The InstanceTem

late

Generation Library

The main class of this library is the class VisitTable. It stores all the clang::Decl that have been visited. It stores information on the
template instances waiting for declarations but also on the waited declarations. As soon as a waited declaration is encountered,

VisitTable automatically generates the code of the template instances.

The generation is complex. For example, for a template class instance, we should generate:
the names of classes issued from the instance parameters,

the name of the class instance,

the declaration of the classes issued from the instance parameters,
the data structure declaration of the class instance,
the declaration of the classes used by the methods of the class instance,
the methods of the class instance.

Our representative example is the following code:

template <class A, class B, typename T>

class X : public A {
private:
typename B::C _field;
T* _pointer;

public:
X(const B& source)

. _field(source), _pointer(nullptr) {}
~X() {if (_pointer) delete _pointer; }

void setPointer(T* pointer)

{if (_pointer && _pointer != pointer)

delete _pointer;
_pointer = pointer;
}
J

class Foo {
public:
int _value;

g

class Bar {
public:
typedef int C;
int _value;

¢

class Bar2 {
public:
int _content;

g

Figure 1: simple example of template code

For this example, here is the Cabs code to generate:

class Foo;

class Bar;

class Bar2;

class X<Foo, Bar, Bar2>;

class Foo {
public:
int _value;

I

class Bar {
public:
typedef int C;
int _value;

I3

class X<Foo, Bar, Bar2>

: public Foo {
private:
Bar::C _field;

Bar2* _pointer;

public:

X(const Bar& source)
. _field(source),

_pointer(nullptr) {}

~X();

void setPointer
(Bar2* pointer);

ki

class Bar2 {
public:
int _content;

¢

X<Foo, Bar, Bar2>::~X()

{if (_pointer)
delete _pointer;

}

Figure 2: generated Cabs for template code instances

The following inheritance graph is used for the implementation:

int main() {
X<Foo, Bar, Bar2> x;
return O;

}

void
X<Foo, Bar, Bar2>
.:setPointer(Bar2* pointer)
{if (_pointer
&& _pointer != pointer)
delete _pointer;
_pointer = pointer;

}

int main() {
X<Foo, Bar, Bar2> x;
return O;

}

. Clang_utilz: VirtualDedR egistration
Keyin® dang;.l}ecl |

MizsingDed ™ \- | I mvisitedRegistration
|
Miz=ing=ubC lassG eneratio n/ \ VizitT able InstanceContexts
-H"'\-u.

Mis=ingC lassGeneration Mis=singFunctionGeneration
|

InstanceC lassGeneration

The InfolnstanceTable Unit

This unit contains the information related to the declarations whose visitation has an impact on the template instance generation.
Hence all visited declarations (class, function, typedef, constant) should be registered to know if an instance can have access to its
definition of if it has to wait for it.
The main class of this unit is the class VisitTable that is a map from clang::Decl to visit information on the declaration. 4 types of
information KeylInfo are available:
e The name of a declaration has not been encountered. It is represented by the absence of entry in the VisitTable map.
e The name of a declaration has been encountered but not its body. It is represented by a connection clang::Decl —
MissingDecl in the VisitTable map.
e The declaration has been visited but cannot be generated due to missing declarations. It is represented by a connection
clang::Decl — MissingFunctionGeneration or clang::Decl — MissingClassGeneration in the VisitTable map. During
a class instance visitation we do not know if the generation of the translation_unit_decl or class_decl will be effective in
Cabs at the end of the visit. So we create an InstanceClassGeneration deriving from MissingClassGeneration that is
likely to produce template instances in cascade with its field std::vector<Keylnfo*>
InstanceClassGeneration::_waitingDecls if the generation does not depend of missing classes. The
InstanceClassGeneration is then translated into a simple Keyinfo in the table. In the alternate case, it is translated into a
MissingClassGeneration since the field InstanceClassGeneration::_waitingDecls has been moved in the
MissingDecl::_waitingDecls of the instance parameters. The reason is that they can directly trigger the generation when the
instance parameters are generated.
e The declaration has been visited and has been generated. It is represented by a connection clang::Decl — Keylnfo in the
VisitTable map.

The inheritance graph of this unit is defined on the following schema.

. Clang_utilz: MirtualDedR egistration
Keyin® dang;.l}ecl I

MizsingDed ™ \- | UnvisitedRegistration
|
Miz=ing=ubC lassG eneratio n/ \ VizitT able InstanceContexts
"M_

Mis=ingC lassGeneration Mis=singFunctionGeneration
|

InstanceC lassGeneration

The following sequence of schemas describes the evolution of the VisitTable during the visit of clang declarations in Figure 1: simple
example of template code. At the end of the algorithm VisitTable::isComplete returns true, which means that all clang declarations
have produced their Cabs corresponding.

Foo

|K{-EUE':EEF' BaiZ- |K{F|:I|:I, Bar, BarZ=

Foo
Bar:C
o, .
Bar Bar
Bar2 -
X:~X0) XKO
Miksin gFun ction Gen
Bar? [void setPointerBar2*) |

[void setPointer(Bar2®)

To illustrate another point of the generation algorithm, let us introduce the following example that causes partial instance and the call

to Keylnfo::replaceWaitingBy.

template <class A, class B>
class X : public A {
private:
typename B::C _field;
typename B::Base* _pointer;

public:
X(const B& source)
: _field(source), _pointer(nullptr) {}
~X() { if (_pointer) delete _pointer; }

void setPointer(typename B::Base * pointer)
{if (_pointer && _pointer != pointer)
delete _pointer;
_pointer = pointer;
}
J

class Foo {
public:
int _value;

h

template<class T>
class Bar {
public:
typedef T Base;
typedef T C;
T value;

%

class Bar2 {
public:
int _content;

h

int main() {
X<Foo, Bar<Bar2> > x;
return O;

}

Figure 3: variation for the Figure 1 example

On this example, the next figure describes the evolution of th

e VisitTable during the visit of clang declarations. At the end of the

algorithm VisitTable::isComplete also returns true: all clang declarations have produced their Cabs corresponding.

Bar.Base

sSubClEsstene

MESI S
Bar:Base

void setPointer(Bar:.Base*

[X<Foo_Bar=Bar2>> KoK
MEshgClessBeneratibn

>-| void sstP

P —_—

The class KeylInfo

Bar.Base
=l alg
Bar.Base
void setPointer(Bar..Base®
o lEEsEaneralon EHE::'I':
=)
e mer b gue{aarz:

| void setPointerBar.Base®)

The class KeylInfo is a virtual base class summarizing the visit info available for a clang::Decl. As it is preferable to keep the key

available from the Keylnfo, we use the container std::set<Keyl

nfo*> to register the information in the table.

A KeylInfo entry represents an encountered name. If just the name is encountered, then the Keylnfo should be a MissingDecl.

If the declaration is visited and if the generation has occurred, then the entry is actually a KeylInfo.
If the declaration is visited and if some declarations are missing for its generation then the entry is either a MissingClassGeneration
or a MissingFunctionGeneration.

The inheritance graph of this class is defined as following.

Clang_utilz: MirtualDedR egistration
clang::Decl I
. —Kevinfo :

MizsingDed \\ | UnvisitedRegistration
|
MissingSubClassE eneration / \ VigitT able InstanceC ontexts
"'-,...-_

Miz=ingC lassGeneration Mis=ingFunctionGeneration
|

InstanceC lassGeneration

On the “Figure 1: simple example of template code”, the visit of class FOO creates a pure Keylnfo whereas the visit of X creates a
MissingClassGeneration that is automatically translated into a pure KeylInfo after the visit of Bar.

Fields of the class KeylInfo

const clang::Decl* key;
This field represents the clang declaration that has been visited or the clang declaration we are waiting for its visit. This key is
used to sort the Keylnfo within the class VisitTable. The properties we are looking for is the uniqueness of the key in the table
and quick search function. That is why a sort based on pointer is sufficient even it is non-deterministic across different
compilations. This key is not nullptr.

Declaration of the class KeylInfo

private:
const clang::Decl* _key;
friend class VisitTable;

public:
Keylnfo(const clang::Decl* key) : _key(key) {}
Keylnfo(const KeyInfo& source) : _key(source._key) {}
virtual ~Keylnfo() {}
virtual bool isMissingDecl() const { return false; }
virtual bool isGenerationMissing() const { return false; }
virtual bool isClassGenerationMissing() const { return false; }
virtual bool isInstanceClass() const { return false; }
virtual bool isFunctionGenerationMissing() const { return false; }

virtual void replaceWaitingBy(const clang::Decl* oldDecl, const std::vector<const clang::Decl*>& newDecls) { assert(false); }
virtual bool solve(const clang::Decl* decl, ForwardReferenceList& globals, VisitTable& table) { assert(false); }

virtual bool isComplete() const { return true; }

const clang::Decl* key() const { return _key; }

class Less {
public:
bool operator()(const Keylnfo* first, const Keylnfo* second) const { return first->_key < second->_key; }

Y
Methods of the class KeylInfo

Public methods

virtual bool isMissingDecl() const;

Returns true if and only if our KeylInfo is a MissingDecl. This means that the name of _key a declaration has been encountered but
not its body. The method is used in this case, to know if the declaration is available (see the method VisitTable::hasVisited).

