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Who is Zenuity?

AD and ADAS software company owned by Veoneer and Volvo

Customers:

@ Volvo
@ Through Veoneer: Geely, an American OEM, a German OEM, etc.

Offices in Géteborg, Miinchen, Detroit, Santa Clara, and Shanghai

® Primary priority is safety

SPARK in an automotive context
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Why is AD so hard?

Technical issues

Safety critical, and:
e Complex environment (roads, road users, etc.)
® No obvious fail-safe architecture
® Nobody knows how to do it

® |arge safety-critical code base (compared to other industries)
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Why is AD so hard?

Technical issues

Safety critical, and:
e Complex environment (roads, road users, etc.)

® No obvious fail-safe architecture

Nobody knows how to do it

Large safety-critical code base (compared to other industries)
Will contain neural networks

® Effective validation approach unclear
® Verification is a research problem
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Why is AD so hard?

Process issues

® No experience with large safety-critical software in automotive
® Feature engineers, not programmers (in classical OEMs and suppliers)

¢ Unsuitable processes (what works in ADAS won't work here)
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1ISO 26262

® Key safety standard in automotive
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1ISO 26262

® Key safety standard in automotive

® Defines integrity levels, precise mapping is up to interpretation

Z ENUITY

IEC 61508 DO-178C ISO 26262

- DAL-E QM QM
SIL-1 DAL-D ASIL-A ASIL-A
SIL-2 DAL-C ASIL-B/C  ASIL-B
SIL-3 DAL-B ASIL-D ASIL-C
SIL-4 DAL-A = ASIL-D
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1ISO 26262

Key safety standard in automotive

Defines integrity levels, precise mapping is up to interpretation

IEC 61508 DO-178C ISO 26262

- DAL-E QM QM
SIL-1 DAL-D ASIL-A ASIL-A
SIL-2 DAL-C ASIL-B/C  ASIL-B
SIL-3 DAL-B ASIL-D ASIL-C
SIL-4 DAL-A = ASIL-D

Defines verification objectives

Suggests minimal approach to meet them
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1ISO 26262

Verification objectives

Demonstrate that the software units achieve:
® compliance with the software unit design specification
® compliance with the specification of the hardware-software interface
® the specified functionality

® confidence in the absence of unintended functionality

robustness

sufficient resources to support their functionality
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1ISO 26262

Software robustness

It can mean a lot of things:
® no dead code?
® error detection effective?
® error handling effective?
® code does not crash?

® signal noise?
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1ISO 26262

Robustness - “obvious”

This objective is classically hard through testing:
® Trivial to find "bugs”

result = (previous_speed + current_speed) * 0.5f;
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1ISO 26262

Robustness - “obvious”

This objective is classically hard through testing:
® Trivial to find "bugs”
result = (previous_speed + current_speed) * 0.5f;
What about if our car goes at 1.13 x 103 % ¢?
® These bugs are “not helpful” and “obviously” irrelevant

e Often the only way to fix them is defensive code or justification

® Defensive code further increases testing effort (coverage)
® Justifications are often wrong, outdated, or fail to grasp the big picture
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1ISO 26262

Robustness - testing is hard

e Coverage metrics helps you complete your test-suite

® Various levels exist

Level of assurance Coverage criteria

ASIL-A Statement

ASIL-B Statement or Branch
ASIL-C Branch

ASIL-D MC/DC
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1ISO 26262

Robustness - testing is hard

e Coverage metrics helps you complete your test-suite

® Various levels exist
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1ISO 26262

Robustness

Tests for MC/DC:
function Absolute_Value (N : Integer)
return Integer ° —42, 123
is
begin
if N >= 0 then
return N;
else
return -N;
end if;
end Absolute_Value;
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1ISO 26262

Robustness

function Absolute_Value (N : Integer)
return Integer
is
begin
if N >= 0 then
return N;
else
return -N;
end if;
end Absolute_Value;

Tests for MC/DC:

o 42,123
Robustness around discontinuity:
e -1,01
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1ISO 26262

Robustness

function Absolute_Value (N : Integer)
return Integer
is
begin
if N >= 0 then
return N;
else
return -N;
end if;
end Absolute_Value;

Tests for MC/DC:
e 42 123

Robustness around discontinuity:
e -1,01

Robustness around boundaries:
o 231 93141
e 23l _1 231 _ >
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1ISO 26262

Robustness

function Absolute_Value (N : Integer)
return Integer
is
begin
if N >= 0 then
return N;
else
return -N;
end if;
end Absolute_Value;

Tests for MC/DC:
e 42 123

Robustness around discontinuity:
e -1,01

Robustness around boundaries:
o 31 93141
e 23l _1 231 _ >
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1ISO 26262

Robustness - escalating complexity
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Robustness - escalating complexity

a>0
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Robustness - escalating complexity

0<b<128

a>0
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1ISO 26262

Robustness - escalating complexity

c=0Ve>1 0<b< 128 T a#b
potato kitten cat

T c>0ANa>0 T
a>0 0<b<128 x<y a< —-1va>1
wibtl
c#0 0<b<128 x<y —12<bh<12+a
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1ISO 26262

Robustness - escalating complexity

c=0Vec>1 0<b<128 T a#b
T
a>0 a<—-1va>1
c#0 0< b< 128 x <y —12<b<12+4a
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1ISO 26262

Robustness

Software failure modes are non-obvious and
system complexity is vast!
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1ISO 26262

Robustness

SPARK can help here, even if you just do the absolute basics:
® Absence of run-time error proof
® Guarantee for type ranges

® Preconditions replace defensive code
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Challenges

What makes adopting SPARK difficult?

