Softwars Aty

Runtime Assertion Checking with Frama-C

Nikolay Kosmatov and Julien Signoles

Runtime Verification 2013 Tutorial
September 24t 2013

(long m1
(for (i=C

[r ama . .
Motivation

Runtime verification of
rigorous, mathematical semantic properties of a C program

> safety properties:

» no division by zero

> no arithmetic overflow

» validity of memory accesses
>

» functional properties:

» function preconditions must be satisfied by the caller : L
» function postconditions must be satisfied by the callee &

- 3

(long m1

(for (i=(> ...

[r ama
Our goal

In this tutorial, we will see:

» how to specify a C program with the E-ACSL specification
language

> how to detect errors at runtime with the E-ACSL plug-in of
Frama-C

» how to customize the runtime verification

> how to combine runtime verification with other analyses

(long m1
{for (i=C

Presentation of Frama-C
Context
Frama-C Overview
ACSL and E-ACSL
First Steps

Runtime Verification
Checking Assertions
Function Contract
Integers
Errors in Annotations
Memory-Related Annotations

Customization
Runtime Monitor Behavior
Incomplete Program

Combinations with Other Analyzers 5
(ong m1 Generating Annotations Automatically

{for(i=C

Mixing Static Verification and Runtime Assertion Checking

Presentation of Frama-C
Context
Frama-C Overview
ACSL and E-ACSL
First Steps

(long m1
(for (i=C

A brief history

» 90's: CAVEAT, an Hoare logic-based tool for C programs at
CEA

» 2000's: CAVEAT used by Airbus during certification process
of the A380 (DO-178 level A qualification)

» 2002: Why and its C front-end Caduceus at INRIA

» 2006: Joint project to write a successor to CAVEAT and
Caduceus

» 2008: First public release of Frama-C (Hydrogen)

> today:
» Frama-C Fluorine (v9) :
» Multiple projects around the platform b
A growing community of users 5
and of plug-ins developers
Trust-In-Soft, startup based on Frama-C technologies

(long m1
(for (1=(

v VvYyy

[r ama
Frama-C at a glance

v

A framework for modular analysis of C code.
» http://frama-c.com

» Developed at CEA LIST (Software Safety labs) and INRIA
Saclay (Toccata team).

» Released under LGPL license (Fluorine v3 in June 2013)
» Kernel based on CIL (Necula et al. at Berkeley).

» ACSL annotation language.

» Extensible platform

» Collaboration of analyses over same code &
> Inter plug-in communication through ACSL formulae. 3

(long m1

fori= » Adding specialized plug-ins is easy

http://frama-c.com

Main plug-ins

(D included in man distrbution
C) distributed externally

External plugins

» Dassault’s internal plug-ins [Pariente & Ledinot, FoVeOOs
2010]

» Taster: coding rules (Atos/Airbus) [Delmas & al, ERTSS
2010]

» Fan-C: flow dependencies (Atos/Airbus) [Duprat & al.,
ERTSS 2012]

» simple Concurrency plug-in (Adelard) [first release in 2013]

» various academic experiments (mostly security and/or
concurrency related) SN

» others close private plug-ins (CEA, others companies in A
flona] France, US, ...)

(for (1=(

a00® ACSL: ANSI/ISO C Specification Language

Presentation

> like JML or Spec# for C programs
> based on Eiffel-like contracts

> allows the users to specify functional properties of their
programs

» designed for static analyzers
> already used in large-scale industrial projects
> allows communication between various plugins

> independent from a particular analysis L g

» ACSL manual at http://frama-c.com/acsl S,

(longm
(for i=C

http://frama-c.com/acsl

ACSL

Softwars Aty

Basic Components

v

first-order logic

» pure C expressions (side-effect-free expressions)

v

C types + Z (integer) and R (real)

v

built-ins predicates and logic functions, particularly over
pointers:
» \valid(p)
» \valid(p+0..2), :
» \separated (p+0..2,9+0..5), :
» \block_length (p)

(long m1
(for (1=(

E-ACSL: Executable-ACSL

E-ACSL, a specification language
» (large) executable subset of ACSL

> annotations may be evaluated at runtime

Differences with ACSL:

» few restrictions
» compatible semantics changes

» manual at g
frama-c.com/download/e-acsl/e—-acsl.pdf 9

(long m1
{for (i=C

frama-c.com/download/e-acsl/e-acsl.pdf

oo © E-ACSL: Executable-ACSL

Benefits

Benefits:

> being executable allows to be understandable by dynamic
tools (testing tools, monitors)

> being based on ACSL allows to be supported by existing
Frama-C analyzers

» being translatable into C allows to be supported by other
analysis tools for C

(long m1
{for (i=C

eoono© E-ACSL plug-in

E-ACSL, a Frama-C plug-in
» converts an annotated C program p into another one p’
» p’ fails at runtime whenever an annotation is violated

» p’ and p have the same behavior if no annotation is violated

(long m1
{for (i=C

[r ama N
Installation

Frama-C

Linux:
» packages on Debian, Ubuntu, Fedora, ...
» compile from sources using OCaml package managers:
» Godi:
http://godi.camlcity.org/godi/index.html
» Opam: http://opam.ocamlpro.com/

Windows:
» Godi

» Wodi: http://wodi.forge.ocamlcore.org/
Mac OS X: |

» Binary package available s

(long m1

_» Source compilation through homebrew

http://godi.camlcity.org/godi/index.html
http://opam.ocamlpro.com/
http://wodi.forge.ocamlcore.org/

[r ama N
Installation

E-ACSL

v

this tutorial is mainly based on E-ACSL

v

E-ACSL is a CEA's external Frama-C plug-in

v

compile sources once Frama-C is installed

v

http://frama-c.com/download/e-acsl/
e—acsl-0.3.tar.gz

in this tutorial:
Frama-C Fluorine-20130601 + E-ACSL 0.3

(longm
(for i=C

http://frama-c.com/download/e-acsl/e-acsl-0.3.tar.gz
http://frama-c.com/download/e-acsl/e-acsl-0.3.tar.gz

[r ama |
Installed files

Executables

» frama-—c: console-based interface

» frama—-c—gui: Graphical User Interface

Testing the installation

» frama-c -help: list of available plug-ins
» frama-c -kernel-help: options provided by the kernel B
» frama—-c —-e—acsl-help: E-ACSL specific options e

(longm
(for i=C

[¢ umu .
Documentation

Manuals

» http://frama—-c.com/support.html

v

E-ACSL webpage: http://frama-c.com/eacsl.html
» ‘frama-c -print-share-path‘/manuals

» man frama-c

> inline help
» frama-c -—-kernel-help
» frama-c —-plugin-help
Support T
» frama-c—-discuss@gforge.inria.fr 9

(longm
(for i=C

» tag frama—-c on http://stackoverflow.com

http://frama-c.com/support.html
http://frama-c.com/eacsl.html
mailto:frama-c-discuss@gforge.inria.fr
http://stackoverflow.com

Runtime Verification
Checking Assertions
Function Contract
Integers
Errors in Annotations
Memory-Related Annotations

(long m1
{for (i=C

[r ama .
Assertions

What and why?
» ensure properties at some program points

> defensive programming

How?

» C macro assert provided by assert.h

» takes a C expression of type int as argument

» E-ACSL clause assert

» takes an E-ACSL predicate as argument ,

) » much more expressive than C "boolean" expressions

[r ama
Example 1: max

goal: check each value of m in function main.

int max(int x, int y) { return x<y ? x : y; }

int main(void) {
int m = max (0, 0);
m = max (-4, 3);
return 0;

(long m1
{for (i=C

Softwars Aty

#include <assert.h>
int max(int x, int vy)

int main(void) {

int m = max (0, 0);
assert (m == 0);
m = max (-4, 3);
assert (m == 3);

return 0O;

(long m1
(for (i=C

Example 1: max

Solution 1: use C assertions

{ return x<y ? x : y; }

Softwars Aty

int max (int x, int y) { return x<y ? x : y; }

int main (void) {
int m = max (0, 0);

/+Q@ assert m == 0; =/
m = max (-4, 3);
/+Q@ assert m == 3; «*/

return 0;

» generate the C code in file a.c with:

frama-c —-e—acsl max_e_acsl_assert.c \
feng 1 —then-on e-acsl —-print -ocode a.c

Example 1: max

Solution 2: use E-ACSL assertions

[r ama H
Function Contract

Principle

» goal: specification of imperative functions
» approach: give assertions (i.e. properties) about the
functions

» precondition is supposed to be true on entry (ensured by
callers of the function)

» postcondition must be true on exit (ensured by the function if
it terminates)

» nothing is guaranteed when the precondition is not satisfied :

» termination may or may not be guaranteed (total or partial)
correctness) 3

(longm
(for i=C

[r ama H
Function Contract
E-ACSL Plug-in

» the precondition is verified when entering the function
» the postcondition is verified when exiting the function

» the contract is thus verified for each function call

(long m1
{for (i=C

[r ama
Example 2: absval

goal:
specify function absval which computes the absolute value of
its argument.

int absval (int x) { return x>0 ? x : -x; }

(long m1
{for (i=C

[r ama
Example 2: absval

Softwars Aty

Solution

/+*@ ensures (x >= 0 ==> \result == x)
@ && (x < 0 ==> \result == -x); */
int absval (int x) { return x>0 ? x : -x; }

> that is actually wrong when the argument is INT_MIN.