Post-conditions: If the method returns true, our Keylnfo supports the type MissingDecl.

See also:
e The methods isGenerationMissing, isClassGenerationMissing, isFunctionGenerationMissing,
e the method isComplete,
e the method VisitTable::hasVisited,
e the methods VisitTable::setinstanceClassAsComplete, VisitTable::addWaitFor, VisitTable::addDeclaration,
VisitTable::addInstanceClass, VisitTable::addincompleteClass, VisitTable::addIncompleteFunction.

virtual bool isGenerationMissing() const;

Returns true if and only if our Keylnfo is a MissingFunctionGeneration or a MissingClassGeneration. This means that the
declaration has been visited but cannot be generated due to missing declarations.

Post-conditions: If the method returns true, you should call isFunctionGenerationMissing or isClassGenerationMissing to
know if our Keylnfo supports the type MissingFunctionGeneration or a MissingClassGeneration.

See also:
e The methods isMissingDecl, isClassGenerationMissing, isFunctionGenerationMissing,
e the method isComplete,
e the method VisitTable::hasVisited.

virtual bool isClassGenerationMissing() const;

Returns true if and only if our Keyinfo is a MissingClassGeneration. This means that the class declaration _key of type
clang::RecordDecl has been visited but cannot be generated due to missing declarations.

Post-conditions: If the method returns true, our Keylnfo supports the type MissingClassGeneration.

See also:
e The methods isMissingDecl, isGenerationMissing, isFunctionGenerationMissing,
e the method isComplete,
e the method VisitTable::hasVisited.

virtual bool isInstanceClass() const;

Returns true if and only if our Keyinfo is an InstanceClassGeneration. This means that the class declaration _key of type
clang::RecordDecl is currently visited. For the moment, we do not know if the class declaration could be generated or not at the end
of the visit. In the case its inherited field _additionalWaitDeclarations remains empty, the generation will occur and our information
entry is translated into a pure KeylInfo. In the alternate case, the generation is delayed until the visit of the clang::Decl and at the end
of the visit our entry is translated in a pure MissingClassGeneration.

Post-conditions: If the method returns true, our Keylnfo supports the type InstanceClassGeneration.

Post-conditions:

The methods isClassGenerationMissing, isMissingDecl, isGenerationMissing, isFunctionGenerationMissing,
the method isComplete,

the method VisitTable::hasVisited,

the methods VisitTable::setlnstanceClassAsComplete, Visitor::postVisitRecordDecl.

virtual bool isFunctionGenerationMissing() const;

Returns true if and only if our Keyinfo is a MissingFunctionGeneration. This means that the class declaration _key of type
clang::FunctionDecl has been visited but cannot be generated due to missing declarations.

Post-conditions: If the method returns true, our Keylnfo supports the type MissingFunctionGeneration.

See also:
e The methods isMissingDecl, isGenerationMissing, isClassGenerationMissing,
e the method isComplete,
e the method VisitTable::hasVisited.

virtual bool isComplete() const;

Returns true if and only if our KeyInfo has been generated. So this method returns true for pure KeylInfo.
The method is called by VisitTable::isComplete to verify that at the end of a translation unit visit all declarations have been
generated and in particular all the template instances generated by clang.

See also:
e The methods isMissingDecl, isGenerationMissing, isFunctionGenerationMissing, isClassGenerationMissing,
e the method VisitTable::isComplete and the method Visitor::HandleTranslationUnit.

virtual void replaceWaitingBy(const clang::Decl* oldDecl, const std::vector<const clang::Decl*>& newDecls);

This method is called on incomplete entries (see the method isGenerationMissing) to replace the dependence to oldDecl with the
new dependence newDecls. The main concerned fields are MissingFunctionGeneration::_waitDeclarations and
MissingClassGeneration::_waitDeclarations and they should not contain multiple references to the same clang::Decl.

The method is called when oldDecl is visited although it was waited by other (isGenerationMissing()) Keylnfo and when the
generation of oldDecl cannot occur because of non-empty newDecls dependencies — if the generation of oldDecl had occurred the
method solve would have been called and not our method. Then the Keylnfo waiting for oldDecl now have to wait for the
MissingFunctionGeneration::_waitDeclarations, MissingClassGeneration::_waitDeclarations that has been visited. These
waited declarations are precisely newDecls. The case occurs in the methods VisitTable::setinstanceClassAsComplete,
VisitTable::addIncompleteFunction, VisitTable::addIncompleteClass.

See also:
e The methods isMissingDecl, isGenerationMissing and the classes MissingDecl, MissingFunctionGeneration,
MissingClassGeneration,

the fields MissingFunctionGeneration::_waitDeclarations, MissingClassGeneration:;_waitDeclarations,
the method solve,

the methods VisitTable::setlnstanceClassAsComplete, VisitTable::addIncompleteFunction,
VisitTable::addIlncompleteClass.

virtual bool solve(const clang::Decl* decl, ForwardReferencelList& globals, VisitTable& table);

This method is called on incomplete entries (see the method isGenerationMissing) to notify them that oldDecl has been generated.
If it is the last dependency of our entry, then it has to be generated. For this generation we supply the parameter globals. For classes
containing subclasses the methods VisitTable::solve and VisitTable::addWaitFor enable to solve the subclass or to generate at least
its declaration.

The method is called when oldDecl is visited although it was waited by other (isGenerationMissing()) KeyInfo and when the
generation of decl has occurred — if it was not the case, the method replaceWaitingDecl would have been called and not our method.
The case occurs in the methods VisitTable::addDeclaration, VisitTable::setinstanceClassAsComplete.

Pre-conditions: The fields MissingFunctionGeneration::_waitDeclarations and MissingClassGeneration::_waitDeclarations
should contain decl.

See also:
e The method isGenerationMissing and the classes MissingFunctionGeneration, MissingClassGeneration,
o the fields MissingFunctionGeneration::_waitDeclarations, MissingClassGeneration::_waitDeclarations,
e the method replaceWaitingBy,
e the methods VisitTable::addDeclaration, VisitTable::setinstanceClassAsComplete.

The class MissingFunctionGeneration

The class MissingFunctionGeneration contains the visit info available for a clang::FunctionDecl that is an instance of template
and such that one or many template arguments have not been visited. The translation_unit_decl is soon built when the constructor is
called. But its Cabs generation in the global ForwardReferencelList is conditioned to the visit (and the generation) of the missing
declarations _waitDeclarations.

The inheritance graph of this class is defined as following.

Clang_utilz: VirtualD edR egistration
|

dang::Decl
Kevinfo .
MissingDed ™ v K | UnvisitedRegistration
|
MissingSubC lass eneration / \ VisitTable InstanceC ontexts
"H-h_
Miz=ingClasz=Genermtion MissingFunctionGeneration

InstanceC lazsGeneration

On the “Figure 1: simple example of template code”, the generation of class X after the visit of Bar creates two
MissingFunctionGeneration waiting for Bar2, one for the destructor X::~X() and one for the method X::setPointer. As soon as
Bar2 is visited, the MissingFunctionGeneration are translated into pure Keyinfo.

Fields of the class MissingFunctionGeneration

translation_unit_decl waitingFunDefinition;
Cabs function body. Its generation in the global ForwardReferencelList is conditioned to the visit of the clang declarations
present in _waitDeclarations. This field is not nullptr and is defined by the constructor.

std::vector<const clang::Decl*> _waitDeclarations;
This field defines the clang declarations that are waited for the generation of the function body. This field is not empty and is set
up manually by VisitTable each time a MissingFunctionDecl is created, in particular in the methods
VisitTable::addIncompleteFunction, VisitTable::addWaitFor.

Declaration of the class MissingFunctionGeneration

private:
translation_unit_decl _waitingFunDefinition;
std::vector<const clang::Decl*> _waitDeclarations;
friend class VisitTable;

public:
MissingFunctionGeneration(const clang::FunctionDecl* key, translation_unit decl waitingDefinition)
: Keylnfo(key), _waitingFunDefinition(waitingDefinition) {}
virtual ~MissingFunctionGeneration()
{if (_waitingFunDefinition) { free_translation unit decl(_waitingFunDefinition); _waitingFunDefinition = NULL; }; }

virtual bool isComplete() const { return !_waitingFunDefinition && _waitDeclarations.empty(); }

virtual bool isGenerationMissing() const { return true; }

virtual bool isFunctionGenerationMissing() const { return true; }

virtual bool solve(const clang::Decl* decl, ForwardReferenceList& globals, VisitTable& table);

virtual void replaceWaitingBy(const clang::Decl* oldDecl, const std::vector<const clang::Decl*>& newDecls);

}

Methods of the class MissingFunctionGeneration

Public methods

virtual bool solve(const clang::Decl* decl, ForwardReferenceList& globals, VisitTable& table);

This method is called on our template instance function to notify it that decl has been generated, according to the specification given
in Keylnfo::solve.

