
Spark in an automotive context

Florian Schanda
June 3, 2019

PAGE 1Spark in an automotive context
June 3, 2019



Who is Zenuity?

• AD and ADAS software company owned by Veoneer and Volvo
• Customers:

1 Volvo
2 Through Veoneer: Geely, an American OEM, a German OEM, etc.

• Offices in Göteborg, München, Detroit, Santa Clara, and Shanghai
• Primary priority is safety

PAGE 2Spark in an automotive context
June 3, 2019



Why is AD so hard?
Technical issues

Safety critical, and:
• Complex environment (roads, road users, etc.)
• No obvious fail-safe architecture
• Nobody knows how to do it
• Large safety-critical code base (compared to other industries)

• Will contain neural networks
• Effective validation approach unclear
• Verification is a research problem

PAGE 3Spark in an automotive context
June 3, 2019



Why is AD so hard?
Technical issues

Safety critical, and:
• Complex environment (roads, road users, etc.)
• No obvious fail-safe architecture
• Nobody knows how to do it
• Large safety-critical code base (compared to other industries)
• Will contain neural networks

• Effective validation approach unclear
• Verification is a research problem

PAGE 3Spark in an automotive context
June 3, 2019



Why is AD so hard?
Technical issues

Safety critical, and:
• Complex environment (roads, road users, etc.)
• No obvious fail-safe architecture
• Nobody knows how to do it
• Large safety-critical code base (compared to other industries)
• Will contain neural networks

• Effective validation approach unclear
• Verification is a research problem

PAGE 3Spark in an automotive context
June 3, 2019



Why is AD so hard?
Process issues

• No experience with large safety-critical software in automotive
• Feature engineers, not programmers (in classical OEMs and suppliers)
• Unsuitable processes (what works in ADAS won’t work here)

PAGE 4Spark in an automotive context
June 3, 2019



ISO 26262

• Key safety standard in automotive

• Defines integrity levels, precise mapping is up to interpretation
IEC 61508 DO-178C ISO 26262
– DAL-E QM QM
SIL-1 DAL-D ASIL-A ASIL-A
SIL-2 DAL-C ASIL-B/C ASIL-B
SIL-3 DAL-B ASIL-D ASIL-C
SIL-4 DAL-A – ASIL-D

• Defines verification objectives
• Suggests minimal approach to meet them

PAGE 5Spark in an automotive context
June 3, 2019



ISO 26262

• Key safety standard in automotive
• Defines integrity levels, precise mapping is up to interpretation

IEC 61508 DO-178C ISO 26262
– DAL-E QM QM
SIL-1 DAL-D ASIL-A ASIL-A
SIL-2 DAL-C ASIL-B/C ASIL-B
SIL-3 DAL-B ASIL-D ASIL-C
SIL-4 DAL-A – ASIL-D

• Defines verification objectives
• Suggests minimal approach to meet them

PAGE 5Spark in an automotive context
June 3, 2019



ISO 26262

• Key safety standard in automotive
• Defines integrity levels, precise mapping is up to interpretation

IEC 61508 DO-178C ISO 26262
– DAL-E QM QM
SIL-1 DAL-D ASIL-A ASIL-A
SIL-2 DAL-C ASIL-B/C ASIL-B
SIL-3 DAL-B ASIL-D ASIL-C
SIL-4 DAL-A – ASIL-D

• Defines verification objectives
• Suggests minimal approach to meet them

PAGE 5Spark in an automotive context
June 3, 2019



ISO 26262
Verification objectives

Demonstrate that the software units achieve:
• compliance with the software unit design specification
• compliance with the specification of the hardware-software interface
• the specified functionality
• confidence in the absence of unintended functionality
• robustness
• sufficient resources to support their functionality

PAGE 6Spark in an automotive context
June 3, 2019



ISO 26262
Verification objectives

Demonstrate that the software units achieve:
• compliance with the software unit design specification
• compliance with the specification of the hardware-software interface
• the specified functionality
• confidence in the absence of unintended functionality
• robustness
• sufficient resources to support their functionality

PAGE 6Spark in an automotive context
June 3, 2019



ISO 26262
Software robustness

It can mean a lot of things:
• no dead code?
• error detection effective?
• error handling effective?
• code does not crash?
• signal noise?