(long m1
{for (i=C

[r ama
00000 Example 2: absval

Solution, fixed

#include <limits.h>

/*@ requires x > INT_MIN;

@ ensures (x >= 0 ==> \result == x)
@ && (x < 0 ==> \result == -x); */
int absval (int x) { return x>0 ? x : -x; }

> preprocessing annotations requires to use the option
—pp—annot

(long m1
(for (1=(

Behaviors

» Global precondition (requires) and postcondition
(ensures) apply to all cases

» Behaviors refine global contract in particular cases

» For each behavior (case):

» the subdomain is defined by assumes clause
» additional constraints are given with local requires clauses

» the behavior's postcondition is defined by ensures clauses,
ensured whenever assumes condition is true

» complete behaviors states that given behaviors cover
all cases e

(long m1

| » disjoint behaviors states that given behaviors do not
overlap

[r ama
0oa0D - Example 2: absval

Solution, improved

#include <limits.h>
/*@ requires x > INT_MIN;
behavior pos:

assumes x >= 0;

ensures \result == x;
behavior neg:

assumes x < 0;

ensures \result == -x;
complete behaviors; 2
disjoint behaviors; «*/ 2 -
int absval (int x) { return x>0 ? x : -x; } §

@ ® ® ® ® ® ® @® @

(long m1
(for (1=(

[r ama
Integers

Softwars Aty

Specification language

» ACSL and E-ACSL use mathematical integers

» many advantages compared to bounded integers

» automatic theorem provers work much better with such
integers than with bounded integers arithmetics

» specify without implementation details in mind
» still possible to use bounded integers when required

» much easier to specify overflows

> yet runtime computations may be more difficult =

(long m1
(for (1=(

T ama
Integers

E-ACSL plug-in

» E-ACSL uses GMP to represent mathematical integers

» try to avoid them as much as possible (interval-based type
system)

» no GMP in the previous examples
> indeed few GMP’s in practice

» only used when the annotations talk about (potentially) very
big integers

> in such a case, the generated code must be linked against K,
GMP 3

(long m1
(for (1=(

(a8

Softwars Aty

/+@ ensures \result > 0; */
unsigned long long my_pow
(unsigned int x, unsigned int n)

unsigned long long res = 1;
while (n) {

if (n & 1) res x= x;

n >>= 1;

X *= X;
}

return res;

(long m1
(for (1=(

> the generated program does not require GMP

Integers

Example

(a8

Softwars Aty

Integers

Example, follow-up

/+xQ@ ensures \result > 0;
@ behavior two:

@ assumes n == 2;
@ ensures \result % n == 0;
@ ensures (\result + 1) $ n == 1; «/

unsigned long long my_pow
(unsigned int x, unsigned int n);

> the generated program requires GMP

(long m1
(for (i=(

[r ama . .
Errors in annotations?

» ACSL logic is total and 1/0 is logically significant

» help the user to write simple specification like u/v == 2
» 1/0 is defined but not executable

» E-ACSL logic is 3-valued

» the semantics of 1/0 is “undefined”
» lazy operators &&, ||, _?_:_, ==>
» correspond to Chalin’s Runtime Assertion Checking semantics

» consistent with ACSL: valid (resp. invalid) E-ACSL predicates| .
remain valid (resp. invalid) in ACSL 2

(long m1
(for (1=(

'rzlmu «
Example 3: dividable

goal: specify the following function

int is_dividable (int x, int y) {

[o)

return x 5 y == 0;

(long m1
(for (i=C

eoono© Example 3: dividable

Solution

/*@ behavior yes:

@ assumes x % y == 0;

@ ensures \result == 1;

@ behavior no:

@ assumes x % y != 0;

@ ensures \result == 0; «*/
int is_dividable (int x, int y) {

return x % y == 0;

» x % y may be undefined

» if undefined, E-ACSL prevents its execution by reporting an L)
(long m1
for = error

oo © Example 3: dividable

Solution, improved

/*@ requires y != 0;

@ behavior yes:

@ assumes x % y == 0;

@ ensures \result == 1;

@ behavior no:

@ assumes x % y != 0;

@ ensures \result == 0; */
int is_dividable (int x, int y) {

)

return x % y == 0;

» adding an extra annotation is usually better

(long m1

~» make the requirement explicit

[r ama .
Pointers

» E-ACSL provides several built-in predicates to talk about
pointers

» \valid(p): is p valid?

