--- layout: fc_discuss_archives title: Message 15 from Frama-C-discuss on February 2015 ---
[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

[Frama-c-discuss] several WP questions



Hi,
Instead of an axiomatic definition of the permutation, you should introduce the inverse indices array as a ghost variable, say ?rev?, maintain this array during the loop with ghost code and prove that rev[ind[i]]==i in suitable ranges.
We already used such a technique to prove a bubble-sort algorithm with permutation indices bookkeeping.
This is much easier than converting C-arrays to abstract lists : I?m afraid you will need, at some point, some frame lemmas to compare `arrayToList{A}` and `arrayToList{B}` when you have memory updates between points `A` and `B`.
L.



> Le 12 f?vr. 2015 ? 18:48, Marko Sch?tz Schmuck <MarkoSchuetz at web.de> a ?crit :
> 
> Dear All,
> 
> verifying an implementation of partition I have something like
> 
> /*@ axiomatic List {
>  @ type listInt;
>  @ logic listInt nil;
>  @ logic listInt cons(integer x, listInt xs);
>  @ logic listInt append(listInt xs, listInt ys);
>  @ logic listInt arrayToList{L}(int *arr, integer length);
>  @ logic boolean member(integer elem, listInt xs);
>  @ axiom appendNil:
>  @   \forall listInt ys; append(nil, ys) == ys;
>  @ axiom appendCons:
>  @   \forall listInt xs, ys; \forall integer x; append(cons(x, xs), ys) == cons(x, append(xs, ys));
>  @ axiom arrayToListNull{L}:
>  @   \forall int *arr; \forall integer i; i == 0 ==> arrayToList{L}(arr, i) == nil;
>  @ axiom arrayToListN{L}:
>  @   \forall int *arr; \forall integer length, newLength; length > 0 && newLength == length-1
>  @   ==> arrayToList{L}(arr, length) == cons(\at(arr[0], L), arrayToList{L}(arr+1, newLength));
>  @ axiom memberNil:
>  @   \forall integer elem; !member(elem, nil);
>  @ axiom memberConsHead:
>  @   \forall integer elem; \forall listInt xs; member(elem, cons(elem, xs));
>  @ axiom memberConsTail:
>  @   \forall integer elem, x; \forall listInt xs; member(elem, xs) ==> member(elem, cons(x, xs));
>  @ predicate permutationLists(listInt a, listInt b);
>  @ axiom permutationListsNil:
>  @   permutationLists(nil, nil);
>  @ axiom permutationListsCons:
>  @   \forall listInt a1, a2, a3, ta, b1, b2, b3, tb; ta == append(a1, append(a2, a3))
>  @   && tb == append(b1, append(b2, b3)) && a2 != nil && a2 == b2
>  @   && permutationLists(append(a1, a3), append(b1, b3))
>  @   ==> permutationLists(ta, b1);
>  @}
>  @*/
> 
> /*@
>  @predicate permutation{L1, L2}(int *a, int *b, integer count) =
>  @  permutationLists(arrayToList{L1}(a, count), arrayToList{L2}(b, count));
>  @
>  @predicate property(integer x);
>  @*/
> 
> /*@ assigns \nothing;
>  @ ensures \result == \true <==> property(x);
>  @*/
> int property(int x);
> 
> /*@ requires length >= 0 && \valid(arr+(0..length-1)) && \valid(ind+(0..length-1));
>  @ ensures 0 <= \result < length;
>  @ ensures \forall int i; 0 <= i <= \result ==> property(arr[ind[i]]);
>  @ ensures \forall int i; \result + 1 <= i < length ==> !property(arr[ind[i]]);
>  @ assigns ind[0..length-1];
>  @*/
> int partition(int *arr, int *ind, int length) {
>  int gr = 0, j = length-1;
>  /*@ loop invariant 0 <= gr <= j+1 <= length ;
>    @ loop invariant \forall integer i; 0 <= i < gr ==> property(arr[ind[i]]);
>    @ loop invariant \forall integer i; j+1 <= i < length ==> !property(arr[ind[i]]);
>    @ loop invariant permutationLists(append(arrayToList{Here}(ind, gr), arrayToList{Here}(ind+j+1, length-j)), arrayToList{Here}(arr, gr + length - j));
>    @ loop variant j - gr;
>    @*/
>  while (gr <= j) {
>    if (property(arr[gr + length - 1 - j])) {
>      ind[gr] = gr + length - 1 - j;
>      //@ assert ind[gr] == gr + length - 1 - j && property(arr[gr + length - 1 - j]) && property(arr[ind[gr]]);
>      gr++;
>    } else {
>      ind[j] = gr + length - 1 - j;
>      j--;
>    }
>  }
>  return gr-1;
> }
> 
> Frama-C Neon/WP failed to discharge the second part of the invariant,
> so I started experimenting with some assertions. When I write the
> assertion as above the PO is not discharged. When I turn on 'split'
> the first of the three generated POs is discharged. When I write the
> three assertions as separate assertions:
> 
>      //@ assert ind[gr] == gr + length - 1 - j;
>      //@ assert property(arr[gr + length - 1 - j]);
>      //@ assert property(arr[ind[gr]]);
> 
> then the first and the last are discharged.
> 
> Any hints on how I should deal with this and how I could get the
> invariant proved?
> 
> Thanks and best regards,
> 
> Marko_______________________________________________
> Frama-c-discuss mailing list
> Frama-c-discuss at lists.gforge.inria.fr
> http://lists.gforge.inria.fr/cgi-bin/mailman/listinfo/frama-c-discuss