On the example Figure 1, the method has the following behavior:
|K{Fuu, Bar, BarZ= |

|K-:Fuu, Bar, BarZ= |

Foo

Foo

m m
gl
]

r

Bar? | MWesingronciion Generathorogaiye (Bars)
globals. insefContainert. . _waitFundionDefinition = X:~X...)

result = true

Singun clion Generstion globals.jnzeftContainer(... _waitFundionDefinition = X::setPointer...}

o
¥
=

|1.rc-i|::| setF‘uinterl:ElﬂrE*}l result = true

[void =etPointerBarz*)

The declaration solving may be partial like on the following schema:

MESIn goes MiEsingFun oiion Gen eratio isokee (Bar2)
Barz globals. ineedContainer(.._waitFundionDefinition = X:~X...}
| W= —_— Kejinta result = true

KES '_.=. cllon
BarZ, Bar3 | void setPointer®ar2?)| result = false for _waitFundtionDefinition = X:setPointer

void =etPointer(Bar2*)

' Esin ghec

Pre-conditions: The field _waitDeclarations should contain decl.

' EsingDec

Post-conditions: The field _waitDeclarations should have removed decl.

See also:

The field _waitDeclarations,

the method replaceWaitingBYy,

the methods MissingClassGeneration::solve, MissingSubClassGeneration::removeWaiting, VisitTable::solve,
the methods VisitTable::addDeclaration, VisitTable::setinstanceClassAsComplete.

virtual void replaceWaitingBy(const clang::Decl* oldDecl, const std::vector<const clang::Decl*>& newDecls);

This method is called on our template instance function to replace the dependence to oldDecl with the new dependence newDecls,
according to the specification given in KeyInfo::replaceWaitingBy.

The implementation does nothing but replaces oldDecl by newDecls in _waitDeclarations viewed as a set of clang::Decl. The
method MissingClassGeneration::replaceWaitingBy provides an equivalent schema.

Pre-conditions: The field _waitDeclarations should contain oldDecl and newDecls should not be empty.

Post-conditions: The field _waitDeclarations does not contain oldDecl but all newDecls in one exemplary.

See also:
e The fields _waitDeclarations,
e the method solve,
o the methods MissingClassGeneration::replaceWaitingBy, MissingSubClassGeneration::replaceWaitingBy,
e the methods VisitTable::setinstanceClassAsComplete, VisitTable::addIncompleteFunction,
VisitTable::addIincompleteClass.

The class MissingSubClassGeneration

The class MissingSubClassGeneration contains the visit info available for the content of a clang::RecordDecl that is an instance
of template and such that one or many template arguments have not been visited. The class_decl is soon built when the constructor is
called. It is a branch of the translation_unit_decl carried by the top MissingClassGeneration and ready to be generated. Two cases
are likely to occur. If our MissingSubClassGeneration finally depends on the same last parameter than its top
MissingClassGeneration, then it simply forgets the generation of _waitingSubClassDecl since its top MissingClassGeneration
has done the job. In the other cases, _subWaitDeclarations is not empty when the top MissingClassGeneration generation occurs
in the global ForwardReferenceList and our MissingSubClassGeneration is translated into a MissingClassGeneration with its
own MissingClassGeneration::_waitDeclarations — see the method VisitTable::addWaitFor.

The inheritance graph of this class is defined as following.

Clang_utilz: VirtualD edR egistration
|

dang::Decl
Keyinfo I
MissingDed v | UnvisitedRegistration
|
Miz=ingSubC lazsG eneration VisitT able L InstanceC ontexts
1"‘5.-_

Miz=ingC lassGeneration Mig=singFunctionGeneration

|
InstanceC lassGenemtion _’/'

On the “Figure 1: simple example of template code”, the generation of class X after the visit of Bar creates two
MissingFunctionGeneration waiting for Bar2, one for the destructor X::~X() and one for the method X::setPointer. As soon as
Bar2 is visited, the MissingFunctionGeneration are translated into pure Keyinfo.

Fields of the class MissingSubClassGeneration

const clang::Decl* _key;
This field represents the clang declaration we are waiting for its generation. This key is used to find the
MissingSubClassGeneration within the fields MissingSubClassGeneration::_subGenerations and
MissingClassGeneration::_subGenerations. We do not use set but a vector because in a given class there is usually a small
number of sub-classes.
This key is not nullptr. It should be present in the fields MissingClassGeneration::_subGenerations,
MissingClassGeneration::_subWaitDeclarations or in the fields MissingSubClassGeneration::_subGenerations,
MissingSubClassGeneration::_subWaitDeclarations of its parent.

class_decl waitingSubClassDecl;

This field is the Cabs part that waits for the visit of its top MissingClassGeneration and for the visit of the declarations in
additionalWaitDeclarations to be generated. waitingSubClassDecl is a subpart of its top tree
MissingClassGeneration::_waitingClassDeclaration. _waitingSubClassDecl is nullptr if the method removeWait has
emptied _additionalWaitDeclarations.

If _additionalWaitDeclarations is empty when the generation of MissingClassGeneration::_waitingClassDeclaration
occurs, then we simply forget this field. If it is not the case, we disconnect _waitingSubClassDecl from the top
MissingClassGeneration::_waitingClassDeclaration and we generate a new MissingClassGeneration with
waitingSubClassDecl as its waiting field.

std::vector<const clang::Decl*> additionalWaitDeclarations;
Sometimes the sub-class is templated or it depends on sub-arguments of the template instance that are not required for the top
class generation. In that case _additionalWaitDeclarations records these additional dependencies.
This field is the Cabs part that waits for the visit of its top MissingClassGeneration and for the visit of the declarations in
additionalWaitDeclarations should not be empty at the MissingSubClassGeneration construction but it can become empty
after many calls to the function removeWait.

std::vector<MissingSubClassGeneration> _subGenerations;
As nested classes exist, our construction can be one and it can contain sub-elements that are waiting for different declarations that
the one required for the generation of our class.

std::set<const clang::Decl*> subWaitDeclarations;
This field is a summary of all keys present in _subGenerations. Hence we quickly know how to look for a particular
clang::Decl. If it is not present in our field we just have no need to look into _subGenerations.

We have some invariants:
. subWaitDeclarations is the summary of all keys present in _subGenerations.
e The fields _waitingSubClassDecl in _subGenerations are accessible (sub-trees) from our _waitingSubClassDecl if it is
defined.
. waitingSubClassDecl = nullptr < _additionalWaitDeclarations = &.
e The intersection is empty between the declarations present in _additionalWaitDeclarations and in _subGenerations.

Declaration of the class MissingSubClassGeneration

private:

const clang::Decl* _key;

class_decl _waitingSubClassDecl;

std::vector<const clang::Decl*> _additionalWaitDeclarations;
std::vector<MissingSubClassGeneration> _subGenerations;
std::set<const clang::Decl*> _subWaitDeclarations;

friend class VisitTable;

public:
MissingSubClassGeneration(const clang::RecordDecl* key, class_decl waitingSubClassDecl)
: _key(key), _waitingSubClassDecl(waitingSubClassDecl) {}

void addWaitFor(const clang::Decl* decl) { _additionalWaitDeclarations.push_back(decl); }
MissingSubClassGeneration& createSubDeclaration(const clang::RecordDecl* key, class _decl waitingSubClassDecl)
{ _subGenerations.push back(MissingSubClassGeneration(key, waitingSubClassDecl)); return _subGenerations.back(); }
std::vector<const clang::Decl*>& waitDeclarations() { return _additionalWaitDeclarations; }
bool removeWait(const clang::Decl* decl);
void replaceWaitingBy(const clang::Decl* oldDecl, const std::vector<const clang::Decl*>& newDecls);

h
Methods of the class MissingSubClassGeneration

Public methods

bool removeWait(const clang::Decl* decl);

This method notifies that decl has been visited and generated (see the method KeylInfo::solve).

This method suppresses a declaration from _additionalWaitDeclarations or recursively from one of our _subGenerations. It
returns true if and only if _additionalWaitDeclarations and _subGenerations are empty after the suppression. In that case the
caller can delete our MissingSubClassGeneration since the generation of _waitingSubClassDecl is now handled by its parent.
This method is called by MissingClassGeneration::solve when decl is a dependency of
MissingClassGeneration::_subWaitDeclarations.

This method performs the following action on this simple case.

Foo, Bar.C

v =F o

Pre-conditions: decl is present in _additionalWaitDeclarations or _subGenerations.

Post-conditions: If this method returns true, our MissingSubClassGeneration should be suppressed from the field
MissingClassDeclaration::_subGenerations or MissingSubClassDeclaration::_subGenerations of its parent.

See also:
e The fields _additionalWaitDeclarations and _subGenerations,
e the method replaceWaitingBy,
e the method MissingClassGeneration::solve.

void replaceWaitingBy(const clang::Decl* oldDecl, const std::vector<const clang::Decl*>& newDecls);

This method notifies that oldDecl has been visited but that its generation should wait for the declarations in newDecls.

This method replaces the declaration oldDecl from _additionalWaitDeclarations by newDecls or recursively from one of our
subGenerations. Calling this method induces no modification for the caller since the status of its generation has not changed.

This method is called by MissingClassGeneration:replaceWaitingBy when oldDecl is a dependency of
MissingClassGeneration::_subWaitDeclarations.

See also:
e The fields _additionalWaitDeclarations and _subGenerations,
e the method removeWait,
e the method MissingClassGeneration::replaceWaitingBy.

