Remove Before Flight

Defect-Free Software and Agile Development
in SPARK 2014

Martin Becker

Chair of Real-Time Computer Systems (RCS)
Technical University of Munich

Presented at
Frama-C & SPARK Day 2017, Paris
May 30th, 2017

@ Lehrstuhl fir
©"""'Y Realzeit-Computersysteme

A Wish TUT

Does it work with ““bugs”?
Which defects are removed, and when?

May 30th, 2017 Martin Becker: Remove Before Flight page 2 of 43

Outline TUm

Hi Briefing (Introduction)

—

A Pre-Flight Checks (Development Process)

N

W)

B Request to Taxi (Verification Outcome)

N

1 Ready for Takeoff / En Route (Glider Launch)

B Incident Report (SPARK Forensics)

&)

@ Debriefing (Conclusion)

May 30th, 2017 Martin Becker: Remove Before Flight page 4 of 43

Briefing (Introduction)

May 30th, 2017 Martin Becker: Remove Before Flight page 5 of 43

Mission — A Novel Weather Balloon m

altitude Tba“m’"
ditched
A
target | . disengage expecting
altitude head wind
10km MSL

up to 150km/h

TS..lOm/s

() target: 0 km (return home)
| ~ : ; -
f f >
0 inflate 30' uncontrolled 6‘0‘ attitude 60+X" homing 80.! 120" retired time
takeoff climb release stabilization staple gliding landing

Need to: monitor ascend, unhitch from balloon, return to
take-off location (& record weather data)

May 30th, 2017 Martin Becker: Remove Before Flight page 6 of 43

Glider TUm

= high-altitude micro glider
= > 10km altitude, 30-100km/h air speed
= non-motorized vehicle, MToW 400g
m need a flight stack
= estimate attitude, stabilize flight, navigate w/ GPS, ...

May 30th, 2017 Martin Becker: Remove Before Flight page 7 of 43

Embedded Target UM

= “‘Pixhawk’ autopilot, 168MHz ARM Cortex-M4(F)
= 2MB Flash, 256kB RAM, SD Card Interface, NVRAM
m Co-Processor with “failsafe’ functionality for servo output
m (cross-verification)
m 1x GPS, 1x Barometer, 1IXMEMS+Gyro, 1x Magnetometer,
2x Acuator, 1x Buzzer
Ada/SPARK Runtime System: Ravenscar Small Footprint
= determinstig & analyzable multi-threading with constraints
m RTS must be ported from similar Cortex-M4 (F409)
also: based on AdaCore’s Driver Library/Bareboard Code

need: custom drivers for our hardware, attitude estimator,
mission handling, homing functionality

3 months time, 2 developers

May 30th, 2017 Martin Becker: Remove Before Flight page 8 of 43

Anatomy of the Flight Stack

Tm

|
[
¥ \J
Modules Ka.man! — Profier Logger
\
¥ ¥ | | ¥ | ¥ A
Manager Baro IMU GPS Mag Servo Buzzer nvRAM SD Console
| | | | | | | \
L L L v Y \J L/ \/
Drivers - MPUG000 UbloxM8 HMC5883L PX410 FM25V01 ~ FAT32 XBee
Interface Lay.
HAA Abstraction Lay. SPI UART 12C

Presentation Lay.

m Flight-critical (“‘mission”’) and non-flight-critical (“logging’’)
tasks communicate via message queue (protected object)
= goal: full SPARK coverage everywhere except HAA +

isolation of tasks

May 30th, 2017

Martin Becker: Remove Before Flight

page 9 of 43

Pre-Flight Checks (Development Process)

May 30th, 2017 Martin Becker: Remove Before Flight page 10 of 43

The Role of (Integration) Testing Tum

m avoid loss of airframe (money and time)

m Germany: must not fly above 100m GND, final launch
requires permission, insurance and manpower

m some low-altitude testing (risky and of limited use)