PAGE 7Spark in an automotive context
June 3, 2019



ISO 26262
Robustness - “obvious”

This objective is classically hard through testing:
• Trivial to find “bugs”

result = (previous_speed + current_speed) * 0.5f;

What about if our car goes at 1.13 × 1030 ∗ c?
• These bugs are “not helpful” and “obviously” irrelevant
• Often the only way to fix them is defensive code or justification

• Defensive code further increases testing effort (coverage)
• Justifications are often wrong, outdated, or fail to grasp the big picture

PAGE 8Spark in an automotive context
June 3, 2019



ISO 26262
Robustness - “obvious”

This objective is classically hard through testing:
• Trivial to find “bugs”

result = (previous_speed + current_speed) * 0.5f;

What about if our car goes at 1.13 × 1030 ∗ c?
• These bugs are “not helpful” and “obviously” irrelevant
• Often the only way to fix them is defensive code or justification

• Defensive code further increases testing effort (coverage)
• Justifications are often wrong, outdated, or fail to grasp the big picture

PAGE 8Spark in an automotive context
June 3, 2019



ISO 26262
Robustness - testing is hard

• Coverage metrics helps you complete your test-suite
• Various levels exist

Level of assurance Coverage criteria
ASIL-A Statement
ASIL-B Statement or Branch
ASIL-C Branch
ASIL-D MC/DC

Coverage is not a sufficient metric
for robustness tests!

PAGE 9Spark in an automotive context
June 3, 2019



ISO 26262
Robustness - testing is hard

• Coverage metrics helps you complete your test-suite
• Various levels exist

Level of assurance Coverage criteria
ASIL-A Statement
ASIL-B Statement or Branch
ASIL-C Branch
ASIL-D MC/DC

Coverage is not a sufficient metric
for robustness tests!

PAGE 9Spark in an automotive context
June 3, 2019



ISO 26262
Robustness

function Absolute_Value (N : Integer)
return Integer

is
begin

if N >= 0 then
return N;

else
return -N;

end if;
end Absolute_Value;

Tests for MC/DC:
• -42, 123

Robustness around discontinuity:
• -1, 0, 1

Robustness around boundaries:
• −231, −231 + 1
• 231 − 1, 231 − 2

PAGE 10Spark in an automotive context
June 3, 2019



ISO 26262
Robustness

function Absolute_Value (N : Integer)
return Integer

is
begin

if N >= 0 then
return N;

else
return -N;

end if;
end Absolute_Value;

Tests for MC/DC:
• -42, 123

Robustness around discontinuity:
• -1, 0, 1

Robustness around boundaries:
• −231, −231 + 1
• 231 − 1, 231 − 2

PAGE 10Spark in an automotive context
June 3, 2019



ISO 26262
Robustness

function Absolute_Value (N : Integer)
return Integer

is
begin

if N >= 0 then
return N;

else
return -N;

end if;
end Absolute_Value;

Tests for MC/DC:
• -42, 123

Robustness around discontinuity:
• -1, 0, 1

Robustness around boundaries:
• −231, −231 + 1
• 231 − 1, 231 − 2

PAGE 10Spark in an automotive context
June 3, 2019



ISO 26262
Robustness

function Absolute_Value (N : Integer)
return Integer

is
begin

if N >= 0 then
return N;

else
return -N;

end if;
end Absolute_Value;

Tests for MC/DC:
• -42, 123

Robustness around discontinuity:
• -1, 0, 1

Robustness around boundaries:
• −231, −231 + 1
• 231 − 1, 231 − 2

PAGE 10Spark in an automotive context
June 3, 2019



ISO 26262
Robustness - escalating complexity

foo

a > 0

kitten

c 6= 0

bar
0 ≤ b ≤ 128

0 ≤ b < 128

baz
x < y

x < y

wibble
a < −1 ∨ a > 1

−12 ≤ b ≤ 12 + a

potato
c = 0 ∨ c > 1

>

cat
>

c > 0 ∧ a > 0

puppy
a 6= b

>

It is not plausible that humans
can maintain this without making mistakes!