The class MissingClassGeneration

The class MissingClassGeneration contains the visit info available for a clang::RecordDecl that is an instance of template class
and such that one or many template arguments have not been visited. The translation_unit_decl is soon built when the constructor is
called. But its Cabs generation in the global ForwardReferencelList is conditioned to the visit (and the generation) of the missing
declarations _waitDeclarations.

The declarations in this class may have a different status than our MissingClassGeneration since they may depend on different
declarations. In that case the field _subGenerations contains all the declarations MissingSubClassGeneration that have more
dependencies than the ones in _waitDeclarations.

The inheritance graph of this class is defined as following.

Clang_utilz: VirtualD edR egistration
Keyink clang:.Decl |
MissingDed ™ | UnvisitedRegistration
|
MizsingSubC lassG eneration VizitTable L IngtanceContexts
"H_

Iiz=ingC lassGenemtion Mig=singFunctionGeneration

|
InstanceC lassGenemtion _//'

On the “Figure 1: simple example of template code”, the class X<Foo, Bar, Bar2> is initially delayed to the visit of the classes Foo
and Bar::C. So we create a MissingClassGeneration waiting for Foo and Bar::C. It contains three MissingSubClassGeneration
that have additional dependencies to Bar (constructor X::X(const Bar& source)) and Bar2 (destructor X::~X() and the method
X::setPointer).

The first time we enter in a class instance, we do not know if the generation will be immediate or if it will be delayed. So we create an
InstanceClassGeneration and we use InstanceClassGeneration::_waitingDecls to store the declarations that were in
MissingDecl and that are waiting for our class generation. During the visit we collect the dependencies in _waitDeclarations. At the
end of the visit of our class, if some effective dependencies are not solved, we translate our InstanceClassGeneration into a
MissingClassGeneration and for each InstanceClassGeneration::_waitingDecls we replace its dependencies to our class with
the dependencies in _waitDeclarations.

Fields of the class MissingClassDeclaration

translation_unit_decl _waitingClassDeclaration;
Cabs class body. Its generation in the global ForwardReferenceList is conditioned to the visit of the clang declarations present
in _waitDeclarations. This field is not nullptr and is defined by the constructor.

std::vector<const clang::Decl*> _waitDeclarations;
This field defines the clang declarations that are waited for the generation of the class body. This field is not empty and is set up
manually by VisitTable each time a MissingClassDecl is created, in particular in the methods
VisitTable::addIncompleteClass, VisitTable::addWaitFor. Note that some sub-declarations in the class may depend on
additional waited clang declarations. The field _subGenerations should contain all such sub-declarations.

std::vector<MissingSubClassGeneration> _subGenerations;
This field contains the sub-declarations of our class that are waiting for different clang declarations that the ones
waitDeclarations required for the generation of our class.

std::set<const clang::Decl*> subWaitDeclarations;
This field is a summary of all keys present in _subGenerations. Hence we quickly know how to look for a particular
clang::Decl. If it is not present in our field we just have no need to look into _subGenerations.

We have some invariants:
. subWaitDeclarations is the summary of all keys present in _subGenerations.
e The fields MissingSubClassDeclaration::_waitingSubClassDecl in _subGenerations are accessible (sub-trees) from
our _waitingClassDeclaration.
e The intersection is empty between the declarations present in _waitDeclarations and in _subGenerations.

Declaration of the class MissingClassDeclaration

private:

translation_unit_decl _waitingClassDeclaration;
std::vector<const clang::Decl*> _waitDeclarations;
std::vector<MissingSubClassGeneration> _subGenerations;
std::set<const clang::Decl*> _subWaitDeclarations;

friend class VisitTable;

public:
MissingClassGeneration(const clang::RecordDecl* key, translation_unit_decl waitingDeclaration)
: KeyInfo(key), _waitingClassDeclaration(waitingDeclaration) {}
virtual ~MissingClassGeneration()
{if (_LwaitingClassDeclaration) { free_translation _unit_decl(_waitingClassDeclaration); _waitingClassDeclaration = nullptr; }; }

MissingSubClassGeneration& createSubDeclaration(const clang::RecordDecl* key, class _decl waitingSubClassDecl)
{ _subGenerations.push back(MissingSubClassGeneration(key, waitingSubClassDecl)); return _subGenerations.back(); }
std::vector<const clang::Decl*>& waitDeclarations() { return _waitDeclarations; }
virtual bool isClassGenerationMissing() const { return true; }
virtual bool isGenerationMissing() const { return true; }
virtual bool isComplete() const
{return !_waitingClassDeclaration && _waitDeclarations.empty() && _subGenerations.empty() && _subWaitDeclarations.empty(); }
virtual bool solve(const clang::Decl* decl, ForwardReferencelList& globals, VisitTable& table);
virtual void replaceWaitingBy(const clang::Decl* oldDecl, const std::vector<const clang::Decl*>& newDecls);

)
Methods of the class MissingClassDeclaration

Public methods

virtual bool solve(const clang::Decl* decl, ForwardReferenceList& globals, VisitTable& table);

This method is called on our template instance class to notify it that decl has been generated, according to the specification given in
KeylInfo::solve.

On the example Figure 1, the method has the following behavior:

Wi HTaD kol Uk Vs bs B eGe e otond chrgDecl,
FomardRete e s ce L B gobals)

Bar
—1 Xlconst Bars) . Hlconst Barf)
- -7 Bar2

Bar::C Blar2 .
l’f f;{Q ¥=Foo, Bar, Bar2- ~ i

—
MEZ |k gz BexGe 1e Okl ‘:
Elar? Wk o= EraGe ke @ton Eole @anc MEIarZ
void ==tP ointerBar2t) | — Fuwoid ==tF cirteriBar2*) |
ke it
| Mlconst Bars)
T | n=Foo, Bar Barz- |
l, . | 0 | ey T
I X=F oo, Bar, Bards |------ =R, i i
. . i globalz inssrContainer
MEs I oC eale ke Gt St .. _waitingClassDed aration
; ; = = class *=F oo, Bar, Bar2= {
void s=tPoirter(Barz®) | Bar::C Woonst Bard) § . b
— beylefn Wl T e addnatFa T - » K[
” MES g SH b EraGe 12 @tng chssDecl, Bar void s=tP oirterBar2*),
ol _declcErs ERment, v '
FomiErdRets iznce L EE qobak) Iﬁ A
Bar MEz hgC BEsGe 1e @tion resUlt = true
Bar2 Eolie (B

@'MFSIIQDEGI o HD)

I.IBSIIQFIII:-“UZIIGEIEIE‘HDI
Bar2 Bar2

WD) |woid ¥::s=tP cirterBarz*)|

The declaration solving may be partial like on the following schema:

Bar Bar
—H Hlcongt Barf) —+ A congt Bar &) |
Fao, Bar:C r,f'ffflarE WEz T o B e e @tion — r/’fﬂarz
n=Foo, Bar BarZ= — M) m=F oo, Bar BarZ= =
T IES Qs BesGe 1e Ot MEz [§QC BreGe ke @tion
1~ Bar2 ., Bar2
—dwoid s=tF cirter(Bar2*) | — woid ==tF cirter(Bar 2*) |
e
MEz s EeGe be Eion poke (Fo
WEz hghec|
Bar Bar

result = fase

decl may be present only in one or several sub-declarations present in _subGenerations. We know if we are in such a case if

subWaitDeclarations contains decl. In that case we call the method MissingSubClassGeneration::removeWait on the sub-
declarations that depends on decl to remove this dependency. As specified in MissingSubClassGeneration::removeWait, the
MissingSubClassGeneration is suppressed from _subGenerations if this method returns true.

Pre-conditions: Either the field waitDeclarations contains decl or _subWaitDeclarations contains decl.

Post-conditions: The field _waitDeclarations should have removed decl or _subWaitDeclarations should have removed all the
dependencies to decl.

See also:
e The field _waitDeclarations,
e the methods VisitTable::solve, VisitTable::addWaitFor, MissingSubClassGeneration::removeWait and the
constructors of the classes MissingFunctionGeneration, MissingClassGeneration,
e the method replaceWaitingBy,
the methods MissingFunctionGeneration::solve,
the methods VisitTable::addDeclaration, VisitTable::setinstanceClassAsComplete.

virtual void replaceWaitingBy(const clang::Decl* oldDecl, const std::vector<const clang::Decl*>& newDecls);

This method is called on our template instance function to replace the dependence to oldDecl with the new dependence newDecls,
according to the specification given in Keylnfo::replaceWaitingBy.

The implementation does nothing but replaces oldDecl by newDecls in _waitDeclarations viewed as a set of clang::Decl. On the
example Figure 1, the method has the following behavior:

Bar:Baze Bar2
~ X |'~=::: Bar
E 3
Elar::Elas& —]l
void =etPointer(Bar: Base® Foo

e

MEEingClzssEe nerst s rep Boeiv aRingSy (Bar, {Bar})

This method may call recursively MissingSubClassGeneration::replaceWaitingBy if oldDecl is not in _waitDeclarations but in
subGenerations.

Pre-conditions: Either the field _waitDeclarations contains oldDecl or _subGenerations (and so _subWaitDeclarations)
contains oldDecl. newDecls should not be empty.

