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focus more on Smoothgrad, Integrated Gradient, Saliency Maps and ProtoTree
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You and |

Myself:

1. researcher at CEA on formal
methods for software safety
and security applied to

machine learning;

2. also working on case-based
reasoning and
out-of-distribution detection in

industrial use cases;

3. not a nuclear scientist!

e by design programs

The audience:
1. M2 students;

2. future practitionners of Al
systems;

The future?
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Definitions

Explanation

“An explanation is a presentation of (aspects of) the reasoning, function-
ing and/or behavior of a machine learning model in human-understandable

terms” [Nau+23]
“The belief (by the trustor) in the ability (of the trustee) to achieve some-

thing”
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Explanation is a spectrum

Social science have quite a big corpus on what constitutes a good
explanation ([Mil19])?

1. contrastive: why P instead of Q?
2. a social process: A explains P to B

3. more generic (cover more facts), simpler (quote less causes), and coherent
(related to previous knowledge) are more easily understood
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Why explaning?

impots.gouv i sParcoursu

Entrez dans l'enseignement supérieur

“The software discovered a new fundamental particle with 99% accuracy!”: not
enough to convince scientists! What is the causal chain that led to this decision?
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Why it matters

1. debugging and audit
2. refutability
3. compliance with regulation (GDPR article 13.f [SP17])
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About the wording “black-box”

Machine learning is the piling of billions of simple mathematical operations that

are atomically well understood
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The future?

Notations

1. samples x € Z C R? an input space, i" feature x;
2. anoutput y € % C R?, the it" feature Y
3. aprogram f : &+ % trainedona X
« we can usually decompose f =ho g
« in the following, h(x) is the output of an intermediate layer for neural network

4. V,yis the gradient of yat x
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Decision trees

Survival of passengers on the Titanic

gender
male female
age survived
073; 36%
95<age age<=95
died =
047, 61% B2

/ \
3<=sibsp sibsp<3

 died survived
002 2% 089, 2%

from Wikipediahttps://en.wikipedia.org/wiki/Decision_tree_learning/

Issue: the deeper the tree, the less amenable it is to understand its decision
11/38


https://en.wikipedia.org/wiki/Decision_tree_learning/

liminaries Post-hoc explanations N oy design programs , C The future?
o 000®0000000000 ole 000

Linear regressions

Y =Po +P1x1 + Paxy + ..+ Ppxy + €
A feature will contribute to the decision by its linear coefficient:
i=n
Y~ D=1k Pii
Xk

P
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Under the framework of feature attribution

Basic idea: for a given (x, f, y), identify which x; was the most useful for the

decision
sneeze Explainer | _sneeze ] V
weight (LIME)
headache - " | headache || | —
no fatigue
age
Mode! Data and Prediction Explanation Human makes decision

From de [RSG16]

The future?
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Local Interpretable Model-agnostic Explanations (LIME) [RSG16]:

1. causal approach: change x; to quantify their impact on y

- if no(sneeze) => no(flu), then sneeze is an important feature

2. once relevant features are identified, train a surrogate model that is easier to
interpret
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LIME - cont.

The resulting surrogate model only explains one prediction
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LIME pros and cons

Cons:
Pros: 1. training process requires a notion
1. no need for the input data; of neighborhood, which can be
2. no need to have access to the troublesome (images);
program; 2. no validity domain for the

surrogate model;
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Derivated approaches: Shapley values

1. identify the mean-shift of each feature contribution SHAP [LL17] (Shapley
values) to analyze ensemble models

2. gradually mask parts of the inputs (RISE [PDS18])
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Feature heatmaps

from [ZF14]

basic idea: compute V,yand project back on the input space the most important
25
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GRADCAM, SMOOTHGRAD

GRADCAM ([Sel+16; Cha+18] computes Vj(,)y;, then upsample the resulting
point &

SMOOTHGRAD [Smi+17] V,+y where x* is a gaussian neighborhood of x

Figure 2: From [Cha+18]

The future?
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Integrated gradients

Gradient on the line between x and a baseline image x [STY17]

1
IG; = (x; — x{)J inf(x' + a(x — x))da
o=0

usually computed using Riemann approaches

m
’ ’ ’ 1
IG; = (5= %) Y, Vi S + L= x ) x
k=0 mn
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Original image