May 30th, 2017 Martin Becker: Remove Before Flight page 11 of 43

The Role of (Integration) Testing UM

m avoid loss of airframe (money and time)

s Germany: must not fly above 100m GND, final launch
requires permission, insurance and manpower

= some low-altitude testing (risky and of limited use)

page 11 of 43

The Role of (Integration) Testing Tum

m avoid loss of airframe (money and time)

Germany: must not fly above 100m GND, final launch
requires permission, insurance and manpower

some low-altitude testing (risky and of limited use)
goal: “de-bug’’ before going for any flight
= unit verification through static analysis (SPARK2014,
GNATprove), separation of criticality,
= at least: no exceptions during flight, keep flight-critical task
alive

May 30th, 2017 Martin Becker: Remove Before Flight page 11 of 43

The Role of (Integration) Testing Tum

m avoid loss of airframe (money and time)
m Germany: must not fly above 100m GND, final launch
requires permission, insurance and manpower
m some low-altitude testing (risky and of limited use)
= goal: “‘de-bug’’ before going for any flight
= unit verification through static analysis (SPARK2014,
GNATprove), separation of criticality,

= at least: no exceptions during flight, keep flight-critical task
alive

As little as possible, only when software is stable.

May 30th, 2017 Martin Becker: Remove Before Flight page 11 of 43

The SPARK 2014 Programming Language UM

m language intended for formal verification, successor of
SPARK

= strongly typed, imperative, object-oriented
= adopted syntax of Ada 2012 < both languages can be
mixed within an application
m SPARK 2014 = constrained subset of Ada 2012"":

m no access (pointers), no aliasing, no exception handling, ...
= need for proving the absence of exceptions

m user can specify functional contracts, data flow contracts
and assertions

m first-order logic, executable semantics, IEEE-754 Floats
m static analysis (i.a., deductive theorem proving)
m proof for absence of errors (exceptions + failing contracts)
m Used Implementation: AdaCore’s SPARK 2014, version
GPL 2016 (partially Pro 17)

May 30th, 2017 Martin Becker: Remove Before Flight page 12 of 43

Debugging Goals TUT
Ways of Finding Defects

most by static analysis (each developer & nightly runs)
= replace unit testing (no harness + fixture, no env. sim.)
= poinpoints defects and some amount of
under-specification
few by integration testing
= defects which were missed by static analysis
= defects which require context beyond source code
m logging of exceptions: poinpoint infections, no chasing
through cause-effect chains
m defects of three kinds:
= masking defects during analysis / careless usage of verifier
m ignoring failed proofs / wrong process
m wrong ‘‘verification fixes’ (saturation) / incomplete
specification
none during operation
m nevertheless: logging of exceptions & in-air reset

May 30th, 2017 Martin Becker: Remove Before Flight page 13 of 43

Nightly Verification Builds TUm

Nightly “deep’’ verification runs with long timeouts

m Jenkins server on Intel Xeon E5-2680 Octa-Core, 2.7GHz,
16GB RAM

m GNATprove works all cores, allowing for high steps
Output: Verification summary, sent to all developers

] Complete verification IOg (file.adb:13:12: overflow check might
fail (e.g., when))

= gnatprove.out (type of property, % verified, which prover)
m a custom verification summary in tabular form:

May 30th, 2017 Martin Becker: Remove Before Flight page 14 of 43

Nighly Verification Table TUTI

compilation props flows props ents cover num
unit success success proven props
px4io.protocol 100 100 b4 1 100 b4
bounded_image 100 100 35 11 100 35
magnetometer 100 100 18 7 100 18
servo 100 100 10 9 100 10
mpu6000.register 100 100 1 1 100 1
ublox8.driver 99.0 100 98 28 100 99
px4io.driver 98.4 100 124 19 100 126
main 97.4 100 38 4 100 39
mission 95.6 100 86 25 100 90
units.navigation 85.4 100 129 16 100 151
hil.devices.nvram 76.2 100 16 10 100 21
msb5611.driver 75.4 100 135 45 100 179
controller 67.3 86.9 111 46 100 165
kalman 65.0 100 91 18 100 140
imu 50.7 100 70 20 100 138
nvram 100 100 15 27 92.6 15
logger 96.9 100 62 21 90.5 64
ulog 98.5 100 133 14 85.7 135
mpu6000.driver 74.6 100 126 29 79.3 169

