
Remove Before Flight
Defect-Free Software and Agile Development
in SPARK 2014

Martin Becker

Chair of Real-Time Computer Systems (RCS)
Technical University of Munich

Presented at
Frama-C & SPARK Day 2017, Paris
May 30th, 2017

A Wish

Does it work with ‘‘bugs’’?
Which defects are removed, and when?

May 30th, 2017 Martin Becker: Remove Before Flight page 2 of 43

Outline

1 Briefing (Introduction)

2 Pre-Flight Checks (Development Process)

3 Request to Taxi (Verification Outcome)

4 Ready for Takeoff / En Route (Glider Launch)

5 Incident Report (SPARK Forensics)

6 Debriefing (Conclusion)

May 30th, 2017 Martin Becker: Remove Before Flight page 4 of 43

Briefing (Introduction)

May 30th, 2017 Martin Becker: Remove Before Flight page 5 of 43

Mission – A Novel Weather Balloon

Need to: monitor ascend, unhitch from balloon, return to
take-off location (& record weather data)

May 30th, 2017 Martin Becker: Remove Before Flight page 6 of 43

Glider

high-altitude micro glider
> 10km altitude, 30-100km/h air speed
non-motorized vehicle, MToW 400g

need a flight stack
estimate attitude, stabilize flight, navigate w/ GPS, ...

May 30th, 2017 Martin Becker: Remove Before Flight page 7 of 43

Embedded Target

‘‘Pixhawk’’ autopilot, 168MHz ARM Cortex-M4(F)
2MB Flash, 256kB RAM, SD Card Interface, NVRAM
Co-Processor with ‘‘failsafe’’ functionality for servo output
(cross-verification)

1x GPS, 1x Barometer, 1xMEMS+Gyro, 1x Magnetometer,
2x Acuator, 1x Buzzer
Ada/SPARK Runtime System: Ravenscar Small Footprint

determinstig & analyzable multi-threading with constraints
RTS must be ported from similar Cortex-M4 (F409)

also: based on AdaCore’s Driver Library/Bareboard Code

need: custom drivers for our hardware, attitude estimator,
mission handling, homing functionality

3 months time, 2 developers

May 30th, 2017 Martin Becker: Remove Before Flight page 8 of 43

Anatomy of the Flight Stack

Flight-critical (‘‘mission’’) and non-flight-critical (‘‘logging’’)
tasks communicate via message queue (protected object)

goal: full SPARK coverage everywhere except HAA +
isolation of tasks

May 30th, 2017 Martin Becker: Remove Before Flight page 9 of 43

Pre-Flight Checks (Development Process)

May 30th, 2017 Martin Becker: Remove Before Flight page 10 of 43

The Role of (Integration) Testing

avoid loss of airframe (money and time)

Germany: must not fly above 100m GND, final launch
requires permission, insurance and manpower

some low-altitude testing (risky and of limited use)

May 30th, 2017 Martin Becker: Remove Before Flight page 11 of 43

The Role of (Integration) Testing

avoid loss of airframe (money and time)
Germany: must not fly above 100m GND, final launch
requires permission, insurance and manpower
some low-altitude testing (risky and of limited use)

May 30th, 2017 Martin Becker: Remove Before Flight page 11 of 43

The Role of (Integration) Testing

avoid loss of airframe (money and time)

Germany: must not fly above 100m GND, final launch
requires permission, insurance and manpower

some low-altitude testing (risky and of limited use)
goal: ‘‘de-bug’’ before going for any flight

unit verification through static analysis (SPARK2014,
GNATprove), separation of criticality,
at least: no exceptions during flight, keep flight-critical task
alive

May 30th, 2017 Martin Becker: Remove Before Flight page 11 of 43

The Role of (Integration) Testing

avoid loss of airframe (money and time)

Germany: must not fly above 100m GND, final launch
requires permission, insurance and manpower

some low-altitude testing (risky and of limited use)
goal: ‘‘de-bug’’ before going for any flight

unit verification through static analysis (SPARK2014,
GNATprove), separation of criticality,
at least: no exceptions during flight, keep flight-critical task
alive

As little as possible, only when software is stable.