Limitatior

Top label and score Integrated gradients Gradients at image

Top label: reflex camera
Score: 0.993755

Top label: fireboat
Score: 0.999961

Top label: school bus
Score: 0.997033

The future?
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Wrapping up: empirical feature attribution approaches

1. usually only require gradient computation access;
provide attributions on the input space;
heavily rely on the program internal representation;

no validity domain;

2o N

the question of which distance function to use is still open;
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Protoype based approaches - ProtoPnet

Black footed albatross

Indigo bunting

Cardinal

Clay colored sparrow

Common yellowthroat

Similarity score

T Y
Convolutional layers f Prototype layer g, Fully connected layer # Output logits

From [Che+19]

23/38



Explanable by design programs
00800

Approches par prototypes - ProtoPnet

1. learn “prototypes” : part of the input set that are used for the prediction;
2. during inference, the various h(x) are compared to the various prototypes

3. still rely on the hypothesis that “proximity in the latent space equals

proximity in the input space”

The future?
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Class-wise part detectors [Xu-+23c]

Part-based classifier Part-logits

{
SmoothGrads
™ ih]LﬂL.m

(Part visualization)

Avg Pooling

X Fine-tuned
Part-based classifier Blue
Grosbeak

extractor

Part-based classifier

From [Xu-+23c]
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And more...

1. diffusion models [Aug+22]
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How to evaluate explanation methods?

Some criterion proposed by [Nau+23] (Co12)

—_

2o N

. correction

cohérence (implementation invariance)
compactness (size of the explanation)
composability

controllability

Limitations
[e] YoleYoYeleYeleYole}

The future?
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How to evaluate explanation metrics?

See [Xu-+23a; Xu-+23d] there is no “one size fits all” metric
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Soup Bowl (vanilla) Eel (vanilla)

iE 10.9: Images of a dog classified as greyhound, a ramen soup classified as soup bowl, and an

octopus classified as eel.

From [Mol22]



Greyhound (vanilla) Soup Bowl (vanilla) Eel (vanilla)

Greyhound (Smoothgrad)

Soup Bowl (Smoothgrad) Eel (Smoothgrad)

Greyhound (Grad-Cam) Soup Bowl (Grad-Cam) Eel (Grad-Cam)

P e

FIGURE 10.10: Pixel attributions or saliency maps for the Vanilla Gradient method, SmoothGrad and
Grad-CAM.

From [Mol22]



The network decision is ill-based. Why is that? How to fix it?

This explanation does not help to adjust our mental model on the program’s

behaviour, it is not a good one
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Extracting a causal chain and displaying it to a person is causal attribution, not

(necessarily) an explanation [Mil19].

Attribution-based approaches are not enough to “fill the holes” for complex

programs

“How the decision was taken” and “Why the decision was taken” are two

different questions

The future?
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Integrated  Gradient

i " s Edge
Original . Guided Guided Integrated Gradients o]
Image Gradient SmoothGrad pgackprop GradCAM  Gradients SmoothGrad  Input Detector
| =
) > 5
Junco e 1 b 4 i A J‘f
Bird ) /| s g
Corn 93{"’\; n’x?fa e ‘
Wheaten Q s
Terrier .

From [Tom+19]
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Cascading randomization

Limitations
00000000800

The future?

N
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From [Tom+19]. The more on the right, the more random the network is.
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Feeding our own biases

Confirmation bias (Wikitionnaire)

(psychology) A cognitive bias towards confirmation of the hypothesis under
study

A “nice” heatmap will confirm that the network works as expected, without

being necessarily an accurate description of its inner working
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Explanations can be manipulated [Dom+19]

b 3 35
Y ARy R
CXDIANILION
“'Tl*‘i

maAmteulated

From [Dom+19] 36/38
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Open questions

1. validity of feature methods (for a variation on f? on x?)
2. how to evaluate explanations and sort evaluation metrics?

3. “social” explanation is yet to happen
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Our work, present and future

1. case-based reasoning [Xu-+23c], out-of-distribution detection [Xu-+23b]

2. explainable by design approaches with a soon-to-come open source library
(CABRNET)

3. formal explanation of Al

Open to collaborations!
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