© TrustInSoft 2016 - Confidential

Frama-C Day 2016, June 17t, 2016.

TRUST SOFT

Mathematical Guarantees Eliminate Software Risk

TrustinSoft
Updates about the Frama-C
software publisher company

Benjamin Monate
co-founder & CTO



© 2016 TrustinSoft

- French startup created in 2013 as a Spin-off of CEA

NIST Only company selected in the Ockham Criteria
Seandords o Tocnology from the SATE V exhibit

Chosen by the Linux Foundation to develop tools
for security of Core Internet Infrastructure

Nominated as one the 10 most innovative companies in
cybersecurity - RSA 15 Conference

. Most Innovative SME, Special Jury prize 2016 at
the Forum International de la Cybersecurite 2016
] sponsored by Airbus Defence&Space

-y 1 e —




TrustinSoft Unigue Value Proposal

provide guarantees
on software used In
sensitive systems



Current Customers

TrustinSoft works with the most demanding developers
of sensitive software.

Since 2013 Since 2014 Since 2015
+ Aeronautics Rail [ﬁj Automotive
DO-178C - ED-12C EN-50128 ISO 2626-2
Il Nuclear Reactors %' Space h Smart Factories
p— IEC-60880 IEC-62138 hJ %

N
E Defense ‘ Telecom [ﬂ Cyber

CWE

[Customer names are under strict NDAs - 50% in the US}

owew 0w e




nfident

ARM mbed can claim they have the first ever
TLS/SSL stack without buffer overflows.

ARMmbed

Using TrustinSoft Analyzer we have
generated a report which tells how to
compile, configure and deploy mbed TLS
INn a given perimeter in order to be immune
from all attacks caused by CWE 119 to 127,
369, 415, 416, 457, 476, 562, 690.

This stack has a
configuration
proven to be
without an
Heartbleed-like flaw.

You can download such a report here: http://trust-in-soft.com/polarssl-verification-kit



http://trust-in-soft.com/polarssl-verification-kit

© TrustInSoft 2016 - Confidential

Progressive
methodologies

From enhanced testing
to full functional verification

Adapt level of verification to
each customer

Incremental guarantees

Prerequisite:
1) Source code
2) Target description

Additional

input

|

l

|

|

Teat suite generalized

Specification of

Source code

Test suite - X :
the environment annotations
actity actwity actwity actrty

3.1 Tis- Analyzer
on a test suite

|

outcome

1

- Guarantes the ab-
sence of undefined be-
havior for all explored
Last cases,

- Faithful emulation of
the targeted platform.
- Coverage metrics.

- Observation of val-
ues approaching,
crossing the bound-
aries and out of range.

- Complexity measures.

- Metrics information.
- Code coverage.

3.5 Syntactic code raview

3.2 TisAnalyzer on a
generalized test suite

outcome

1

- Guarantee the ab-
sence of undefined
behavior for all gen-
eralized test cases.

- Faithful emulation of
the targeted platform,
- Cloverage metrics.

- Increase coverage of
the code by order of
magnitude, including
values approaching,
crossing the bound-
aries and out of range.

)
et

B )

3.3 Tis-Analyzer
on the software

outcome

1

- Guarantee the ab-
sence of undefined be-
havior for all input of
the program.

- Faithful emulation of

the targeted platform.
- Static analysis of the
software execution for
all possible executions,
- Coverage metrics.

- Interactive explo-
ration of values of all
variables al any pro-
gram point.

H

Conti 3 i
AONEINUOUE < =

activity

- Graphical syntactic browsing.

3.6 Semantic code review

- Metries information.

3.4 Functional
verification

outcome

1

- Software specifica-
tion translated into
formal code annota-
tions.

- Proof that the
source code satisfies
the specification,

- Guarantee the ab-
sence of undefined
behavior for all an-
notated functions.

- Faithful emulation of
the targeted platform.
- Exhaustiveness of
the tests, equivalent to
exhaustive functional
tests,

| S

- All callstacks, including the one called with func-

tion pointers.

- Graphical semantic browsing.




© TrustInSoft 2016 - Confidential

Standard compliance

Documents for common software

verification standards

ISO 26262,
EN50128,
DO178B/C,
BV-SW-100,
SEI CERT C

* Preparation phase: for each
verification activity, state the
support level customer can
expect from TIS-Analyzer

* Production phase: propose
specific tool adaptations to
match the customer process

TRUST@SOFT

Usage of Tis-Analyzer platform for

BV-SW-100

Version:

TRUSTIS SOFT

Draft — Usage of Tis-Analyzer platform for
SEI CERT C Coding Standard

TRUSTW SOFT

Usage of Tis-Analyzer platform for
[SO-26262

TRUST SOFT

Usage of Tis-Analyzer platform for EN-50128

TRUSTI SOFT

Usage of Tis-Analyzer platform for CWE

Version; 1.22




Training sessions: 1 to 5 days for engineers

* Introduction to formal method for software analysis

* Why undefined behaviors matterin C11

* TrustinSoft Analyzer for Safety Standard Compliance

* Testing Software with a perfect source semantics: TIS-Interpreter
* Eradicating undefined behaviors in existing C applications

* Developing secured applications in C with TIS-Analyzer



A glance at TrustinSoft Analyzer User Interface

This is TrustinSoft Analyzer:
a C/C++ source code static
analyzer

Episode 1: eradicating runtime errors in ntpd



https://youtu.be/b1UwEaUrI0E

Innovation at TrustinSoft

* Global Dataflow Analysis

Seeding a random number generator

* Side Channel Attacks Analysis

Constant time or memory access

* Strict aliasing analysis

Typed memory model

10



Innovation at TrustinSoft

* Precision improvement for derived
analysis
Value analysis result stored as a graph
* Analysis of large Open Source
Software

