Florian Schanda
June 3, 2019

Z ENUITY

Who is Zenuity?

AD and ADAS software company owned by Veoneer and Volvo

Customers:

@ Volvo
@ Through Veoneer: Geely, an American OEM, a German OEM, etc.

Offices in Géteborg, Miinchen, Detroit, Santa Clara, and Shanghai

® Primary priority is safety

SPARK in an automotive context

Z ENUITY June 3, 2019

Why is AD so hard?

Technical issues

Safety critical, and:
e Complex environment (roads, road users, etc.)
® No obvious fail-safe architecture
® Nobody knows how to do it

® |arge safety-critical code base (compared to other industries)

SPARK in an automotive context

June 3, 2019

Why is AD so hard?

Technical issues

Safety critical, and:
e Complex environment (roads, road users, etc.)
® No obvious fail-safe architecture
® Nobody knows how to do it

® |arge safety-critical code base (compared to other industries)
® Will contain neural networks

SPARK in an automotive context

June 3, 2019

Why is AD so hard?

Technical issues

Safety critical, and:
e Complex environment (roads, road users, etc.)

® No obvious fail-safe architecture

Nobody knows how to do it

Large safety-critical code base (compared to other industries)
Will contain neural networks

® Effective validation approach unclear
® Verification is a research problem

SPARK in an automotive context

June 3, 2019

Why is AD so hard?

Process issues

® No experience with large safety-critical software in automotive
® Feature engineers, not programmers (in classical OEMs and suppliers)

¢ Unsuitable processes (what works in ADAS won't work here)

SPARK in an automotive context

June 3, 2019

1ISO 26262

® Key safety standard in automotive

K in an automotive context

June 3, 2019

1ISO 26262

® Key safety standard in automotive

® Defines integrity levels, precise mapping is up to interpretation

Z ENUITY

IEC 61508 DO-178C ISO 26262

- DAL-E QM QM
SIL-1 DAL-D ASIL-A ASIL-A
SIL-2 DAL-C ASIL-B/C ASIL-B
SIL-3 DAL-B ASIL-D ASIL-C
SIL-4 DAL-A = ASIL-D

SPARK in an automotive context
June 3, 2019

1ISO 26262

Key safety standard in automotive

Defines integrity levels, precise mapping is up to interpretation

IEC 61508 DO-178C ISO 26262

- DAL-E QM QM
SIL-1 DAL-D ASIL-A ASIL-A
SIL-2 DAL-C ASIL-B/C ASIL-B
SIL-3 DAL-B ASIL-D ASIL-C
SIL-4 DAL-A = ASIL-D

Defines verification objectives

Suggests minimal approach to meet them

SPARK in an automotive context

Z ENUITY June 3, 2019

1ISO 26262

Verification objectives

Demonstrate that the software units achieve:
® compliance with the software unit design specification
® compliance with the specification of the hardware-software interface
® the specified functionality

® confidence in the absence of unintended functionality

robustness

sufficient resources to support their functionality

SPARK in an automotive context

June 3, 2019

1ISO 26262

Verification objectives

Demonstrate that the software units achieve:
® compliance with the software unit design specification
® compliance with the specification of the hardware-software interface
® the specified functionality

® confidence in the absence of unintended functionality

robustness

sufficient resources to support their functionality

SPARK in an automotive context

June 3, 2019

1ISO 26262

Software robustness

It can mean a lot of things:
® no dead code?
® error detection effective?
® error handling effective?
® code does not crash?

® signal noise?

K in an automotive context

June 3, 2019

1ISO 26262

Robustness - “obvious”

This objective is classically hard through testing:
® Trivial to find "bugs”

result = (previous_speed + current_speed) * 0.5f;

K in an automotive context

June 3, 2019

1ISO 26262

Robustness - “obvious”

This objective is classically hard through testing:
® Trivial to find "bugs”
result = (previous_speed + current_speed) * 0.5f;
What about if our car goes at 1.13 x 103 % ¢?
® These bugs are “not helpful” and “obviously” irrelevant

e Often the only way to fix them is defensive code or justification

® Defensive code further increases testing effort (coverage)
® Justifications are often wrong, outdated, or fail to grasp the big picture

SPARK in an automotive context

June 3, 2019

1ISO 26262

Robustness - testing is hard

e Coverage metrics helps you complete your test-suite

® Various levels exist

Level of assurance Coverage criteria

ASIL-A Statement

ASIL-B Statement or Branch
ASIL-C Branch

ASIL-D MC/DC

SPARK in an automotive context

June 3, 2019

1ISO 26262

Robustness - testing is hard

e Coverage metrics helps you complete your test-suite

® Various levels exist

K in an automotive context
June 3, 2019

1ISO 26262

Robustness

Tests for MC/DC:
function Absolute_Value (N : Integer)
return Integer ° —42, 123
is
begin
if N >= 0 then
return N;
else
return -N;
end if;
end Absolute_Value;