PAGE 11Spark in an automotive context
June 3, 2019



ISO 26262
Robustness - escalating complexity

foo
a > 0

kitten

c 6= 0

bar
0 ≤ b ≤ 128

0 ≤ b < 128

baz
x < y

x < y

wibble
a < −1 ∨ a > 1

−12 ≤ b ≤ 12 + a

potato
c = 0 ∨ c > 1

>

cat
>

c > 0 ∧ a > 0

puppy
a 6= b

>

It is not plausible that humans
can maintain this without making mistakes!

PAGE 11Spark in an automotive context
June 3, 2019



ISO 26262
Robustness - escalating complexity

foo
a > 0

kitten
0 ≤ b < 128

c 6= 0

bar
0 ≤ b ≤ 128

0 ≤ b < 128

baz
x < y

x < y

wibble
a < −1 ∨ a > 1

−12 ≤ b ≤ 12 + a

potato
c = 0 ∨ c > 1

>

cat
>

c > 0 ∧ a > 0

puppy
a 6= b

>

It is not plausible that humans
can maintain this without making mistakes!

PAGE 11Spark in an automotive context
June 3, 2019



ISO 26262
Robustness - escalating complexity

foo
a > 0

kitten
0 ≤ b < 128

c 6= 0

bar
0 ≤ b ≤ 128

0 ≤ b < 128

baz
x < y

x < y

wibble
a < −1 ∨ a > 1

−12 ≤ b ≤ 12 + a

potato
c = 0 ∨ c > 1

>

cat
>

c > 0 ∧ a > 0

puppy
a 6= b

>

It is not plausible that humans
can maintain this without making mistakes!

PAGE 11Spark in an automotive context
June 3, 2019



ISO 26262
Robustness - escalating complexity

foo
a > 0

kitten
0 ≤ b < 128

c 6= 0

bar
0 ≤ b ≤ 128

0 ≤ b < 128

baz
x < y

x < y

wibble
a < −1 ∨ a > 1

−12 ≤ b ≤ 12 + a

potato
c = 0 ∨ c > 1

>

cat
>

c > 0 ∧ a > 0

puppy
a 6= b

>

It is not plausible that humans
can maintain this without making mistakes!

PAGE 11Spark in an automotive context
June 3, 2019



ISO 26262
Robustness - escalating complexity

foo
a > 0

kitten
0 ≤ b < 128

c 6= 0

bar
0 ≤ b ≤ 128

0 ≤ b < 128

baz
x < y

x < y

wibble
a < −1 ∨ a > 1

−12 ≤ b ≤ 12 + a

potato
c = 0 ∨ c > 1

>

cat
>

c > 0 ∧ a > 0

puppy
a 6= b

>

It is not plausible that humans
can maintain this without making mistakes!

PAGE 11Spark in an automotive context
June 3, 2019



ISO 26262
Robustness - escalating complexity

foo
a > 0

kitten
0 ≤ b ≤ 128

c 6= 0

bar
0 ≤ b ≤ 128

0 ≤ b < 128

baz
x < y

x < y

wibble
a < −1 ∨ a > 1

−12 ≤ b ≤ 12 + a

potato
c = 0 ∨ c > 1

>

cat
>

c > 0 ∧ a > 0

puppy
a 6= b

>

It is not plausible that humans
can maintain this without making mistakes!

