Frama-C/Eva applied to the Chrony source code: a first analysis

André Maroneze, CEA Tech List

March 15th, 2018

Introduction

As part of an effort sponsored by Orolia, researchers from the LIST, CEA Tech laboratory applied the Frama-C code
analysis framework on the Chrony source code, in an attempt to verify the absence of run-time errors. This analysis
has been done using the Eva plug-in (based on abstract interpretation) and used as entry point the test distributed with
Chrony in test/unit/ntp_sources.c. This test initializes several components of the code and performs a reasonable
amount of computation, so it seemed a good candidate. Other tests, especially those in the test/unit directory, can be
set up as entry points for similar analyses.

The analysis has not been deployed to the full extent of the possibilities of Frama-C/Eva; it is possible to further refine it
for more precise results. The findings so far do not allow any definitive conclusion about the overall absence of run-time
errors, however they do provide some results.

Overall impressions

The Chrony source code is overall well-written w.r.t. constraints imposed by the ISO C standard; Frama-C is based on
(99, and no specific modifications were required to parse the source code of Chrony which indicates that it contains few
or no non-portable constructs. This ensures better portability and future-proofing of the code.

Also, some defensive programming patterns, such as checking the return code of scanf are present in the code. They
improve its robustness and are also helpful for code analysis tools. While Chrony has not been written specifically for a
code analysis tool, patterns that are helpful for analysis are often also helpful for manual reviews: predictable control
flow, assertions indicating code invariants and unreachable code, etc.

Overall, only minor issues were detected with a preliminary run of Frama-C/Eva. However, some code patterns prevent
the analysis from being thorough enough to ensure the absence of runtime errors in the considered code parts.

A few patches were applied to the code, either to remedy an issue, or to allow the analysis to proceed further. Some
improvements to the Frama-C platform were performed during this analysis, most of which are available in Frama-C 17 -
Chlorine. The analysis parametrization is made available as part of Frama-C’s open source case studies Github repository.
It contains a directory chrony with the appropriate GNUmakefile and accompanying stubs to allow the analysis to be
replayed and modified at will, provided Frama-C 17 is installed. The analysis takes a few minutes to complete (after
running make), and the results can be inspected using Frama-C’s graphical interface (make ntp_core.eva.gui).

However, it must be noted that some intrinsic limitations will be present due to some code patterns, therefore it is very
unlikely that a 100% alarm-free analysis will be possible, at least without some substantial evolutions of the Frama-C
platform and the Eva plug-in. It is likely that future releases of Frama-C will improve these results.

Issues found

Most issues found here were identified as “red alarms” by Eva plug-in, which indicates that they are bound to definitely
happen during program execution, assuming the initial context setup was appropriate. These issues typically correspond

https://github.com/Frama-C/open-source-case-studies

to undefined behaviors as stated in the C99 standard.
1. (Undefined behavior) C stdlib usage
logging.c:140, in function LOG_Message:
The call to gmtime should ideally be guarded, in case it fails, to prevent dereferencing a NULL pointer.
A suggestion of a patch is presented below:

--- a/logging.c
+++ b/logging.c
@@ -137,9 +137,14 @@ void LOG_Message(LOG_Severity severity,
if (!system_log) {
/* Don't clutter up syslog with timestamps and internal debugging info */
time (&t) ;
stm = *gmtime (&t) ;
strftime (buf, sizeof (buf), "%Y-%m-%dT%H:%M:%SZ", &stm);
fprintf (file_log, "%s ", buf);

+ struct tm *gt = gmtime(&t);

+ if (gt) {

+ stm = *gt;

+ strftime(buf, sizeof (buf), "%Y-%m-%dT%H:%M:%SZ", &stm);
+ fprintf(file_log, "%s ", buf);

+ } else {

+ fprintf(file_log, "[GMTIME_ERROR]");

+ }

#if DEBUG > O
if (debug_level >= DEBUG_LEVEL_PRINT_FUNCTION)
fprintf (file_log, "¥%s:%d:(%s) ", filename, line_number, function_name);

reference.c:545, in function maybe_log_offset:

if (p) {

if (gethostname(host, sizeof(host)) < 0) {
strcpy(host, "<UNKNOWN>");

¥

fprintf(p, "Subject: chronyd reports change to system clock on node [%s]\n", host);

fputs("\n", p);

stm = *localtime (&now) ;

strftime(buffer, sizeof(buffer), "On %A, %d %B %Y\n with the system clock reading \
FH:IM:%S (hZ)", &stm);

There are two minor issues here:

* gethostname, in POSIX, is not guaranteed to be null-terminated even when no error returns. Note that the GNU
libc ensures this is the case, so this is only an issue in terms of portability to other libc implementations;

* localtime may return NULL in case of error, so just like in the previous patch for gmtime, ideally one might
want to check its return value before trying to dereference it (in line stm = *localtime (&now) ;).