Communication stack, compression libraries, image libraries

* [is-Interpreter

Combination with state-of-the-art fuzzers
Open source at https:/github.com/ TrustinSoft/tis-interpreter

11


https://github.com/TrustInSoft/tis-interpreter

Innovation at TrustinSoft

Trus

tinSoft Analyzer tor C

Derived from CEA STANCE prototype
All C++11 language including lambdas
C++11 STL support

C++14 support

Support for ACSL++

12



Innovation at TrustinSoft: research projects

ANR ANASTASEC — Cyber-security in avionics
FUI INGOPCS — Secured Industrial Communication Stack
DGE S3P —Smart Safe and Secure Platform for loT
FUl SecureOCaml — Securing OCaml programs
RAPID AUROCHS — Code Analysis of Cryptographic Stack
ANR VOCAL — Certified OCaml libraries

13



© TrustInSoft 2016 - Confidential

Any guestions?

benjamin.monate@trust-in-soft.com

TRUSTI SOFT

Mathematical Guarantees Eliminate Software Risk

222 avenue du Maine 75014, Paris, France
Suite 231, 2415 Third Street, San Francisco, CA 94107

14



© TrustInSoft 2016 - Confidential

BN_consttime_swap from OpenSSL: constant time

void BN consttime swap (BN ULONG condition, BIGNUM *a,

BIGNUM *b, int nwords) { switch (nwords) {
BN ULONG t; default:
int i, for (i = 10; i < nwords; 1i++)
BN CONSTTIME SWAP (i)

bn wcheck size(a, nwords); /* Fallthrough */
bn wcheck size (b, nwords); case 10:

BN CONSTTIME SWAP(9); /* Fallthrough */
assert(a != b); case 9:
assert ((condition & (condition - 1)) == 0); BN CONSTTIME SWAP(8) ; /* Fallthrough */
assert (sizeof (BN ULONG) >= sizeof (int)); case 8:

BN_CONSTTIME_SWZ \We automatically confirm there are
condition = ((condition - 1) >> (BN BITS2 - 1)) - 1; case 7:

BN _CONSTTIME swa NO problems in the

t = (a->top ©~ b->top) & condition; case 6: :
i BN CONSTTIME SWl BN consttime swap function
b->top "= t; case 5:
BN CONSTTIME SWAP(4) /* Fallthrough */
#define BN CONSTTIME SWAP(ind) \ case 4:
do { \ BN CONSTTIME SWAP(3) /* Fallthrough */
t = (a->d[ind] » b->d[ind]) & condition; \ case 3:
dlind] *= t; \ BN CONSTTIME SWAP(2) /* Fallthrough */
dlind] "= t; \ case 2:
} whlle (0) BN CONSTTIME SWAP(l) /* Fallthrough */
case 1:

BN CONSTTIME SWAP (0);

}
#undef BN CONSTTIME SWAP

}
Full source code: https://github.com/openssl/openssl/blob/d59¢c7c81e3850dc667d61047850c3b6936eb5fca/crypto/bn/bn lib.c#L808



https://github.com/openssl/openssl/blob/d59c7c81e3850dc667d61047850c3b6936eb5fca/crypto/bn/bn_lib.c#L808

© TrustInSoft 2016 - Confidential

sZ2n_verity_cbc from S2N: constant time?

int s2n verify cbc(struct sZn connection *conn,

//

int
for

}

struct Szn_hmac_ftate *hmac, This function has been written to

struct szn blob *decrypted) compute if there is a padding problem
in the variable mistmatches and to
return this value.

cutoff = check - padding length;
(int 1 = 0, J = decrypted->size - 1 - check;
1 < check && 7 < decrypted->size; 1it++, J++) {
uint8 t mask = ~(0xff << ((i >= cutoff) * 8));
mismatches |= (decrypted->data[j] ~ padding length) & mask;

if

}

return 0;

(mismatches)

S2N ERROR (S2N "ERR CBC VERIFY) ; When not in debug mode the S2N_ERROR function returns simply the
P error code. A possible solution
return (!!mismatches) * S2ZN ERR CBC VERIFY;

Error detected

Full source code: https://github.com/awslabs/s2n/blob/e5cadd53a85ac27976d5bdb7bal1501945675c5de/tls/s2n cbc.c#L48

16


https://github.com/awslabs/s2n/blob/e5cadd53a85ac27976d5bdb7ba1501945675c5de/tls/s2n_cbc.c#L48

Detected undefined behaviors

* Division by zero
* Memory Accesses
* Memory access
* Index out of bound
* Memory problem
* Qverflow in array accesses
* Valid string
* Invalid shift
* Pointer comparison
* Differing blocks

Overflow
Float to integer
Not separated
Overlap
Dangling and Uninitialized
pointers
* |nitialization
* Dangling
|s nan or infinite
Function type matches

17



- Confident

Other possible analyses

* Exhaustive detection of all undefined behaviors of the program
* Functional dependency analyses

» Control and data flow analyses Dedicated all-included support
_ _ - All'technical questions

* Shared variable detection Snewered

* Race condition detection - Tool Expertise and

Customization

- Review of your integration
* Proof of functional prOpertieS processes and normative

* Memory leak
« Commmand line and graphical interface requirements

18