May 30th, 2017 Martin Becker: Remove Before Flight page 15 of 43

Nighly Verification Table

m different view than GNATprove report

success (% discharged)
coverage (%SPARK ‘““on’’) per unit
absolute counts

ordered by coverage, then success
goal: promote flight-critical units to the top
m developers work on critical parts first

m decision taken every morning

m code base grows quickly, but is kept in check

Latest version: separation by task (““flight-critical’’ table vs

“non-critical’’ table)

May 30th, 2017

Martin Becker: Remove Before Flight

page 16 of 43

Request to Taxi (Verification Outcome)

May 30th, 2017 Martin Becker: Remove Before Flight page 17 of 43

Experiences TLTI

Catching Missing Requirements

An effective way to avoid overflows and range errors?

baro_alt : Altitude_Type;
if Float (alt_int) >= Altitude_Type’Last then

baro_alt := Altitude_Type ’Last;

elsif Float (alt_int) <= Altitude_Type’First then
baro_alt := Altitude_Type ’First;

else
baro_alt := Float (alt_int16);

end if;

Even better (create a generic and use it all over the place):

function Sat_Cast_Alt is new Saturated_Cast (Altitude_Type);
baro_alt := Sat_Cast_Alt (alt_intl16);

May 30th, 2017 Martin Becker: Remove Before Flight page 19 of 43

Experiences TLTI

Catching Missing Requirements

Consider this’:
data_rx : Byte_Arr (0..91) := Read_From_Device (GPS_UART_0);
subtype Lat_Type is Angle_Type range -90.0 .. 90.0;

Lat : Lat_Type := Sat_Cast_Lat(Float(data_rx(28..31))*1E-7);

Static analysis: no range errors. However:

Tcode simplified

May 30th, 2017 Martin Becker: Remove Before Flight page 20 of 43

Experiences TLTI

Catching Missing Requirements

Consider this':
data_rx : Byte_Arr (0..91) := Read_From_Device (GPS_UART_0);

subtype Lat_Type is Angle_Type range -90.0 .. 90.0;
Lat : Lat_Type := Sat_Cast_Lat(Float(data_rx(28..31))*1E-7);

Static analysis: no range errors. However:

m failure of GPS device = silently ignored

= missing error handling for component/subsystem failure

m majority of such cases was missing a requirement
Saturation as means to ““silence the prover’” should be avoided

Tcode simplified

May 30th, 2017 Martin Becker: Remove Before Flight page 20 of 43

Attacking the Floats TUT

m using the GNAT dimensionality system:

angle : Angle_Type := 20.0 * Degree;
dt : Time_Type := 100.0 * Milli * Second;
rate : Angular_Velocity_Type := dt/angle;

= majority of floats range-limited
m how hard can it be?

Verification success per VC type

100
90
IS
= 80
«
173
8
g 70
3
60 I
50
o F ® 9 X € £ X X X D X € X £ X
S S 6 6 S S S
S35 8882280888208 30
820858566656 38645
= 2 5 £ c K <
<a 838 3EZgEsgEs 8z 3
2 8 8 o 92 8 22c 2 gL 1<)
EEE2F L5552 8% =
238 387 % E Jd« z2ag 3
a o © S o o
= € = 2 Q.
£ S o L
@ 2y
(8} [a)

May 30th, 2017 Martin Becker: Remove Before Flight page 21 of 43

Attacking the Floats

Floats are hard to verify (but possible)