Post-conditions: The field _waitDeclarations does not contain any more reference to oldDecl, nor _subWaitDeclarations. If
waitDeclarations contained oldDecl, it now contains all newDecls in one exemplary.

See also:
e The fields _waitDeclarations, _subGenerations, _subWaitDeclarations and the method
MissingSubClassGeneration::replaceWaitingBy,
e the method solve,
the methods MissingFunctionGeneration::replaceWaitingBy,
the methods VisitTable::setlnstanceClassAsComplete, VisitTable::addIncompleteFunction,
VisitTable::addIncompleteClass.

The class InstanceClassGeneration

The class InstanceClassGeneration is a MissingClassGeneration whose lifetime is limited to the visit of its corresponding
class/record _key. The first time we enter in a class instance, we do not know if the generation will be immediate or if it will be
delayed. So we create an InstanceClassGeneration and we use _waitingDecls to store the declarations that were in MissingDecl
and that are waiting for our class generation. During the visit we collect the dependencies in _waitDeclarations. At the end of the
visit of our class, if some effective dependencies are not solved, the method VisitTable::setinstanceClassAsComplete translate our
InstanceClassGeneration into a MissingClassGeneration and for each _waitingDecls we replace its dependencies to our class
with the dependencies in _waitDeclarations. If all dependencies _waitDeclarations are solved, the method
VisitTable::setinstanceClassAsComplete translates our InstanceClassGeneration into a pure Keylnfo.

The inheritance graph of this class is defined as following:

. Clang_utilz: VirtualDedR egistration
Keyin® dang;.l}ecl |

MizsingDed ™ \\ | U nvisitedRegistration
|
MissingSubC lassG eneration / \ VisitTable InstanceC ontexts
"'-....-_

Mis=ingC lassGeneration Mis=singFunctionGeneration
|

InstanceC lazssGeneration

Fields of the class InstanceClassGeneration

WaitingDecls waitingDecls;
This field is used to store the declarations that are waiting for the generation of our class. The storage lifetime is limited to the
visit of our corresponding class/record _key. This field is filled when a MissingDecl is translated into a
MissingClassGeneration with a transfer of MissingDecl::_waitingDecls into our _waitingDecls. At the end of the visit, for
each _waitingDecls, VisitTable::setinstanceClassAsComplete replaces its dependencies to our class with the dependencies
in _waitDeclarations. Or if _waitDeclarations is empty, it calls KeylInfo::solve on each waiting declaration of _waitingDecls.

Declaration of the class InstanceClassGeneration

public:
typedef std::vector<Keylnfo*> WaitingDecls;

private:
WaitingDecls _waitingDecls;
friend class VisitTable;

public:
InstanceClassGeneration(const clang::RecordDecl* key, translation_unit_decl waitingDeclaration)
: MissingClassGeneration(key, waitingDeclaration) {}

virtual bool isinstanceClass() const { return true; }
virtual bool solve(const clang::Decl* decl, ForwardReferenceList& globals, VisitTable& table) { assert(false); }

k

The class MissingDecl

The class MissingDecl represents a clang declaration that has not been visited. As it is present in our VisitTable, some visited
instances actually need its generation. They are all registered in the field _waitingDecls. As soon as the visit occurs, our
MissingDecl is translated into a pure Keylnfo if its generation is effective. In the other cases (missing declarations for the
generation), it is translated into a MissingClassGeneration or a MissingFunctionGeneration, depending on the type of _key. As
the visit is defined by two events: entering in the class and exiting from the class, our MissingDecl is first translated into a
InstanceClassGeneration for the enter event. The exit event translates the InstanceClassGeneration into a pure Keylnfo or a
MissingClassGeneration, depending whether the generation can occur or not.

The inheritance graph of this class is defined as following:

. Clang_utilz: VirtualDedR egistration
Keyin® dang;.l}ecl I

MizsingDe g \\ | I mvisitedRegistration
|
MissingSubC lassG eneration / \ VisitTable InstanceC ontexts
"'-....-_

Mis=ingC lassGeneration Mis=singFunctionGeneration

IngtanceC lazsGeneration

Fields of the class MissingDecl

WaitingDecls _waitingDecls;
This field is used to store the declarations that are waiting for the generation of our declaration. Once the declaration is visited the
waitingDecls are visited. If the visit produces a Cabs generation, all the elements of _waitingDecls will be Keylnfo::solve. If
the visit induces no generation, the elements of _waitingDecls will be Keylnfo::replaceWaitingBy with the declarations on
which our _key is depending.

Declaration of the class MissingDecl

public:
typedef std::vector<KeylInfo*> WaitingDecls;

private:
WaitingDecls _waitingDecls;
friend class VisitTable;

public:

MissingDecl(const clang::Decl* decl) : Keylnfo(decl) {}
virtual bool isMissingDecl() const { return true; }
virtual bool isComplete() const { return false; }
WaitingDecls& waitingDecls() { return _waitingDecls; }
I

The class VisitTable

The class VisitTable records the information related to the declarations whose visitation has an impact on the template instance
generation. Hence all visited declarations (class, function, typedef, constant) should be registered to know if an instance can have
access to its definition of if it has to wait for it.

The main field of this class is a map _content from clang::Decl to visit information on the declaration. 4 types of information
Keylnfo are available:
e The name of a declaration has not been encountered. It is represented by the absence of entry in the VisitTable map.
e The name of a declaration has been encountered but not its body. It is represented by a connection clang::Decl —
MissingDecl in the map.
e The declaration has been visited but cannot be generated due to missing declarations. It is represented by a connection
clang::Decl — MissingFunctionGeneration or clang::Decl — MissingClassGeneration in the map.
e The declaration has been visited and has been generated. It is represented by a connection clang::Decl — Keylnfo in the
VisitTable map.

The inheritance graph of this unit is defined on the following schema.

. Clang_utils:: VirtualDedR egisteation
evinfo dang,l.Ded |

hizsingD edd——’K \\\— | UnvizitedReistration
|
MissngSubC IassGeneratiu:un/ \ YizitTakle natanceContexds
"M_

MissingClassGeneration MizsingF unctionGeneration
|

Ingance lassGeneration

The following sequence of schemas describes the evolution of the VisitTable during the visit of clang declarations in Figure 1: simple
example of template code. At the end of the algorithm isComplete returns true, which means that all clang declarations have
produced their Cabs corresponding.

Foo, Bar:.C

Bar:C MEzingCizssa nertbn “gale (Bar) MBS oD M2 L SHn G e
= E'- s=s-'-:-: Fesanerallbn e
Bar Bar? sz (Ear)
MoK

ESin grun Cil
v BarZ |void setPointer(Barz*) |
|1.roid setP ointeriBar *}|

On the example in Figure 3: variation for the Figure 1 example, the next figure describes the evolution of our VisitTable during the
visit of clang declarations. At the end of the algorithm isComplete also returns true: all clang declarations have produced their Cabs
corresponding.

Foo, Bar Bar:Base Bar:Base
= :..EE';E..':EE:E:'E_:'I' —
Bar:Base Bar:Baze
void setPointer(Bar..Base* void setPointer(Bar.Base*®
ClassGe nerat b gokne(Foo)

ards :[T,‘ Mo~H) |
sizenaraibn

>-|-:u::i-:| setPointer{Bar::Base* Bar

| Bar |
Cizs G nerst b ERCAN NGBy (Bar, [BarZ))

Fields of the class VisitTable

Clang_utils* _clangUtils;
This field is set up just after the construction of our VisitTable to externalize the declarations intern of a class. On the following

example,
template <class T1, T2> class A; struct X<A, B> { classA{...}
struct X { classB{...}; A* 1,
T1* 11, B t2; X<A, B>:X()
T212; X0); ‘tl(new A) {}
X() : tl(new T1) {} ~X0);
~X() {if (t1) delete t1;} h X<A, B>:~X()
}; {if (1) delete t1;}

the generation of the methods of X<A, B> is at the charge of VisitTable and requires to qualify this methods. This is done by
calls to Clang_utils::makeQualifiedName with _clangUltils.

ContentTable content;
Defines the map that associates to each encounter clang::Decl a type of information among the 4 types available:

e The name of a declaration has not been encountered. It is represented by the absence of entry in the VisitTable map.

e The name of a declaration has been encountered but not its body. It is represented by a connection clang::Decl —
MissingDecl in the map.

e The declaration has been visited but cannot be generated due to missing declarations. It is represented by a connection
clang::Decl — MissingFunctionGeneration or clang::Decl — MissingClassGeneration in the map.

e The declaration has been visited and has been generated. It is represented by a connection clang::Decl — Keylinfo in
the VisitTable map.