2. (Unconfirmed) In conf.c, parse_fallback_drift, near line 948:
sscanf (line, "%d %d", &fb_drift_min, &fb_drift_max);

Variables fb_drift_min and fb_drift_max are declared as (signed) int, and scanned as such, but they are
later used as index arrays, which seems to indicate they might have been unsigned.

This is marked as unconfirmed because the alarms are indicated as Unknown in the tool (indicating the possibility
of a false alarm); some manual inspection indicates that this seems to be the case, but a more detailed analysis
would be necessary to confirm it.

3. In keys.c, function determine_hash_delay: variable NTP_Packet pkt in the stack is passed to (further
down) MD5Update, where it is (in some callstacks) read without having been initialized. This is not technically
undefined behavior if the type used while reading is an unsigned char (due to the absence of trap representa-
tions), but nevertheless this can introduce some non-determinism during execution/debugging. It also renders the
code more fragile: if someone tries to access the memory using some non-char type, it will create some undefined
behavior. Initializing pkt = {0} would avoid the issue. Unless there is some significant loss in performance
related to such initialization, patching is recommended.

4. Occurrences of invalid format specifiers are present in calls to formatted input/output functions, namely snprintf,
called in util.c, function UTI_IPToString. These occurrences constitute undefined behavior according to the
C standard (recalled by CERT C as rule FIO47-C), even if they are benign in current compilers, which should not
miscompile them. For instance, some unsigned long variables are printed using %1d instead of %1u. Later in
the same function, several unsigned char variables are printed using %02x specifiers. Due to default argument
promotions, the unsigned char values are actually converted to ints, thus the x modifier (which requires
unsigned values) does not apply to them. Instead, it would be better to use the proper length modifiers for chars,
that is, %02hhx. Note that, in GCC 5 (or newer), option -Wformat-signedness emits warnings for some of
these issues. Other issues are possibly present in logging-related functions, but not all of them were present during
the analysis with Frama-C/Eva, so they are not listed here.

Technical limitations

One of the main points that hinders the analysis with Frama-C/Eva is the presence of dynamically allocated memory in
several parts of the code. While Eva is able to handle it, dynamic memory generates too much imprecision, leading to
many false alarms that would not occur if the memory had been statically allocated. This is a current limitation of the
plug-in that makes it suboptimal to analyze Chrony’s code.

Another aspect is the intertwining of parsing and code execution, namely the pattern:

} else if (!strcasecmp(cmd, "require")) {
src->params.sel_options |= SRC_SELECT_REQUIRE;
} else if (!strcasecmp(cmd, "trust")) {
src->params.sel_options |[= SRC_SELECT_TRUST;
} else if (!strcasecmp(cmd, "key")) {
if (sscanf(line, "%"SCNu32"/n", &src->params.authkey, &n) !'= 1 ||
src->params.authkey == INACTIVE_AUTHKEY)
return O;

Due to the genericity in the initial environment (considering any sequence of characters), this leads to a very imprecise
analysis, where all branches are considered as potentially reachable.

Linked lists are a data structure that is not well-suited for Eva, since they combine dynamic memory allocation with
data-dependent control flow. For instance, in sched. c there is a TimerQueue data structure used by functions such as
SCH_AddTimeout and SCH_RemoveTimeout. The usage of these linked lists leads to several alarms.

Frama-C/Eva is currently unable to deal with recursive functions. During parsing of the configuration file, function
parse_include recursively calls other parsing functions. A stub has been used to replace the calls to this function; this
stub should provide an over-approximation of the variables modified by the function, ensuring that the results indicated
by the analysis remain sound. This obviously precludes the identification of errors in the parse_include function
itself (and those called by it). Combining analyses with other plug-ins might provide workarounds for this situation.

Extending the analysis

As previously mentioned, the analysis performed with Frama-C/Eva can be extended to other entry points. Using the
available unit tests, it is straightforward to parameterize a different analysis to consider a different part of the code base.
Note that the chosen test, ntp_core. c, is the largest one and activates most of the code base of Chrony. Other tests
may however provide some complementary information and, due to their smaller size, allow for a faster analysis. The
provided GNUmakefile contains an example on how to add a second test (regress. c), with comments on the few lines
that need to be added.

Technical notes

During the analysis, a few functions were stubbed/adapted for better analyzability: to improve precision, efficiency, or
to work around limitations. Here is a list of some of these changes:

* test_unit (in test/unit/ntp_core.c): contains a loop where 1000 tests are executed sequentially. Because
of the abstractions performed by the analysis with Eva, unless each test depends on the result of the previous one,
there is no need to iterate multiple times: one single test performed in an abstract way will provide information
about all possible executions. We therefore parametrized the number of iterations via a macro NB_TESTS, which
can be defined via -DNB_TESTS= and set to a low value to avoid unnecessary recomputations by the analysis.