. Jooojoid-opxd

. Je)s1601°0009NdWw

. fail
[proven

8010
[srosuoo

uew
uonebireusyun
Jajyoid
Jebeuew pa|
Jsjjonu00
sBusAw

wesu

=

Jojewnse

aBew papunog

Results for Length Check

10660]
WeIAU'SEdINep'IY
ojupying

J8Aup 000gndw
Janupolpxd
SI0j0aN'SHUN

J9ALP’ | L9GSW

3
E

19ALp'gXO[GN

uewey

suoisIeAuoo'Bojn

25
20
15
10
5
0

3
5
2

page 22 of 43

Martin Becker: Remove Before Flight

May 30th, 2017

Attacking the Floats UM

Floats are hard to verify (but possible)

Results for Fp Overflow Check

920
I fail
= proven
80
70
60
50
3
5
2
40
30
20
10 I
, Al eers s =
P P — P - PR
§ 5 2 £ s § s g g kol g] k]
= 3 S 2 o b3 © =
£ 5 3 E 8 g 5 g g E 3
£ c S Z E S s e e
8 K] 3 2 3 8
s g &
E

units.navigation
ms5611.driver
ublox8.driver
mpuB000.driver
units.operations
units.numerics

buzzer_mana

Ways out: SPARK lemma library, CodePeer

May 30th, 2017 Martin Becker: Remove Before Flight page 22 of 43

More Floats — Unexpected Exception

m CPU goes into reset loop during pre-flight checks

] IOg: eXCGption iN units.vectors.rotate()

m debugger (extremely hard to reproduce):

3~ pPackage body Units.Vectors with SPARK Mode is

4

5w procedure rotate

6 {(vector : im out Cartesian Vector Type;

7 axis H Cartesian Coordinates Type;
angle @ Angle Type) is
result : Cartesian Vector Type := vector;

10

11 begin

12~ case (axis) is

i1 when X =>

14 = result (¥) := <Cos (angle) * vector (¥) - Sin

Units Vectors.rotate

Messages Locations Debugger Execution <6=

#1 0Ox080l5a9c in units.vectors.rotate (vector=..
(gdb) info locals

'

result = (0,00212701317, O.0383495204, -2.02303554e-

{gdb) print angle
$11 = 0.00429291604

May 30th, 2017 Martin Becker: Remove Before Flight

Debugger Consale <6 Debu
axis=x, angle=0,00429291604) &

38)

page 23 of 43

More Floats — Unexpected Exception Tum

CPU goes into reset loop during pre-flight checks
] IOg: eXCGption iN units.vectors.rotate()

m debugger (extremely hard to reproduce):

m static analysis had proven absence of runtime errors
m after some detour into assembly: run-time system
configured incorrectly for target
m config: FPU produces no denormals (“‘flush to zero’)
= reality: FPU does produce denormals
m internal F1oat’valid check raises exception
m what happened: glider motionless long enough — gyro
rates very small (2E-38) — rotating by small pitch/roll
angle (glider level) — “numerical underflow”’

fix configuration of run-time system, mismatch gone

May 30th, 2017 Martin Becker: Remove Before Flight page 23 of 43

Reports for daily use

Success per Unit

250

=3 proven

19381601 0009Ndw

9|0Su0d
suolesadosyun
sadfy
Jabeuew pa|
souBwNU*s)UN
[INE
J9jowoleq
Jabeuew Jazznq
sdb
Jayoud
WeJAU
WEJAU'SBOIASP 1Y
ojulip|ingq
sbuisAw
Je)owo)subew
=1y
=== abew papunoq
= ulew
=== |000j04d"0Ixd
| e—15]010]]
B SUO0ISISAU0D Bojn
| —— VS S|
[m—— S O LEVSS V)]
[——S [V
| E—— VNI s Re M) o 4]
[——— VNI eI
| ——— U T T INTT ST
| ———f o]0] 1]
[m—— V]
[m——V] =1V)']
[——— VD SR W R e eI}
[——— VN SN0 JO e L 0]
| ——C | (oY) (V]ee]
[—— (O]V [} (5]

