v2 b2 in
let r = { a = FiniteInf v3 b3 } in
assert { forall q. mem q r -> cmp v3 b3 q };
assert { forall q. cmp v3 b3 q -> cmp v1 b1 q };
assert { forall q. cmp v1 b1 q -> mem q e1 };
Some r
| FiniteInf v1 b1, Finite v2 b2 v3 b3
| Finite v2 b2 v3 b3, FiniteInf v1 b1
->
let v4,b4 = max_bound_inf v1 b1 v2 b2 in
mk_finite v4 b4 v3 b3
| Finite v1 b1 v1' b1', Finite v2 b2 v2' b2' ->
let v3,b3 = max_bound_inf v1 b1 v2 b2 in
let v4,b4 = min_bound_sup v1' b1' v2' b2' in
assert { forall q. mem q e1 -> mem q e2 -> cmp v3 b3 q };
assert { forall q. mem q e1 -> mem q e2 -> cmp q b4 v4 };
mk_finite v3 b3 v4 b4
end
let zero = let r = singleton Q.(of_int 0) in assert { forall q. mem q r <-> q = 0. }; r
let reals = let r = {a=Inf} in assert { forall q. mem q r }; r
let is_reals e
ensures { result = (forall q. mem q e) }
=
match e.a with
| Inf -> true
| InfFinite v _ -> assert { not (mem (v.Q.real +. 1.) e) }; false
| FiniteInf v _ -> assert { not (mem (v.Q.real -. 1.) e) }; false
| Finite v _ _ _ -> assert { not (mem (v.Q.real -. 1.) e) }; false
end
let integers = reals
use int.Int as Int
use real.FromInt as FromInt
let is_integer e
ensures { result <-> (forall q. mem q e -> exists z. q = FromInt.from_int z) }
=
match e.a with
| Finite v1 Large v2 Large -> andb Q.(v1 = v2) Int.(v1.Q.den = 1)
| Inf
| InfFinite _ _
| FiniteInf _ _
| Finite _ _ _ _ -> false
end
let choose e
ensures { mem result e }
=
match e.a with
| Inf -> Q.(of_int 0)
| InfFinite v Large
| FiniteInf v Large
| Finite v Large _ _
| Finite _ _ v Large -> v
| InfFinite v Strict -> Q.(v - (of_int 1))
| FiniteInf v Strict -> Q.(v + (of_int 1))
| Finite v1 Strict v2 Strict ->
let half = Q.make 1 2 in
Q.(v1 * half + v2 * half)
end
type split_heuristic =
| Singleton Q.t
| Splitted t' t'
| NotSplitted
let split_heuristic c
ensures { forall q. mem q c -> match result with
| Singleton q' -> q = q'
| Splitted c1 c2 -> mem q c1 \/ mem q c2
| NotSplitted -> true
end
}
=
let qzero = Q.of_int 0 in
let zero = singleton qzero in
match c.a with
| Inf -> Splitted { a = InfFinite qzero Strict } { a = FiniteInf qzero Large }
| InfFinite v b ->
match Q.compare qzero v, b with
| Ord.Eq, Large ->
Splitted { a = InfFinite qzero Strict } zero
| Ord.Eq, Strict
| Ord.Gt, _ -> NotSplitted
| Ord.Lt, _ ->
Splitted { a = InfFinite qzero Strict } { a = Finite qzero Large v b }
end
| FiniteInf v b ->
match Q.compare v qzero, b with
| Ord.Eq, Large ->
Splitted zero { a = FiniteInf v Strict }
| Ord.Eq, Strict
| Ord.Gt, _ -> NotSplitted
| Ord.Lt, _ ->
Splitted { a = Finite v b qzero Strict } { a = FiniteInf qzero Large }
end
| Finite v1 b1 v2 b2 ->
match Q.compare v1 qzero, b1, Q.compare v2 qzero, b2, Q.compare v1 v2 with
| _, _, _, _, Ord.Eq ->
Singleton v1
| Ord.Eq, Large, _, _, _ ->
Splitted zero { a = Finite qzero Strict v2 b2 }
| _, _, Ord.Eq, Large, _ ->
Splitted { a = Finite v1 b1 qzero Strict } zero
| _ ->
let half = Q.make 1 2 in
let m = Q.(half * v1 + half * v2) in
Splitted { a = Finite v1 b1 m Strict } { a = Finite m Large v2 b2 }
end
end
end