May 30th, 2017 Martin Becker: Remove Before Flight page 11 of 43

The SPARK 2014 Programming Language

language intended for formal verification, successor of
SPARK

strongly typed, imperative, object-oriented

adopted syntax of Ada 2012 , both languages can be
mixed within an application
SPARK 2014 = ’’constrained subset of Ada 2012’’:

no access (pointers), no aliasing, no exception handling, ...
need for proving the absence of exceptions

user can specify functional contracts, data flow contracts
and assertions

first-order logic, executable semantics, IEEE-754 Floats

static analysis (i.a., deductive theorem proving)
proof for absence of errors (exceptions + failing contracts)

Used Implementation: AdaCore’s SPARK 2014, version
GPL 2016 (partially Pro 17)

May 30th, 2017 Martin Becker: Remove Before Flight page 12 of 43

Debugging Goals
Ways of Finding Defects

1 most by static analysis (each developer & nightly runs)
replace unit testing (no harness + fixture, no env. sim.)
poinpoints defects and some amount of
under-specification

2 few by integration testing
defects which were missed by static analysis
defects which require context beyond source code
logging of exceptions: poinpoint infections, no chasing
through cause-effect chains
defects of three kinds:

masking defects during analysis / careless usage of verifier
ignoring failed proofs / wrong process
wrong ‘‘verification fixes’’ (saturation) / incomplete
specification

3 none during operation
nevertheless: logging of exceptions & in-air reset

May 30th, 2017 Martin Becker: Remove Before Flight page 13 of 43

Nightly Verification Builds

Nightly ‘‘deep’’ verification runs with long timeouts

Jenkins server on Intel Xeon E5-2680 Octa-Core, 2.7GHz,
16GB RAM

GNATprove works all cores, allowing for high steps

Output: Verification summary, sent to all developers

complete verification log (
)

gnatprove.out (type of property, % verified, which prover)

a custom verification summary in tabular form:

May 30th, 2017 Martin Becker: Remove Before Flight page 14 of 43

Nighly Verification Table

May 30th, 2017 Martin Becker: Remove Before Flight page 15 of 43

Nighly Verification Table

different view than GNATprove report
success (% discharged)
coverage (%SPARK ‘‘on’’) per unit
absolute counts
...

ordered by coverage, then success
goal: promote flight-critical units to the top

developers work on critical parts first

decision taken every morning

code base grows quickly, but is kept in check

Latest version: separation by task (‘‘flight-critical’’ table vs
‘‘non-critical’’ table)

May 30th, 2017 Martin Becker: Remove Before Flight page 16 of 43

Request to Taxi (Verification Outcome)

May 30th, 2017 Martin Becker: Remove Before Flight page 17 of 43

Experiences
Catching Missing Requirements

An effective way to avoid overflows and range errors?

1

6

Even better (create a generic and use it all over the place):

2

May 30th, 2017 Martin Becker: Remove Before Flight page 19 of 43

Experiences
Catching Missing Requirements

Consider this1:

3

Static analysis: no range errors. However:

failure of GPS device) silently ignored

missing error handling for component/subsystem failure

majority of such cases was missing a requirement

Saturation as means to ‘‘silence the prover’’ should be avoided

1code simplified
May 30th, 2017 Martin Becker: Remove Before Flight page 20 of 43

Experiences
Catching Missing Requirements

Consider this1:

1

Static analysis: no range errors. However:

failure of GPS device) silently ignored

missing error handling for component/subsystem failure

majority of such cases was missing a requirement

Saturation as means to ‘‘silence the prover’’ should be avoided

1code simplified
May 30th, 2017 Martin Becker: Remove Before Flight page 20 of 43

Attacking the Floats

using the GNAT dimensionality system:
1

majority of floats range-limited
how hard can it be?

May 30th, 2017 Martin Becker: Remove Before Flight page 21 of 43

Attacking the Floats
Floats are hard to verify (but possible)

May 30th, 2017 Martin Becker: Remove Before Flight page 22 of 43

Attacking the Floats
Floats are hard to verify (but possible)

Ways out: SPARK lemma library, CodePeer
May 30th, 2017 Martin Becker: Remove Before Flight page 22 of 43

More Floats – Unexpected Exception

CPU goes into reset loop during pre-flight checks
log: exception in
debugger (extremely hard to reproduce):

static analysis had proven absence of runtime errors
after some detour into assembly: run-time system
configured incorrectly for target

config: FPU produces no denormals (‘‘flush to zero’’)
reality: FPU does produce denormals
internal check raises exception

what happened: glider motionless long enough ! gyro
rates very small (2E-38) ! rotating by small pitch/roll
angle (glider level) ! ‘‘numerical underflow’’

fix configuration of run-time system, mismatch gone

May 30th, 2017 Martin Becker: Remove Before Flight page 23 of 43

More Floats – Unexpected Exception

CPU goes into reset loop during pre-flight checks

log: exception in

debugger (extremely hard to reproduce):

static analysis had proven absence of runtime errors
after some detour into assembly: run-time system
configured incorrectly for target

config: FPU produces no denormals (‘‘flush to zero’’)
reality: FPU does produce denormals
internal check raises exception

what happened: glider motionless long enough ! gyro
rates very small (2E-38) ! rotating by small pitch/roll
angle (glider level) ! ‘‘numerical underflow’’

fix configuration of run-time system, mismatch gone

May 30th, 2017 Martin Becker: Remove Before Flight page 23 of 43

Reports for daily use
Success per Unit:

May 30th, 2017 Martin Becker: Remove Before Flight page 24 of 43

Reports for daily use

Unit SPARK coverage:

May 30th, 2017 Martin Becker: Remove Before Flight page 24 of 43

Reports for daily use
Why checks fail in unit:

May 30th, 2017 Martin Becker: Remove Before Flight page 24 of 43

Success vs. Time

May 30th, 2017 Martin Becker: Remove Before Flight page 25 of 43

Computational Effort

May 30th, 2017 Martin Becker: Remove Before Flight page 26 of 43

Debugging – Reality
How we found defects

1 most by static analysis (each developer & nightly runs)
removed all ‘‘stupid bugs’’
identified missing requirements (saturation)

2 few by integration testing
masking defects during analysis / careless usage of verifier
ignoring failed proofs / wrong process
incorrect config of run-time system / violating prerequisite
for analysis

3 none during operation?

May 30th, 2017 Martin Becker: Remove Before Flight page 27 of 43

Ready for Takeoff / En Route (Glider
Launch)

May 30th, 2017 Martin Becker: Remove Before Flight page 28 of 43

Final Flight (1)

May 30th, 2017 Martin Becker: Remove Before Flight page 29 of 43

Final Flight (3)

May 30th, 2017 Martin Becker: Remove Before Flight page 30 of 43

Final Flight (4)

May 30th, 2017 Martin Becker: Remove Before Flight page 31 of 43

Final Flight (5)

May 30th, 2017 Martin Becker: Remove Before Flight page 32 of 43

Lost Contact

navigation failure, but stable flight

glider did not return back home
glider could not be recovered

ironically: stand-alone backup localization device had failed

How to find out what went wrong?

May 30th, 2017 Martin Becker: Remove Before Flight page 33 of 43

Incident Report (SPARK Forensics)

May 30th, 2017 Martin Becker: Remove Before Flight page 34 of 43

SPARK Forensics

self-tests at startup had been passed

launch and unhitch went according to plan
Continuously flying left circles until landing:

stable flight is only possible with healthy airframe + controls

Possible Explanations: another unexpected exception, or
no GPS fix, or lost home position, or in-air reset with
unsuccessful resume, or sensor error or numerical error,
or, or, or ...

Luckily, high-level behavior of glider was encoded and verified
in SPARK

May 30th, 2017 Martin Becker: Remove Before Flight page 35 of 43

Encoded High-Level Behavior (simplified)
procedure Update_Homing with

Global => (Input => (G_Object_Pos , G_Target_Pos) ,
In_Out => (G_state) , Output => Ctrl_Mode) ,

Depends => (G_state => (G_state , G_Object_Pos , G_Target_Pos)) i s
5 begin

G_state . once_had_my_pos := G_state . once_had_my_pos or have_my_pos ;
i f have_my_pos and then have_home_pos then

i f G_state . distance_to_home < Config .TARGET_ZONE_RADIUS then
Ctrl_Mode := MODE_ARRIVED;

10 else
Ctrl_Mode := MODE_HOMING;

end i f ;
e l s i f have_home_pos and then (not have_my_pos and G_state . once_had_my_pos) then

Ctrl_Mode := MODE_COURSEHOLD; �� t empora r i l y l o s t nav => hold course
15 else

pragma Assert (not have_home_pos or not G_state . once_had_my_pos) ;
Ctrl_Mode := MODE_POSHOLD; �� don ’ t know where to go => hold pos i t i on

end i f ;
end Update_Homing ;

1 procedure Compute_Target_Att i tude with
Global => (Input => (G_state , Ctrl_Mode , G_Object_Att , Ada . Real_Time . Clock_Time) ,

Output => (G_Target_Att)) ,
Contract_Cases => ((Ctrl_Mode = MODE_COURSEHOLD) =>

G_Target_Att .Yaw = G_Target_Att_Prev .Yaw, �� r o l l open
6 (Ctrl_Mode = MODE_HOMING) =>

G_Target_Att .Yaw = G_state . course_to_home , �� r o l l open
(Ctrl_Mode in MODE_POSHOLD | MODE_UNKNOWN) =>
G_Target_Att . Ro l l = �Config .CIRCLE_TRAJECTORY_ROLL , �� yaw open