K in an automotive context PAGE 10

June 3, 2019

1ISO 26262

Robustness

function Absolute_Value (N : Integer)
return Integer
is
begin
if N >= 0 then
return N;
else
return -N;
end if;
end Absolute_Value;

Tests for MC/DC:

o 42,123
Robustness around discontinuity:
e -1,01

1K in an automotive context

PAGE 10

June 3, 2019

1ISO 26262

Robustness

function Absolute_Value (N : Integer)
return Integer
is
begin
if N >= 0 then
return N;
else
return -N;
end if;
end Absolute_Value;

Tests for MC/DC:
e 42 123

Robustness around discontinuity:
e -1,01

Robustness around boundaries:
o 231 93141
e 23l _1 231 _ >

K in an automotive context

PAGE 10

June 3, 2019

1ISO 26262

Robustness

function Absolute_Value (N : Integer)
return Integer
is
begin
if N >= 0 then
return N;
else
return -N;
end if;
end Absolute_Value;

Tests for MC/DC:
e 42 123

Robustness around discontinuity:
e -1,01

Robustness around boundaries:
o 31 93141
e 23l _1 231 _ >

K in an automotive context

PAGE 10

June 3, 2019

1ISO 26262

Robustness - escalating complexity

K in an automotive context PAGE 11

June 3, 2019

1ISO 26262

Robustness - escalating complexity

a>0

K in an automotive context PAGE 11

June 3, 2019

1ISO 26262

Robustness - escalating complexity

0<b<128

a>0

K in an automotive context

PAGE 11

June 3, 2019

1ISO 26262

Robustness - escalating complexity

0<b<128

K in an automotive context

PAGE 11

June 3, 2019

1ISO 26262

Robustness - escalating complexity

c=0Ve>1 0<b< 128 T a#b
potato kitten cat

T c>0ANa>0 T
a>0 0<b<128 x<y a< —-1va>1
wibtl
c#0 0<b<128 x<y —12<bh<12+a

SPARK in an automotive context PAGE 11

June 3, 2019

1ISO 26262

Robustness - escalating complexity

c=0Ve>1 0<b< 128 T a#b
potato kitten cat

T c>0ANa>0 T
a>0 0<b<128 x<y a< —-1va>1
wibtl
c#0 0<b<128 x<y —12<bh<12+a

SPARK in an automotive context PAGE 11

June 3, 2019

1ISO 26262

Robustness - escalating complexity

c=0Ve>1 0<b< 128 T a#b
potato kitten cat

T c>0ANa>0 T
a>0 0<b<128 x<y a< —-1va>1
wibtl
c#0 0<b<128 x<y —12<bh<12+a

SPARK in an automotive context PAGE 11

June 3, 2019

1ISO 26262

Robustness - escalating complexity

c=0Vec>1 0<b<128 T a#b
T
a>0 a<—-1va>1
c#0 0< b< 128 x <y —12<b<12+4a

K in an automotive context

PAGE 11

June 3, 2019

1ISO 26262

Robustness

Software failure modes are non-obvious and
system complexity is vast!

SPARK in an automotive context PAGE 12

Z ENUITY June 3, 2019

1ISO 26262

Robustness

SPARK can help here, even if you just do the absolute basics:
® Absence of run-time error proof
® Guarantee for type ranges

® Preconditions replace defensive code

K in an automotive context PAGE 13

June 3, 2019

Challenges

What makes adopting SPARK difficult?

C and C++ is very established

Emphasis on validation over verification

Model-based design is sometimes seen as a magic bullet

Platform issues (i.e. SPARK compiler availability)

SPARK in an automotive context PAGE 14

June 3, 2019

How to make it work in automotive?

Generate C code!
New

-

Embedded coder SPARK2C

.

Your favourite compiler

|
Bz

SPARK in an automotive context PAGE 15

Z ENUITY June 3, 2019

Interfacing

¢ Interfacing SPARK / C is trivial

SPARK in an automotive context PAGE 16

June 3, 2019

Interfacing

¢ Interfacing SPARK / C is trivial
e Interfacing SPARK / C++ is harder

® C wrappers often required

SPARK in an automotive context PAGE 16

Z ENUITY June 3, 2019

Interfacing

¢ Interfacing SPARK / C is trivial
e Interfacing SPARK / C++ is harder

® C wrappers often required

¢ Interfacing SPARK / SIMULINK?

SPARK in an automotive context PAGE 16

Z ENUITY June 3, 2019

Interfacing
SIMULINK

What we have:

procedure Potato (Thing
A
B

in out Potato_Bus_T;
in Integer;
in Kittens);

1K in an automotive context

PAGE 17

June 3, 2019

Interfacing
SIMULINK

What we have:

procedure Potato (Thing : in out Potato_Bus_T;
A : in Integer;
B : in Kittens);

What we want:

C1) >
I
a > potato D

<num> >
2) >

K in an automotive context PAGE 17

June 3, 2019

Interfacing
Where to start?