PAGE 11Spark in an automotive context
June 3, 2019



ISO 26262
Robustness - escalating complexity

foo
a > 0

kitten
0 ≤ b ≤ 128

c 6= 0

bar
0 ≤ b ≤ 128

0 ≤ b < 128

baz
x < y

x < y

wibble
a < −1 ∨ a > 1

−12 ≤ b ≤ 12 + a

potato
c = 0 ∨ c > 1

>

cat
>

c > 0 ∧ a > 0

puppy
a 6= b

>

It is not plausible that humans
can maintain this without making mistakes!

PAGE 11Spark in an automotive context
June 3, 2019



ISO 26262
Robustness

Software failure modes are non-obvious and
system complexity is vast!

PAGE 12Spark in an automotive context
June 3, 2019



ISO 26262
Robustness

Spark can help here, even if you just do the absolute basics:
• Absence of run-time error proof
• Guarantee for type ranges
• Preconditions replace defensive code

PAGE 13Spark in an automotive context
June 3, 2019



Challenges
What makes adopting Spark difficult?

• C and C++ is very established
• Emphasis on validation over verification
• Model-based design is sometimes seen as a magic bullet
• Platform issues (i.e. Spark compiler availability)

PAGE 14Spark in an automotive context
June 3, 2019



How to make it work in automotive?
Generate C code!

SIMULINK MATLAB

C C++

Binary

Embedded coder

Your favourite compiler

Spark

Spark2C

New

PAGE 15Spark in an automotive context
June 3, 2019



Interfacing

• Interfacing SPARK / C is trivial

• Interfacing SPARK / C++ is harder
• C wrappers often required

• Interfacing SPARK / SIMULINK?

PAGE 16Spark in an automotive context
June 3, 2019



Interfacing

• Interfacing SPARK / C is trivial
• Interfacing SPARK / C++ is harder

• C wrappers often required

• Interfacing SPARK / SIMULINK?

PAGE 16Spark in an automotive context
June 3, 2019



Interfacing

• Interfacing SPARK / C is trivial
• Interfacing SPARK / C++ is harder

• C wrappers often required
• Interfacing SPARK / SIMULINK?

PAGE 16Spark in an automotive context
June 3, 2019



Interfacing
SIMULINK

What we have:
procedure Potato (Thing : in out Potato_Bus_T;

A : in Integer;
B : in Kittens);

What we want:

PAGE 17Spark in an automotive context
June 3, 2019



Interfacing
SIMULINK

What we have:
procedure Potato (Thing : in out Potato_Bus_T;

A : in Integer;
B : in Kittens);

What we want:

PAGE 17Spark in an automotive context
June 3, 2019



Interfacing
Where to start?

Read the docs...
• There used to be an Ada binding (deprecated and dead)

• Bind to SIMULINK C API from Ada?
• Generate C code, bind to that from SIMULINK?
• Try something else...

PAGE 18Spark in an automotive context
June 3, 2019



Interfacing
Where to start?

Read the docs...
• There used to be an Ada binding (deprecated and dead)
• Bind to SIMULINK C API from Ada?
• Generate C code, bind to that from SIMULINK?

• Try something else...

PAGE 18Spark in an automotive context
June 3, 2019



Interfacing
Where to start?

Read the docs...
• There used to be an Ada binding (deprecated and dead)
• Bind to SIMULINK C API from Ada?
• Generate C code, bind to that from SIMULINK?
• Try something else...

PAGE 18Spark in an automotive context
June 3, 2019



Interfacing
Compatible header files

Annotate interface spec:
type Potato_Bus_T is record

Arr : Int_Array_T;
Num : Integer;
Bus_Arr : Bus_Array_T;
Kitten : Kittens;

end record
with Convention => C_Pass_By_Copy;

typedef struct {
int arr[25];
int num;
point bus_arr[25];
kittens kitten;

} potato_bus;

Ideally generate both from a neutral format.