» Transform: computation-intensive function that applies several bitwise operators to a small buffer, as part of
the hashing done by MDS5. The control flow is fixed and the computations are performed over unsigned integers,
which results in virtually no possibility of runtime error. For Frama-C/Eva, this function has been replaced with a
specification that abstracts its computations, resulting in a much more efficient analysis. Since the actual final
values computed by the function are irrelevant (our analysis assumes an abstract input), once we know that there
are no runtime errors (since the analysis reported no alarms), we abstract it away. This is a simplified version of
the ACSL specification of the function:

/*Q
requires \initialized(in+(0..15));
assigns buf[0..3];

*/

This specification (1) requires that each value in in be initialized, that is, (a) it corresponds to a valid memory
location, and (b) its value it not indeterminate (to avoid trap representations). If those properties are verified at the
call site, then our specification guarantees that only memory locations buf [0. . 3] are modified by the function.
We do not specify which concrete values are set, but our analysis does not require them anyway: the computation
of any MD5 hash, for any input values, must be free of runtime errors.

* parse_include: as is often the case in parsing functions, this function is part of a recursive call chain
(CNF_ParseLine -> parse_include -> CNF_ReadFile -> CNF_ParseLine). Eva cannot currently handle
recursive calls, so a workaround must be used. To increase the amount of analyzed code, and to minimize the
complexity of the stub/specification to be used, it is often better to stub the lowest function before a recursive
call takes place. In this case, parse_include is invoked if and only if the configuration file contains such an
inclusion, so commenting it out is a quick way to proceed with the analysis. This obviously precludes Eva from
identifying issues in the stubbed function, but it is simpler than devising a sound and precise specification for the
function, when its side-effects are hard to estimate (as is often the case with recursive functions). Future versions
of Eva might be able to avoid this step.

* LOG_FileWrite: logging functions are often source of issues, relying on variadic functions, macros, reflection
and specialized mechanisms to output information. While they may contain runtime errors and should be analyzed
when possible, their impact is often limited. In this case, we disabled it after the first run to minimize the amount
of noise while refining the analysis. It can be enabled back, at the price of a dozen extra alarms.

* strcasecmp: a temporary specification has been added to this function, pending its inclusion in the Frama-C libc.
Specifications in the Frama-C libc are added incrementally, and new case studies often include non-C99 functions

(POSIX, BSD or GNU extensions) for which no specifications have yet been written. Such specifications can then
be submitted for Frama-C developers to evaluate their correctness, precision and relevance, and are often included
in the following Frama-C release.

* C stubs for gsort and gethostbyname, in fc_stubs.h: these libc functions have no specification in the
Frama-C libc, or their specification is too imprecise and/or complex in ACSL; in this case, writing a short C
stub is often a better approach, especially due to the possibility of using non-deterministic Frama-C built-ins
(e.g. Frama_C_interval). For instance, the gsort stub does not sort its results, but instead shuffles them;
this abstracts the fact that no input array should result in a runtime error when sorted. However, if the caller
function does rely on the array being sorted to avoid runtime errors, then our stub will lead to false alarms.
For gethostbyname, the situation is slightly different: the function returns a pointer to a struct that must be
dynamically allocated. Eva cannot currently “invent” the variable which corresponds to this struct, so a code
stub is necessary for soundness. However, the actual code of the function itself is too complex and requires
stubbing/specifying several other auxiliary functions. In this case, the approach consists in returning an under-
approximation of the possible results, allowing the analysis to proceed, but lacking in completeness w.r.t. all
possible values of the function. Note that the structure returned by gethostbyname contains a linked list of
strings; producing a correct over-approximation of such list would require an enormous amount of effort, for a
limited benefit. If this part of the code were indeed critical, then the best solution would consist in incorporating
the entire code of the actual function itself, and analyzing it. This can be done in a later stage of the analysis, after
more important issues are resolved.

Final remarks

Overall, we would praise Chrony as having a clean code base, with a code style that is overall amenable to tools based
on static and semantic analyses such as Frama-C. The code has not been specifically developed towards such analyses,
which could help provide extra guarantees about it, but in its current form it already presents some helpful patterns.

We expect to be able to further proceed with the analysis in the future, either identifying more issues, or providing extra
guarantees about its correctness.

Other Frama-C plug-ins that may be useful to pursue further exploration of the code base are WP and E-ACSL. The
former requires some effort in terms of annotations such as function specifications and loop invariants; it could be used
in the more critical parts of the code, to provide guarantees about some functional properties. It can also be used to
complement and/or replace runtime error analyses in some parts of the code. Finally, since Chrony is a software that can
run on a standard Linux machine (in other words, it is not some embedded software that requires a specific hardware
and/or operating system), the E-ACSL plug-in can be used to perform runtime detection of undefined behaviors, by
instrumenting the code and then executing it on the same machine running the Frama-C analysis.

	Introduction
	Overall impressions

	Issues found
	Technical limitations
	Extending the analysis

	Technical notes
	Final remarks