Read the docs...
® There used to be an Ada binding (deprecated and dead)

SPARK in an automotive context PAGE 18

June 3, 2019

Interfacing
Where to start?

Read the docs...
® There used to be an Ada binding (deprecated and dead)
¢ Bind to SIMULINK C API from Ada?
® Generate C code, bind to that from SIMULINK?

SPARK in an automotive context PAGE 18

Z ENUITY June 3, 2019

Interfacing
Where to start?

Read the docs...
® There used to be an Ada binding (deprecated and dead)
¢ Bind to SIMULINK C API from Ada?
® Generate C code, bind to that from SIMULINK?

® Try something else...

SPARK in an automotive context PAGE 18

Z ENUITY June 3, 2019

Interfacing

Compatible header files

Annotate interface spec:

type Potato_Bus_T is record
typedef struct {
Arr : Int_Array_T; i
int arr[25];
Num : Integer; .
int num;
Bus_Arr : Bus_Array_T; oint bus_arr[25];
Kitten : Kittens; p‘ - ’
kittens kitten;
end record
} potato_bus;

with Convention => C_Pass_By_Copy;

Ideally generate both from a neutral format.

K in an automotive context PAGE 19

June 3, 2019

Interfacing
A thin binding

Create a small C wrapper for SIMULINK:

void my_fun(potato_bus #*ul, int u2, kittens u3, potato_bus *yl)
{

memcpy (y1, ul, sizeof (potato_bus));

ada__potato(yl, u2, u3);
}

void my_init ()
{

potatoinit ();
I

void my_finish()
{

potatofinal ();
}

K in an automotive context PAGE 20

June 3, 2019

Interfacing

Glue code

Use the SIMULINK legacy code binding generator setup glue code:

Simulink.importExternalCTypes ('src/potato_bus.h');

def = legacy_code('initialize');

def .Options.language = 'C';

def.Options.isVolatile = false;

def .SFunctionName = 'potato';

def .SourceFiles = {'my_fun.c'};

def .HeaderFiles = {'potato_bus.h'};

def .OutputFcnSpec = ['void my_fun(potato_bus ul[1], uint8 u2, '
'kittens u3, potato_bus yi[1])'];

def.StartFcnSpec = ['void my_init()'];

def .TerminateFcnSpec = ['void my_finish()'];

legacy_code('sfcn_cmex_generate', def);
movefile('potato.c', 'src/potato.c');

SPARK in an automotive context PAGE 21

June 3, 2019

Interfacing
Building

Build it all via gprbuild:
® Don't use the mex utility function

® Works on Windows and Linux
® Build DLL / SO

® Without auto init section
® With a special linker script
® With special treatment of interrupts (on Linux)

SPARK in an automotive context

PAGE 22

June 3, 2019

Interfacing
Building

Build it all via gprbuild:

® Don't use the mex utility function

Works on Windows and Linux
Build DLL / SO
® \Without auto init section

® With a special linker script
® With special treatment of interrupts (on Linux)

Result is a mixed language .mexw64 / .mexa64 plugin that “just works”.

SPARK in an automotive context PAGE 22

June 3, 2019

Interfacing
Building

Build it all via gprbuild:

® Don't use the mex utility function

Works on Windows and Linux
Build DLL / SO
® \Without auto init section

® With a special linker script
® With special treatment of interrupts (on Linux)

Result is a mixed language .mexw64 / .mexa64 plugin that “just works”.

A lot of this can be automated!

SPARK in an automotive context PAGE 22

June 3, 2019

Interfacing

Automation

Now all you need to do is this:

procedure Potato (Thing : in out Potato_Bus_T;
A : in Integer;
B : in Kittens)
with
Export,
Convention => C,
External_Name => "ada__potato",
Annotate => Simulink_Block;

® Python script based on gnat2xml works out data types and a list of subprogram to
build bindings for

® QOther script generate both C header and Ada type definitions
® No manual work involved!

K in an automotive context PAGE 23

June 3, 2019

Conclusion

SPARK in the automotive industry:
® Great fit with ISO 26262 (especially robustness)
® Interfacing with existing tools and environments is possible

® Incremental adoption possible: integrates well with existing environments and
systems

SPARK in an automotive context PAGE 24

June 3, 2019

Conclusion

SPARK in the automotive industry:
® Great fit with ISO 26262 (especially robustness)
® Interfacing with existing tools and environments is possible

® Incremental adoption possible: integrates well with existing environments and
systems

Thank you for listening.
Questions?

SPARK in an automotive context PAGE 24

June 3, 2019

Z ENUITY

	Zenuity
	Introduction
	ISO 26262
	Overview
	Robustness: missing specs
	Robustness: testing
	Robustness: complexity

	Spark
	Robustness
	Challenges
	Interfacing

	Conclusion