I unsuccessful

o o o o o
o v o v
Y - -

o

unit

page 24 of 43

Martin Becker: Remove Before Flight

May 30th, 2017

Reports for daily use

Unit SPARK coverage

o
S

S 1)U00"pIBopS I9pea)” Blpaw

pJeops’Jopeal elpaw
Japeas”elpauw
siawiy Iy

= body

Bojn

I JaAUP0009Ndw

e 19)j01jU00
T 9|0SU0D
e Gupisey byuod
e aiemyos byuoo
e 6Juod
e Jebeuew Jezzng
e ofewl” papunoq
S 100q

9 9 9 o 9o o
S ® © I «

abesenoo

page 24 of 43

Martin Becker: Remove Before Flight

May 30th, 2017

Reports for daily use UM
Why checks fail in unit:

80 Why checks fail in mpu6000.driver
Il Timeout
70 I Valid
Il timeout

Number of
IS
S

= N
o =) S

VC_INDEX_CHECK

VC_RANGE_CHECK
VC_PRECONDITION

VC_LENGTH_CHECK

VC_DIVISION_CHECK

VC_OVERFLOW_CHECK

VC_FP_OVERFLOW_CHECK

May 30th, 2017 Martin Becker: Remove Before Flight page 24 of 43

Success vs. Time m

1 I I I
! | —e— total properties
3000 [' | —=— proven properties

2000 D . l I
1 1 1 I'g

1 | 1 (Y|

i i [! (]

i i ! =

| i ! R

1000)~ | e L |]

19/07 24/07 29/07 03/08 08/08 13/08 18/08 23/08 28/08 02/09 07/09 12/09 17/09

Date in DD/MM

May 30th, 2017 Martin Becker: Remove Before Flight page 25 of 43

Computational Effort

I o7

1800

1600

1400

Total CPU time per VC type

Buisely
Il sose) 1oejuo) juiofsig
I voneuiwsa] Msel
Il (000301 Auoud Buied
I 5seD 10enu0)
I >102yD Xapu|
I >0°U0 jueulwuosIq
I U0!)Pu0dRld
I oSSy
I %00y UOISING
I U0!)/Pu02}SOd
I 5102yD YibueT
I %i05UO MOIUSAQ
I >108yD ebuey

I 50340 MR d

L o+ o o - o T o
© O © © © © 5 o

1200

1000

[s] aw sisAjeuy

uoneuIwIa | Msel
sase) joesuo) juiolsig
0203014 Ajoud Bule)
| @se) joenuon
| Buiseny
[pessy
1 >08uD xapu
- 399y jueulwudsig
. uonIpuod}sod
[l >o8yD uoising
I >039yD moenQ
I >3uD wbue
I uonipuodaid
I 510540 MO|HBAQ d
I 00y ebuey

uun

o o o o o
S 9o o o
8642

page 26 of 43

Martin Becker: Remove Before Flight

May 30th, 2017

Debugging — Reality Tum

How we found defects

most by static analysis (each developer & nightly runs)
= removed all “‘stupid bugs”
= identified missing requirements (saturation)

few by integration testing

= masking defects during analysis / careless usage of verifier

m ignoring failed proofs / wrong process

= incorrect config of run-time system / violating prerequisite
for analysis

none during operation?

May 30th, 2017 Martin Becker: Remove Before Flight page 27 of 43

Ready for Takeoff / En Route (Glider
Launch)

May 30th, 2017 Martin Becker: Remove Before Flight page 28 of 43

Final Flight (1) TUm

May 30th, 2017 Martin Becker: Remove Before Flight page 29 of 43

Program Traces Tools Map Local GPS Data Link

TUT]

Srratofy
PEICRENTS
RSSI WAIT
Status

A/C Status
Lat 11
Lon 48.
Alt 6650.1
Hdg 0
G'Vel WAIT
AltMSL 6650.1
G'Speed 71.4131

0 tiles remaining No GPS (No such file or directory) xbee

May 30th, 2017 Martin Becker: Remove Before Flight page 30 of 43

Program Traces Tools Map Local GPS Data Link

TUT]

Stratoff

Data Link
RSSI WAIT
Status

A/C Status
Lat 117
Lon 48.
Alt 5731.2
Hdg (o]
G'Vel WAIT
AltMSL 5731.2
G'Speed 83.7474

Bl

0 tiles remaining.No GPS (No such file or directory) xbee

May 30th, 2017 Martin Becker: Remove Before Flight page 31 of 43

2740m!