C and C++ is very established

Emphasis on validation over verification

Model-based design is sometimes seen as a magic bullet

Platform issues (i.e. SPARK compiler availability)
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How to make it work in automotive?

Generate C code!
New

-

Embedded coder SPARK2C

.

Your favourite compiler

|
Bz
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Interfacing

¢ Interfacing SPARK / C is trivial
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Interfacing

¢ Interfacing SPARK / C is trivial
e Interfacing SPARK / C++ is harder

® C wrappers often required

SPARK in an automotive context PAGE 16

Z ENUITY June 3, 2019



Interfacing

¢ Interfacing SPARK / C is trivial
e Interfacing SPARK / C++ is harder

® C wrappers often required

¢ Interfacing SPARK / SIMULINK?
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Interfacing
SIMULINK

What we have:

procedure Potato (Thing
A
B

in out Potato_Bus_T;
in Integer;
in Kittens);
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Interfacing
SIMULINK

What we have:

procedure Potato (Thing : in out Potato_Bus_T;
A : in Integer;
B : in Kittens);

What we want:

C1) >
I
a > potato D

<num> >
2 ) >
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Interfacing
Where to start?

Read the docs...
® There used to be an Ada binding (deprecated and dead)
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Interfacing
Where to start?

Read the docs...
® There used to be an Ada binding (deprecated and dead)
¢ Bind to SIMULINK C API from Ada?
® Generate C code, bind to that from SIMULINK?
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Interfacing
Where to start?

Read the docs...
® There used to be an Ada binding (deprecated and dead)
¢ Bind to SIMULINK C API from Ada?
® Generate C code, bind to that from SIMULINK?

® Try something else...

SPARK in an automotive context PAGE 18
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Interfacing

Compatible header files

Annotate interface spec:

type Potato_Bus_T is record
typedef struct {
Arr : Int_Array_T; i
int arr[25];
Num : Integer; .
int num;
Bus_Arr : Bus_Array_T; oint bus_arr[25];
Kitten : Kittens; p‘ - ’
kittens kitten;
end record
} potato_bus;

with Convention => C_Pass_By_Copy;

Ideally generate both from a neutral format.
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Interfacing
A thin binding

Create a small C wrapper for SIMULINK:

void my_fun(potato_bus #*ul, int u2, kittens u3, potato_bus *yl)
{

memcpy (y1, ul, sizeof (potato_bus));

ada__potato(yl, u2, u3);
}

void my_init ()
{

potatoinit ();
I

void my_finish()
{

potatofinal ();
}
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Interfacing

Glue code

Use the SIMULINK legacy code binding generator setup glue code:

Simulink.importExternalCTypes ('src/potato_bus.h');

def = legacy_code('initialize');

def .Options.language = 'C';

def.Options.isVolatile = false;

def .SFunctionName = 'potato';

def .SourceFiles = {'my_fun.c'};

def .HeaderFiles = {'potato_bus.h'};

def .OutputFcnSpec = ['void my_fun(potato_bus ul[1], uint8 u2, '
'kittens u3, potato_bus yi[1])'];

def.StartFcnSpec = ['void my_init()'];

def .TerminateFcnSpec = ['void my_finish()'];

legacy_code('sfcn_cmex_generate', def);
movefile('potato.c', 'src/potato.c');
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Interfacing
Building

Build it all via gprbuild:
® Don't use the mex utility function

® Works on Windows and Linux
® Build DLL / SO

® Without auto init section
® With a special linker script
® With special treatment of interrupts (on Linux)
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Interfacing
Building

Build it all via gprbuild:

® Don't use the mex utility function

Works on Windows and Linux
Build DLL / SO
® \Without auto init section

® With a special linker script
® With special treatment of interrupts (on Linux)

Result is a mixed language .mexw64 / .mexa64 plugin that “just works”.
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Interfacing
Building

Build it all via gprbuild:

® Don't use the mex utility function

Works on Windows and Linux
Build DLL / SO
® \Without auto init section

® With a special linker script
® With special treatment of interrupts (on Linux)

Result is a mixed language .mexw64 / .mexa64 plugin that “just works”.

A lot of this can be automated!
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Interfacing

Automation

Now all you need to do is this:

procedure Potato (Thing : in out Potato_Bus_T;
A : in Integer;
B : in Kittens)
with
Export,
Convention => C,
External_Name => "ada__potato",
Annotate => Simulink_Block;

® Python script based on gnat2xml works out data types and a list of subprogram to
build bindings for

® QOther script generate both C header and Ada type definitions
® No manual work involved!
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Conclusion

SPARK in the automotive industry:
® Great fit with ISO 26262 (especially robustness)
® Interfacing with existing tools and environments is possible

® Incremental adoption possible: integrates well with existing environments and
systems
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Conclusion

SPARK in the automotive industry:
® Great fit with ISO 26262 (especially robustness)
® Interfacing with existing tools and environments is possible

® Incremental adoption possible: integrates well with existing environments and
systems

Thank you for listening.
Questions?
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