PAGE 19Spark in an automotive context
June 3, 2019



Interfacing
A thin binding

Create a small C wrapper for SIMULINK:
void my_fun(potato_bus *u1, int u2, kittens u3, potato_bus *y1)
{

memcpy(y1, u1, sizeof(potato_bus));
ada__potato(y1, u2, u3);

}

void my_init()
{

potatoinit();
}

void my_finish()
{

potatofinal();
}

PAGE 20Spark in an automotive context
June 3, 2019



Interfacing
Glue code

Use the SIMULINK legacy code binding generator setup glue code:
Simulink.importExternalCTypes('src/potato_bus.h');

def = legacy_code('initialize');
def.Options.language = 'C';
def.Options.isVolatile = false;
def.SFunctionName = 'potato';
def.SourceFiles = {'my_fun.c'};
def.HeaderFiles = {'potato_bus.h'};
def.OutputFcnSpec = ['void my_fun(potato_bus u1[1], uint8 u2, ' ...

'kittens u3, potato_bus y1[1])'];
def.StartFcnSpec = ['void my_init()'];
def.TerminateFcnSpec = ['void my_finish()'];

legacy_code('sfcn_cmex_generate', def);
movefile('potato.c', 'src/potato.c');

PAGE 21Spark in an automotive context
June 3, 2019



Interfacing
Building

Build it all via gprbuild:
• Don’t use the mex utility function
• Works on Windows and Linux
• Build DLL / SO

• Without auto init section
• With a special linker script
• With special treatment of interrupts (on Linux)

• Result is a mixed language .mexw64 / .mexa64 plugin that “just works”.
• A lot of this can be automated!

PAGE 22Spark in an automotive context
June 3, 2019



Interfacing
Building

Build it all via gprbuild:
• Don’t use the mex utility function
• Works on Windows and Linux
• Build DLL / SO

• Without auto init section
• With a special linker script
• With special treatment of interrupts (on Linux)

• Result is a mixed language .mexw64 / .mexa64 plugin that “just works”.

• A lot of this can be automated!

PAGE 22Spark in an automotive context
June 3, 2019



Interfacing
Building

Build it all via gprbuild:
• Don’t use the mex utility function
• Works on Windows and Linux
• Build DLL / SO

• Without auto init section
• With a special linker script
• With special treatment of interrupts (on Linux)

• Result is a mixed language .mexw64 / .mexa64 plugin that “just works”.
• A lot of this can be automated!

PAGE 22Spark in an automotive context
June 3, 2019



Interfacing
Automation

Now all you need to do is this:
procedure Potato (Thing : in out Potato_Bus_T;

A : in Integer;
B : in Kittens)

with
Export,
Convention => C,
External_Name => "ada__potato",
Annotate => Simulink_Block;

• Python script based on gnat2xml works out data types and a list of subprogram to
build bindings for

• Other script generate both C header and Ada type definitions
• No manual work involved!

PAGE 23Spark in an automotive context
June 3, 2019



Conclusion

Spark in the automotive industry:
• Great fit with ISO 26262 (especially robustness)
• Interfacing with existing tools and environments is possible
• Incremental adoption possible: integrates well with existing environments and

systems

Thank you for listening.
Questions?

PAGE 24Spark in an automotive context
June 3, 2019



Conclusion

Spark in the automotive industry:
• Great fit with ISO 26262 (especially robustness)
• Interfacing with existing tools and environments is possible
• Incremental adoption possible: integrates well with existing environments and

systems

Thank you for listening.
Questions?

PAGE 24Spark in an automotive context
June 3, 2019



PAGE 25Spark in an automotive context
June 3, 2019


	Zenuity
	Introduction
	ISO 26262
	Overview
	Robustness: missing specs
	Robustness: testing
	Robustness: complexity

	Spark
	Robustness
	Challenges
	Interfacing

	Conclusion