32543

e

May 30th, 2017 Martin Becker: Remove Before Flight page 32 of 43

Lost Contact m

= navigation failure, but stable flight

m glider did not return back home
m glider could not be recovered
m ironically: stand-alone backup localization device had failed

= How to find out what went wrong?

May 30th, 2017 Martin Becker: Remove Before Flight page 33 of 43

Incident Report (SPARK Forensics)

May 30th, 2017 Martin Becker: Remove Before Flight page 34 of 43

SPARK Forensics TUm

m self-tests at startup had been passed

= launch and unhitch went according to plan

m Continuously flying left circles until landing:

= stable flight is only possible with healthy airframe + controls

m Possible Explanations: another unexpected exception, or
no GPS fix, or lost home position, or in-air reset with
unsuccessful resume, or sensor error or numerical error,
or, or, or ...

Luckily, high-level behavior of glider was encoded and verified
in SPARK

May 30th, 2017 Martin Becker: Remove Before Flight page 35 of 43

Encoded High-Level Behavior (simplified) Tum

procedure Update_Homing with
Global => (Input => (G_Object_Pos, G_Target_Pos),
In_Out => (G_state), Output => Ctrl_Mode),
Depends => (G_state => (G_state, G_Object_Pos, G_Target_Pos)) is

5| begin
G_state.once_had_my_pos := G_state.once_had_my_pos or have_my_pos;
if have_my_pos and then have_home_pos then
if G_state.distance_to_home < Config.TARGET_ZONE_RADIUS then
Ctrl_Mode := MODE_ARRIVED;
10 else
Ctrl_Mode := MODE_HOMING;
end if;
elsif have_home_pos and then (not have_my_pos and G_state.once_had_my_pos) then
Ctrl_Mode := MODE_COURSEHOLD; —— temporarily lost nav => hold course
15 else
pragma Assert (not have_home_pos or not G_state.once_had_my_pos);
Ctrl_Mode := MODE_POSHOLD; don’t know where to go => hold position
end if;

end Update_Homing;

1| procedure Compute_Target_Attitude with

Global => (Input => (G_state, Ctrl_Mode, G_Object_Att, Ada.Real_Time.Clock_Time),
Output => (G_Target_Att)),

Contract_Cases => ((Ctrl_Mode = MODE COURSEHOLD) =>

G_Target_Att.Yaw = G_Target_Att_Prev.Yaw, roll open

6 (Ctrl_Mode = MODE HOMING) =>
G_Target_Att.Yaw = G_state.course_to_home, roll open
(Ctrl_Mode in MODE_POSHOLD | MODE UNKNOWN) =>
G_Target_Att. Roll = —Config.CIRCLE_TRAJECTORY_ROLL, yaw open
(Ctrl_Mode = MODE_ARRIVED) =>

11 G_Target_Att. Roll = Config.CIRCLE_TRAJECTORY_ROLL), — yaw open

Post => G_Target_Att_Prev = G_Target_Att;
May 30th, 2017 Martin Becker: Remove Before Flight page 36 of 43

Encoded High-Level Behavior

m enforcing exactly one out of four behaviors
{MODE_HDMING, MODE_COURSEHOLD, MODE_POSHOLD, MODE_ARRIVED}
m conditions for circling left:

MopE_PosHOLD: only if no home position or never had GPS fix
= no, mission starts only with these (acoustic and optical
pre-flight checks from glider)

MODE_COURSEHOLD: no, would fly straight =- glider had GPS fix
MODE_ARRIVED: nO, would circle right = no calculation error
MODE_HOMING: Yes, could circle left

permanent in-air resets: extremely unlikely, as this causes
twitches (trajectory smooth). Even if, last values would be
restored from NVRAM.