Declaration of the class VisitTable

public:
class Keylnfo;
class MissingFunctionGeneration;
class MissingSubClassGeneration;
class MissingClassGeneration;
class InstanceClassGeneration;
class MissingDecl;

private:
typedef std::set<Keylnfo*, KeylInfo::Less> ContentTable;

Clang_utils* _clanguUitils;
ContentTable _content;

protected:
void solve(MissingSubClassGeneration& classDecl, ForwardReferenceList& globals);
void addWaitFor(MissingSubClassGeneration& classDecl, class_decl classElement, ForwardReferenceList& globals);
friend class MissingSubClassGeneration;
friend class MissingClassGeneration;

public:
VisitTable() : _clangUtils(nullptr) {}

~VisitTable() { for (Keylnfo* key : _content) { if (key) delete key; }; _content.clear(); }
void setUtils(Clang_utils* clangUtils) { _clangUtils = clangUtils; }

bool isComplete() const { for (KeyInfo* key : _content) { if (lkey->isComplete()) return false; }; return true; }
bool hasVisited(const clang::Decl* decl) const
{auto found = _content.find(&KeyInfo(decl)); return (found != _content.end()) && !(*found)->isMissingDecl(); }

void addDeclaration(const clang::Decl* decl, ForwardReferenceList& globals);
MissingClassGeneration& addInstanceClass(const clang::RecordDecl* decl, translation _unit_decl classDecl);
MissingSubClassGeneration& addSubClass(MissingClassGeneration& firstinstance, MissingSubClassGeneration* lastClass, const
clang::RecordDecl* decl, class_decl classDecl)
{return (llastClass) ? firstinstance.createSubDeclaration(decl, classDecl) : lastClass->createSubDeclaration(decl, classDecl); }

void setinstanceClassAsComplete(InstanceClassGeneration* instance, ForwardReferencelList& globals);
MissingClassGeneration& addincompleteClass(const clang::RecordDecl* decl, std::vector<const clang::Decl*>& waitDeclarations,
translation _unit decl classDecl);
MissingFunctionGeneration& addincompleteFunction(const clang::FunctionDecl* decl, std::vector<const clang::Decl*>& waitDeclarations,
translation_unit_decl functionDecl);
I

Methods of the class VisitTable

Protected Methods

void solve(MissingSubClassGeneration& classDecl, ForwardReferencelList& globals);

This method is called on the declaration classDecl._key in a class template to notify that this declaration is solved at the same time
than its ancestor MissingClassGeneration.

The implementation mainly propagates on classDecl._subGenerations — by default, the generation of the outer class generates the
inner classes. Each element of classDecl._subGenerations that has a MissingSubClassGeneration::_waitingSubClassDecl
should be externalized. On such sub-declaration the algorithm calls MissingSubClassGeneration::addWaitFor. On the other sub-
declarations, it recursively calls MissingSubClassGeneration::solve.

The declarations in instances of classes do not appear in _content except to be associated with a MissingDecl. In this case, we wake
up the MissingFunctionGeneration and the MissingClassGeneration depending on classDecl._key.

On the example Figure 1, the method has the following behavior:

ke HTah b cpolie (U s g5 b Braice 1e BH00E chssDedl,
FomardRete 1 ce L EiE gobats)

Bar
; .‘-{icunst Elar&i . Ficonst Bar&)
Bar::iC I’f Bar? e " Bar2
1
- w=Foo, Bar, Bar2= w2
~ B Im‘—‘gmm%_':l
- Bar2 W ez s EeaGe ke @10 g0l (Barc) - Bard
—lvoid setPoirterBarzs)| —— —{void s=tPoirterfar2) |
ey Iita
Bar Bar

This method is called by MissingClassGeneration::solve to propagate the outer class generation to the inner classes.

Pre-conditions:
e The method classDecl.removeWait should have returned true,
e classDecl._waitingSubClassDecl == nullptr,
e classDecl._additionalWaitDeclarations.empty().

See also:
e The method addWaitFor and the method KeylInfo::solve, MissingClassGeneration::solve,
MissingFunctionGeneration::solve,
e the methods MissingClassGeneration::solve, MissingSubClassGeneration::removeWait,
e the methods VisitTable::addDeclaration, VisitTable::setinstanceClassAsComplete.

void addWaitFor(MissingSubClassGeneration& classDecl, class_decl classElement, ForwardReferenceList& globals);

This method transforms the Cabs definition classElement into a declaration. The original Cabs definition is duplicated at the
beginning of the call of our method and the copy is externalized and classDecl is translated into a MissingClassDeclaration,
waiting for new clang visit to be generated in globals.

As the declaration containing classElement has soon been generated in globals, this generation can wake up new generations
depending on classDecl._key: the declarations in instances of classes do not appear in _content except to be associated with a
MissingDecl (see the method solve). In this case, we wake up the MissingFunctionGeneration and the MissingClassGeneration
depending on classDecl._key.

A last point consists in the registration of the newly created MissingClassDeclaration for it to be waked up when the MissingDecl
associated to the elements of the old classDecl._additionalWaitDeclarations will be visited.

On the example Figure 1, the method has the following behavior:

toke | ¥iconst Bard) copygs = () *lconst Bars)
77 Barz inetion =~) T
|H=Foo Bar Bar2= |----=g] ~®(1{ ... }] _clangl ltils |¥=Foo, Bar Bar2s f---== ~HL | e——
WMEz QG BreGe 1e @ o -7 i [N WEZ s Br2Ge 1e @0
- Bar2 Bar2
. - " . - "
M uvoid ==tP oirterBarz®) | void ==tP airterBard®) |
iy luTo . . addnigifor]
globalz . insertContainer
... _wsitingClassDied aration globals inssrContainer(
= tlass X=Foo, Bar, Bar2= { ... _wnaitingClas=D edaration
Bar ¥iconst Barg) (.} Bat = class ¥=F oo, Bar, Bar2= {
~R0T T Wiconst Bard){ ..}
vaid setPoirter@ar2t){ .} =¥,
Y. void s=tPoirterBar2*1{ ...}
L
¥{const Bars) | Miconst Bard)
| »=F oo, Bar, BarZ= [:--::;l ~RY |}{~:F|:u:|, Bar, Bar2= [:---_-_-.I ~R |
WEz s BraGe ke Q0K . - MEz Qo BreGe ke @0k . -
== at

void ==tF oirter(Bar2*) | void ==tF oirter(Bar2*) |

BarZ
Mo~ X0) | MissingF unctionGenerati on Mo~ X0) | MissingF unctionGenerati on

The method is called by the method solve for the sub-declarations of a MissingSubClassGeneration (which should be a class) that
have additional dependencies - MissingSubClassGeneration::_waitingSubClassDecl # nullptr and
IMissingSubClassGeneration::_additionalWaitDeclarations.empty(). If it concerns the sub-declaration classDecl of a

MissingClassGeneration, then the method setinstanceClassAsComplete directly calls our method on the sub-declaration that has
additional dependencies.

Pre-conditions:
e classDecl._waitingSubClassDecl # nullptr,
e IclassDecl._additionalWaitDeclarations.empty().

See also:

e The constructors MissingFunctionGeneration::MissingFunctionGeneration,
MissingClassGeneration::MissingClassGeneration and the methods MissingClassGeneration::solve,
MissingFunctionGeneration::solve,

e the method solve,
the methods VisitTable::setinstanceClassAsComplete, MissingClassGeneration::solve.

Public Methods

void addDeclaration(const clang::Decl* decl, ForwardReferenceList& globals);

The method notifies that the non-template decl has been visited and generated. The possible side-effect is the notification to all
KeyInfo in _content that decl is solved. The notification calls the method Keylnfo::solve on each element of
MissingDecl::waitingDecls() and the generation occurs if and only if decl was the last dependency of this Keylnfo.

This method is called after the visit of each non-template clang::Decl: the concerned methods are Visitor::postVisitRecordDecl,
Visitor::VisitEnumDecl, Visitor::VisitTypedefNameDecl, Visitor::VisitFunctionDecl, Visitor::VisitVarDecl,
Visitor::VisitFieldDecl.

Pre-conditions: If decl is referenced in _content, it should be associated to a MissingDecl.

See also:
e The class MissingDecl and the methods KeylInfo::solve, MissingClassGeneration::solve,
MissingFunctionGeneration::solve,
o the methods setinstanceClassAsComplete, addinstanceClass, addincompleteFunction,

e the methods Visitor::postVisitRecordDecl, Visitor::VisitEnumDecl, Visitor::VisitTypedefNameDecl,
Visitor::VisitFunctionDecl, Visitor::VisitVarDecl, Visitor::VisitFieldDecl.

MissingClassGeneration& addIinstanceClass(const clang::RecordDecl* decl, translation_unit_decl classDecl);

The method notifies that the visit enters into a class instance decl. As the visit does not know what the dependent declarations are, it
does not know if the generation will be immediate or if it will be delayed. By default our method creates an
InstanceClassGeneration and the visit of decl will collect the dependencies in MissingClassGeneration::_waitDeclarations.
Once the dependencies will be known and solved, the visit should trigger the solving on the MissingFunctionGeneration and on the
MissingClassGeneration that depend on decl. That is why our method transfers in InstanceClassGeneration::_waitingDecls the
field MissingDecl::_waitingDecls that has recorded the dependent KeyInfo of decl before the call to our method.

At the end of the visit of our class, if some effective dependencies are not solved, the method setinstanceClassAsComplete will
translate the InstanceClassGeneration result into a MissingClassGeneration and for each
InstanceClassGeneration::_waitingDecls it will replace its dependencies to our class with the dependencies in
MissingClassGeneration::_waitDeclarations. If all dependencies MissingClassGeneration::_waitDeclarations are solved, the
method setinstanceClassAsComplete will translate the InstanceClassGeneration result into a pure KeylInfo.