(Ctrl_Mode = MODE_ARRIVED) =>
11 G_Target_Att . Ro l l = Config .CIRCLE_TRAJECTORY_ROLL) , �� yaw open

Post => G_Target_Att_Prev = G_Target_Att ;

May 30th, 2017 Martin Becker: Remove Before Flight page 36 of 43

Encoded High-Level Behavior

enforcing exactly one out of four behaviors
{ }
conditions for circling left:

: only if no home position or never had GPS fix
) no, mission starts only with these (acoustic and optical
pre-flight checks from glider)

: no, would fly straight) glider had GPS fix
: no, would circle right) no calculation error
: yes, could circle left

permanent in-air resets: extremely unlikely, as this causes
twitches (trajectory smooth). Even if, last values would be
restored from NVRAM.

) Glider was in homing mode. Only two explanations left:
1 mag/compass broken (would have been detected by BIST)
2 mag/compass provided unexpected output (e.g., ‘‘cannot

find north’’)

May 30th, 2017 Martin Becker: Remove Before Flight page 37 of 43

Reviewing Previous Flight Logs...

Suggested explanation: Magnetic distortion in avionics bay
May 30th, 2017 Martin Becker: Remove Before Flight page 38 of 43

Debriefing (Conclusion)

May 30th, 2017 Martin Becker: Remove Before Flight page 39 of 43

Debugging – Reality
Ways of Finding Defects

1 most by static analysis (each developer & nightly runs)
removed all ‘‘stupid bugs’’
identified under-specification

2 few by integration testing
masking defects during analysis / careless usage of verifier
ignoring failed proofs / wrong process
wrong ‘‘verification fixes’’ (saturation) / incomplete
specification
incorrect config of run-time system / violating prerequisite
for analysis

3 one during operation
faulty but non-crashing behavior
missed during integration testing
unverified assumptions about sensor data
beyond context of source code

May 30th, 2017 Martin Becker: Remove Before Flight page 40 of 43

Debugging – Reality
Ways of Finding Defects

1 most by static analysis (each developer & nightly runs)
removed all ‘‘stupid bugs’’
identified under-specification

2 few by integration testing
masking defects during analysis / careless usage of verifier
ignoring failed proofs / wrong process
wrong ‘‘verification fixes’’ (saturation) / incomplete
specification
incorrect config of run-time system / violating prerequisite
for analysis

3 one during operation
faulty but non-crashing behavior
missed during integration testing
unverified assumptions about sensor data
beyond context of source code

May 30th, 2017 Martin Becker: Remove Before Flight page 40 of 43

Looking back

writing code takes more time in SPARK 2014 (cmp.: C)
but some agility can be applied to speed up progress
(write first ! fix critical ! fix uncritical)

very little debugging work
practically no exceptions during system testing
no working through cause-effect chains
no minimization of problem cases
no isolation of failure causes
no reproduction issues

concentrate on getting functionality right which is not
modeled in SPARK

effect of Kalman Filter
evolution of sensor data
underspecification (what happens after GPS goes silent?)

May 30th, 2017 Martin Becker: Remove Before Flight page 41 of 43

Conclusion

SPARK 2014 and tools work very well
priceless execution semantics of annotations
many defects are avoided with almost no additional effort
no excuses for uninitialized variables
floating-point numbers are usable, but need some work
(instantiate lemmas, refactoring of code, longer time to
verify)
testing can be significantly reduced (not system testing)
high-level behavior can and should be encoded

Ravenscar+SPARK: easy and effective multi-threading,
separation of criticality, must-have

not evaluated in detail: OO (not for us) and flow
dependencies (for being a cousin of ‘‘const hell’’)

code being released open source

May 30th, 2017 Martin Becker: Remove Before Flight page 42 of 43

Reached Parking Position – Questions?

SPARK 2014 & Tools

You & Your Process

(Do not re-install after landing)

To appear: Development and Verification of a Flight Stack for a High-Altitude Glider in

Ada/SPARK 2014, M.Becker, E.Regnath, S.Chakraborty, Computer Safety, Reliability

and Security (SAFECOMP), 36th International Conference, Trento, Italy, 2017.

May 30th, 2017 Martin Becker: Remove Before Flight page 43 of 43

	Briefing (Introduction)
	Mission
	Target
	Software Architecture

	Pre-Flight Checks (Development Process)
	Testing
	Programming Environment
	Verification Runs

	Request to Taxi (Verification Outcome)
	Reports
	Success over Time

	Ready for Takeoff / En Route (Glider Launch)
	Course of Flight
	Incident

	Incident Report (SPARK Forensics)
	Forensics

	Debriefing (Conclusion)