= = Glider was in homing mode. Only two explanations left:

May 30th, 2017

mag/compass broken (would have been detected by BIST)
mag/compass provided unexpected output (e.g., ‘““‘cannot
find north”’)

Martin Becker: Remove Before Flight page 37 of 43

Reviewing Previous Flight Logs...
MAV System Data Plot

L

Suggested explanation: Magnetic distortion in avionics bay

May 30th, 2017 Martin Becker: Remove Before Flight page 38 of 43

Debriefing (Conclusion)

May 30th, 2017 Martin Becker: Remove Before Flight page 39 of 43

Debugging — Reality Tum
Ways of Finding Defects

most by static analysis (each developer & nightly runs)

= removed all “‘stupid bugs”
m identified under-specification
few by integration testing

= masking defects during analysis / careless usage of verifier

m ignoring failed proofs / wrong process

m wrong ‘“‘verification fixes” (saturation) / incomplete
specification

= incorrect config of run-time system / violating prerequisite
for analysis

May 30th, 2017 Martin Becker: Remove Before Flight page 40 of 43

Debugging — Reality Tum
Ways of Finding Defects

most by static analysis (each developer & nightly runs)

= removed all “‘stupid bugs”
m identified under-specification
few by integration testing
= masking defects during analysis / careless usage of verifier
m ignoring failed proofs / wrong process
m wrong ‘“‘verification fixes” (saturation) / incomplete
specification
= incorrect config of run-time system / violating prerequisite
for analysis
one during operation
= faulty but non-crashing behavior
missed during integration testing
unverified assumptions about sensor data
beyond context of source code

May 30th, 2017 Martin Becker: Remove Before Flight page 40 of 43

Looking back TLTI

m writing code takes more time in SPARK 2014 (cmp.: C)

= but some agility can be applied to speed up progress
(write first — fix critical — fix uncritical)
m very little debugging work
m practically no exceptions during system testing
= no working through cause-effect chains
= NO minimization of problem cases
m no isolation of failure causes
m no reproduction issues

m concentrate on getting functionality right which is not
modeled in SPARK
m effect of Kalman Filter
= evolution of sensor data
= underspecification (what happens after GPS goes silent?)

May 30th, 2017 Martin Becker: Remove Before Flight page 41 of 43

Conclusion TUTI

m SPARK 2014 and tools work very well

priceless execution semantics of annotations

many defects are avoided with almost no additional effort
no excuses for uninitialized variables

floating-point numbers are usable, but need some work
(instantiate lemmas, refactoring of code, longer time to
verify)

m testing can be significantly reduced (not system testing)
= high-level behavior can and should be encoded

m Ravenscar+SPARK: easy and effective multi-threading,
separation of criticality, must-have

m not evaluated in detail: OO (not for us) and flow
dependencies (for being a cousin of “const hell”)

m code being released open source

May 30th, 2017 Martin Becker: Remove Before Flight page 42 of 43

Reached Parking Position — Questions? UM

You & Your Process

SPARK 2014 & Tools

(Do not re-install after landing)

To appear: Development and Verification of a Flight Stack for a High-Altitude Glider in
Ada/SPARK 2014, M.Becker, E.Regnath, S.Chakraborty, Computer Safety, Reliability
and Security (SAFECOMP), 36th International Conference, Trento, Italy, 2017.

May 30th, 2017 Martin Becker: Remove Before Flight page 43 of 43

	Briefing (Introduction)
	Mission
	Target
	Software Architecture

	Pre-Flight Checks (Development Process)
	Testing
	Programming Environment
	Verification Runs

	Request to Taxi (Verification Outcome)
	Reports
	Success over Time

	Ready for Takeoff / En Route (Glider Launch)
	Course of Flight
	Incident

	Incident Report (SPARK Forensics)
	Forensics

	Debriefing (Conclusion)