This method is called by Visitor::VisitRecordDecl on a class instance.
Pre-conditions: If decl is referenced in _content, it should be associated to a MissingDecl.

Post-conditions:
e InstanceContexts::pushinstanceContext has to be called on the result of our method. The reason is that the visit has to fill
the dependencies MissingClassGeneration::_waitDeclarations.
e The method setinstanceClassAsComplete has to be called at the end of the visit of decl.

See also:
e The classes MissingDecl, InstanceClassGeneration and the fields MissingClassGeneration::_waitDeclarations,
MissingDecl::_waitingDecls, InstanceClassGeneration::_waitingDecls,
e the methods setinstanceClassAsComplete, InstanceContexts::pushinstanceContext, addDeclaration,
addIncompleteFunction,
e the methods Visitor::VisitRecordDecl.

void setinstanceClassAsComplete(InstanceClassGeneration* instance, ForwardReferencelList& globals);

This method notifies that the visit exits from a class instance instance->_key. It receives as instance the result of the method
addInstanceClass. Two cases occur depending on the dependent declarations the visitor has found or not dependencies on unvisited
declarations (see UnvisitedDeclarations::registerDecl).

The first case concerns the absence of dependent declarations instance->_waitDeclarations.empty(). If no unvisited dependent
declarations have been found, we generate the class and its content. If the content depends on additional declarations
(!MissingSubClassGeneration::_additionalWaitDeclarations.empty() and
MissingSubClassGeneration::_waitingSubClassDecl # nullptr), we call MissingSubClassGeneration::addWaitFor on it. If
the content is independent of any declaration, we call MissingSubClassGeneration::solve on it. If there are instances
instance->_waitingDecls that are waiting for our instance, we call Keylnfo::solve on them (in fact
MissingClassGeneration::solve and MissingFunctionGeneration::solve). At the end we replace instance by a pure Keylinfo to
indicate the clang declaration instance->_key has been visited and generated.

The second case concerns the presence of dependent declarations !instance->_waitDeclarations.empty(). Then for each clang
declaration instance->_waitDeclarations we are waiting for, we make our instance depend from them and we also make all the
instance->_waitingDecls also depend from them.

At the end we call the method Keylnfo::replaceWaitingBy to replace the dependency of instance->_key by dependencies of
instance->_waitDeclarations on each waiting declaration (MissingClassGeneration or MissingFunctionGeneration) of
instance->_waitingDecls. Last but not least, we replace instance by a MissingClassGeneration, to remove the field
InstanceClassGeneration::_waitingDecls which is no more useful.

Our method is called by Visitor::postVisitRecordDecl when the visit exits from a class instance instance->_key.

Pre-conditions:
e The method addinstanceClass should have been called when the visit has entered the class instance instance->_key,
e the method UnvisitedDeclarations::registerDecl may have been called several times during the visit of the declarations in
the clang class instance->_key to record the dependencies of our instance in instance->_waitDeclarations.

Post-conditions: The method InstanceContexts::poplnstanceContext should be called after our method.

See also:
e The classes MissingDecl, InstanceClassGeneration, MissingClassGeneration and the fields
MissingClassGeneration::_waitDeclarations, MissingDecl::_waitingDecls,

InstanceClassGeneration::_waitingDecls, MissingSubClassGeneration::_additionalWaitDeclarations,
MissingSubClassGeneration::_waitingSubClassDecl,

e the methods MissingSubClassGeneration::addWaitFor, MissingSubClassGeneration::solve, Keylnfo::solve,
MissingClassGeneration::solve, MissingFunctionGeneration::solve, Keylnfo::replaceWaitingBy,

o the methods addinstanceClass, UnvisitedRegistration::registerDecl, InstanceContexts::poplnstanceContext,
addDeclaration, addincompleteFunction,

o the methods Visitor::postVisitRecordDecl.

MissingClassGeneration& addincompleteClass(const clang::RecordDecl* decl, std::vector<const clang::Decl*>&
waitDeclarations, translation_unit_decl classDecl);

This method corresponds to the addincompleteFunction for class, but it is not used any more due to the particularity of the visitor: it
processes with two events: entering and exiting a class instead of one. That is why this method is replaced by the methods
addinstanceClass / setinstanceClassAsComplete.

MissingFunctionGeneration& addincompleteFunction(const clang::FunctionDecl* decl, std::vector<const clang::Decl*>&
waitDeclarations, translation _unit decl functionDecl);

The method notifies that the visit has encountered an instance of a template function/method such that one or many arguments are not
completely visited at that time. This means that some required declarations will be visited in the future and that this visit will made the
generation of functionDecl effective.

This method creates a MissingFunctionGeneration, associates it to decl in _content and returns it. The result is not really used
except in the internal of our class.

Then for each clang declaration waitDeclarations we are waiting for, we make our instance depend from it. If there were instances
that were waiting for decl (a MissingDecl was associated to decl in _content), we also make all the MissingDecl::_waitingDecls
also depend from waitDeclarations. As there is a double linkage between MissingDecl:;_waitingDecls and
MissingClassGeneration::_waitDeclarations or MissingFunctionGeneration::_waitDeclarations, we call
Keylnfo::replaceWaitingBy to replace the dependency from decl by a dependency from waitDeclarations.

This method is called by Visitor::VisitFunctionDecl on a function instance.

Pre-conditions:
e waitDeclarations should not be empty,
e the method InstanceContexts::poplnstanceFunction should have been called to fill waitDeclarations.

See also:
e The classes MissingDecl, MissingFunctionGeneration and the fields MissingFunctionGeneration::_waitDeclarations,
MissingDecl::_waitingDecls,
the method KeylInfo::replaceWaitingBy,
the methods addInstanceClass, setinstanceClassAsComplete, UnvisitedRegistration::registerDecl,
InstanceContexts::poplnstanceFunction, addDeclaration,
e the methods Visitor::VisitFunctionDecl.

The InstanceContexts Unit

This unit controls the way the class VisitTable is managed. This unit reacts to many events in particular during the visit of the
instance of a class. An object of type InstanceContexts is available in the field Visitor::_instanceContexts. It manages the other
Visitor’s field Visitor::_tableForWaitingDeclarations.

The main class of this unit is InstanceContexts. It acts as a state machine whose states are:

1. out of any instance and any template - InstanceContexts::_currentContext.empty() and
InstanceContexts::_waitDeclarationsFunctions.get() = nullptr.

2. instance of a template function or a template method — InstanceContexts::_currentContext.size() = 1 and
InstanceContexts::_waitDeclarationsFunctions.get() # nullptr.

3. content of the first instance of a class - InstanceContexts::_currentContext.size() = 1 and
InstanceContexts::_waitDeclarationsFunctions.get() = nullptr.

4. method in an instance of a template class - InstanceContexts::_currentContext.size() > 2 and
InstanceContexts::_waitDeclarationsFunctions.get() = nullptr.

5. class in an instance of a template class - InstanceContexts::._currentContext.size() > 2 and

InstanceContexts::_waitDeclarationsFunctions.get() = nullptr.

The following inheritance graph is used for this unit:

. Clang_wutilz: VirtualDedR egistration
evinfo dang,l.Ded |

Miz=ingD edd——’K \\\— | UnvizitedRenistration
|
Missing=ubC IassGeneratiu:un/ \ YVizitTakle natanceContexds
-h'-o.-_

MissingClassGeneration MizsingF unctionGeneration
|

InganceC lassGeneration

The class UnvisitedRegistration

This class inherits from Clang_utils::VirtualDeclRegistration to implement the virtual method registerDecl. When _visitor visits a
clang declaration, the method registerDecl is automatically called and our class delivers the status of this declaration — has been
visited or not. It records then the unvisited declarations in the field _visitor.unvisitedDecls() for them to be available to the methods
VisitTable::setinstanceClassAsComplete, VisitTable::addincompleteFunction.

In this contexts, the role of the class InstanceContexts is to retrieve the unvisited declarations — _visitor.unvisitedDecls() is
InstanceContext::_currentContext.back().first and to organize the calls to the right methods
VisitTable::setinstanceClassAsComplete, VisitTable::addIincompleteFunction at the right level.

The unvisited declarations are separated into two sorts. The first sort represents the declarations that should be “complete” for the
generation. The second sort of this first field represents the declarations that have only to be named. In the following code,

template <class T, class U>class A{T*t; U u; };
A<X, Y> a;

the visit of the instance A<X, Y> requires X to be named and Y to be complete. Such named declarations as X are not stored in a
MissingClassGeneration or in a MissingFunctionGeneration, but are to be immediately treated at the end of the visit by the
method Visitor::insertNamedDeclaration generating “class X;” , called by Visitor::postVisitRecordDecl and

Visitor::VisitFunctionDecl.

That is why the method getNameRegistration returns its own field _unvisitedName that stores unvisited declarations in
visitor.unvisitedNameDecls() instead of _visitor.unvisitedDecls().

The inheritance graph of our class is the following:

. Clang_utils: VirtualDedR egistration
evinfo dang,l.Ded |

MizsingD edfﬁ X | UnvisitedRegistration
|
MissingSubC IassGeneratiDn/ \ VizitTakle natanceContexds
-.-..l.-_

MizsingClas=Generation MizzingF unctionGeneration

InganceC lazsGeneration

Fields of the class UnvisitedRegistration

Visitor& _visitor;
Reference to the current visitor to implement the virtual method registerDecl. This field is set up at the construction of our class.

Declaration of the class UnvisitedRegistration

private:
typedef Clang_utils::VirtualDeclRegistration inherited;
Visitor& _visitor;

public:
UnvisitedNameRegistration(Visitor& visitor) : _visitor(visitor) { setRegisterDecl(); }
UnvisitedNameRegistration(const UnvisitedNameRegistration& source) : inherited(source), _visitor(source._visitor) {}

virtual void registerDecl(const clang::Decl* decl)
{‘auto& unvisited = _visitor.unvisitedNameDecls();
if (I_visitor._tableForWaitingDeclarations.hasVisited(decl))
if (std::find_if(unvisited.begin(),unvisited.end(), (auto unvisitedDecl)[decl]{ return decl == unvisitedDecl; }) != unvisited.end())
unvisited.push_back(decl);
h

}
Visitor& getVisitor() const { return _visitor; }
k

private:

typedef Clang_utils::VirtualDeclRegistration inherited,;
UnvisitedNameRegistration _unvisitedName;

public:
UnvisitedRegistration(Visitor& visitor) : _unvisitedName(visitor) { setReqisterDecl(); }

UnvisitedRegistration(const UnvisitedRegistration& source) : inherited(source), _unvisitedName(source._unvisitedName) {}

virtual void registerDecl(const clang::Decl* decl)
{if (_unvisitedName.getVisitor()._tableForWaitingDeclarations.hasVisited(decl))

k

unvisitedName.getVisitor().unvisitedDecls().push back(decl);

virtual VirtualDeclRegistration* getNameRegistration() { return &_unvisitedName; }

The class InstanceContexts

This class controls the way the class VisitTable is managed via the field Visitor::_tableForWaitingDeclarations. It reacts to many
events in particular during the visit of the instance of a class or during the visit of the instance of the body of a function. An object of
type InstanceContexts is available in the field Visitor::_instanceContexts.

The class InstanceContexts acts as a state machine whose states are:

1. out of any instance and any template — _currentContext.empty() and _waitDeclarationsFunctions.get() = nullptr.
Entering a class instance goes to state 3 (see the method push(VisitTable::MissingClassGeneration&)). Entering a
function instance goes to state 2 (see the method pushFunction).

2. instance of a template function or a template method - currentContext.size() = 1 and

waitDeclarationsFunctions.get() # nullptr. Exiting a function instance goes to state 1 (see the method popFunction).

3. content of the first instance of a class — _currentContext.size() = 1 and _waitDeclarationsFunctions.get() = nullptr.
Entering a class instance goes to state 5 (see the method push(VisitTable::MissingSubClassGeneration&)). Entering a
function instance goes to state 4 (see the method pushFunction). Exiting the class instance goes to state 1 (see the method
pop).

4. method in an instance of a template class — _currentContext.size() > 2 and _waitDeclarationsFunctions.get() # nullptr.
Exiting the method goes to state 3 or to state 5 (see the method popFunction).

5. class in an instance of a template class — _currentContext.size() > 2 and _waitDeclarationsFunctions.get() = nullptr.
Entering a class instance goes to state 5 (see the method push(VisitTable::MissingSubClassGeneration&)). Entering a
function instance goes to state 4 (see the method pushFunction). Exiting the class instance goes to state 3 or to state 5 (see
the method pop).

The inheritance graph of our class is the following:

. Clang_utils: VirtualDedR egistration
evinfo dang,l.Ded |

MizsingD edd——_ﬁ \\ | UnvisitedReoistration
|
Missing=ubC IassGeneratil:un/ \ YisitTakle naanceContexts
"h-bqh_

MizsingClas=Generation Miz=zingF unctionGeneration

InganceClazsGeneration

Fields of the class InstanceContexts

std:

std:

:vector<std::pair<UnvisitedBodyName, LocalContext> > currentContext;

Stack of the instances. The stack is required because a class instance can have subclasses that depend on different declarations.
The first field corresponds to the clang::Decl that are unknown during the visit of the class. This first field is separated into two
sorts. The first sort of this first field represents the declarations that should be “complete” for the generation. The second sort of
this first field represents the declarations that have only to be named. The second field depends on the type of the declaration we
are visiting: if it is a function, this second field is a LocalContext(); if it is a class instance out of any other class instance, this
second field is a LocalContext(VisitTable::MissingClassGeneration®*); if it is a class instance in another class instance, this
second field is a LocalContext(VisitTable::MissingSubClassGeneration®*);

Just a note concerning the second sort of the first field, that are the declarations that have only to be named. Such declarations are
not stored in a MissingClassGeneration or in a MissingFunctionGeneration. So we do not reference this field but we own it.
The declarations that have to be named are immediately treated at the end of the visit by the method
Visitor::insertNamedDeclaration, called by Visitor::postVisitRecordDecl and Visitor::VisitFunctionDecl.

:auto_ptr<std::vector<const clang::Decl*> > waitDeclarationsFunctions;

This field is the owner of the UnvisitedDecls that is at the top of _currentContext when the last encountered declaration is a
function or a method instance. This owner is necessary for functions/methods since VisitTable::addIncompleteFunction works
in one step, while VisitTable::addInstanceClass/VisitTable::setinstanceClassAsComplete have two steps, needing to store
their own UnvisitedDecls in InstanceClassGeneration::_waitDeclarations.

The main invariant of the class is the fact that _currentContext and _waitDeclarationsFunctions are in state 1, ..., state 5. Th
invariant could be defined only on _currentContext since _waitDeclarationsFunctions is valid if and only
currentContext.back().second = LocalContext().

Declaration of the class InstanceContexts

public:
typedef std::vector<const clang::Decl*> UnvisitedDecls;

private:
VisitT_e{t_)ié_:?I_\)Iié:s_i_ri(:;CIassGeneration* classContent;
VisitTable::MissingSubClassGeneration* subclassContent;

LocalContext() { classContent = nullptr; }

LocalContext(VisitTable::MissingClassGeneration* content) { classContent = content; }
LocalContext(VisitTable::MissingSubClassGeneration* content) { subclassContent = content; }

LocalContext(const LocalContext& source) { memcpy(this, &source, sizeof(LocalContext)); }

LocalContext& operator=(const LocalContext& source) { memcpy(this, &source, sizeof(LocalContext)); return *this; }

h

typedef std::pair<UnvisitedDecls*, UnvisitedDecls> UnvisitedBodyName;
std::vector<std::pair<UnvisitedBodyName, LocalContext> > _currentContext;
std::auto_ptr<std::vector<const clang::Decl*> > _waitDeclarationsFunctions;

public:
InstanceContexts() {}
void push(VisitTable::MissingClassGeneration& context)
{ assert(_currentContext.empty());
currentContext.push back(std::make pair(std::make pair(&context.waitDeclarations(), UnvisitedDecls()), LocalContext(&context)));

}
void push(VisitTable::MissingSubClassGeneration& context)
{ assert(!_currentContext.empty());
currentContext.push_back(std::make pair(std::make_pair(&context.waitDeclarations(), UnvisitedDecls()), LocalContext(&context)));

void pop() { _currentContext.pop back(); }
void pop(std::vector<const clang::Decl*>& namedDeclarations)
{ _currentContext.back().first.second.swap(namedDeclarations); _currentContext.pop back(); }

void pushFunction()
{ assert(!_waitDeclarationsFunctions.get());
waitDeclarationsFunctions.reset(hew std::vector<const clang::Decl*>());
currentContext.push_back(std::make_pair(std::make_pair(&*_waitDeclarationsFunctions, UnvisitedDecls()), LocalContext()));

void popFunction(std::vector<const clang::Decl*>& waitDeclarations, std::vector<const clang::Decl*>& namedDeclarations)
{ assert(_waitDeclarationsFunctions.get() && waitDeclarations.empty());
currentContext.back().first.second.swap(namedDeclarations);
waitDeclarationsFunctions->swap(waitDeclarations);
waitDeclarationsFunctions.reset();
currentContext.pop _back();

int size() const { return _currentContext.size(); }

bool isClassContext() const { return _currentContext.size() == 1 && !_waitDeclarationsFunctions.get(); }
bool isSubClassContext() const { return _currentContext.size() > 1 && !_waitDeclarationsFunctions.get(); }
bool isEmpty() const { return _currentContext.empty() && !_waitDeclarationsFunctions.get(); }

UnvisitedDecls& unvisitedDecls() { assert(_currentContext.size() >= 1); return *_currentContext.back().first.first; }
UnvisitedDecls& unvisitedNameDecls() { assert(_currentContext.size() >= 1); return _currentContext.back().first.second; }
VisitTable::MissingClassGeneration& lastClassContext() { assert(_currentContext.size() == 1); return *_currentContext.back().second.classContent; }
VisitTable::MissingSubClassGeneration* lastSubClassContext()

{ assert(_currentContext.size() >= 1); return _currentContext.size() == 1 ? nullptr : _currentContext.back().second.subclassContent; }
VisitTable::MissingClassGeneration& firstClassContext() { assert(_currentContext.size() >= 1); return *_currentContext.front().second.classContent; }

is
if