» \initialized(p): is *xp initialized?

» \base_addr (p): base address of the block containing p
» \block_length (p): length of the block containing p

» \offset (p): offset of p from base_addr (p) w

(long m1
(for (1=(

[r ama H
@ 009 Refering to another state

v

specification may require values at different program points

» \at (e, L) refers to the value of expression e at label L

v

some predefined labels:

» \at (e, Here) refers to the current state
» \at (e, 01d) refers to the pre-state

» \at (e, Post) refers to the post-state

> \old (e) is equivalent to \at (e, 01d)

(long m1
(for (1=(

[r ama
Example 4: swap

goal: specify the following function which swaps its arguments

void swap (int *p, int xq) {
int tmp = *qg;
*q = *p;
*p = tmp;

(long m1
(for (i=C

[r ama
Example

/*@ requires \valid(p);
@ requires \valid(q);
@ ensures *p == \old(*Qq);
@ ensures *g == \old(*p);
void swap (int xp, int xq) {
int tmp = *qg;
xq = *p;
*p = tmp;

*/

> the generated code is machine-dependent: add
-machdep x86_64 on an x86-64 architecture

> the generated program must be linked against the E-ACSL
memory library

(long m1

. » E-ACSL tries to minimize the instrumentation (dataflow

4: swap
Solution
u,’

'rumu L H
Quantification

» E-ACSL is based on a first order logic

> it provides finite existential and universal quantifications over
terms

» quantifications must be guarded

\forall 7 Xi,...,Xn;
ay <= x1 <= b1 && ... && a, <= X, <= b,
==> p

\exists 7 X1,..., Xn;
ap <= x1 <= by && ... && ap, <= X, <= by
S& p

(long m1
{for (i=C

T ama) .
Example 5: sum of matrices
A more advanced example about pointers and quantification

goal: specify the following function which sums two square
matrices

typedef intx matrix;
matrix sum(matrix a, matrix b, int size);

(long m1
(for (i=C

[r ama .
Example 5: sum of matrices

Solution

typedef intx matrix;
/*@ requires size >= 1;

@ requires \forall integer i, j;

@ 0 <= 1 < size && 0 <= J < size ==>

@ \valid(a+i*size+]j) && \valid(b+ixsize+j)}

@ ensures \forall integer i, 7J;

@ 0 <= 1 < size && 0 <= J < size ==>

@ \valid(\result+i*size+j) &&

@ \result[ixsize+]] ==

@ alixsize+]]l+b[ixsize+]]; y

@ */ ;

ﬁyﬂmatrix sum(matrix a, matrix b, int size);

[r ama .
Example 5: sum of matrices

Error detection

Which kind of error are we able to detect here?

» spatial error: invalid memory access due to out-of-bounds
offset or array index

» temporal error: invalid memory access to a deallocated
memory object

» memory leak: use more memory at the end of the execution
than at the beginning. ’

» use the special variable ~ memory size _

(long m1
(for (1=(

[t umu .
Loop Invariant

Definition

v

clause 1oop invariant before a loop body

v

indicates invariant properties in a loop

> a loop invariant is valid if and only if:

» it holds before entering the loop
» it holds at the end of the loop body, after each iteration

> necessary annotations for proof of programs with loops c

(longm
(for i=C

[t umu H
Loop Invariant

Example

goals:

» specify the following function which searches an element elt
in a sorted global array A

> provide loop invariants

int A[10];

int search (int elt) {

int k;

for(k = 0; k < 10; k++))
if (A[k] == elt) return 1; .
else if (A[k] > elt) return 0; 5

(long m1

(for (i=C return 0;

[¢ umu .
; Loop Invariant

Softwars Aty

Solution, part 1

int A[10];

requires \forall integer i;
0 <= 1 < 9 ==> A[i] <= A[i+1];
behavior exists:
assumes \exists integer j;
0 <= 3 < 10 && A[]] == elt;
ensures \result == 1;

behavior not_exists:
assumes \forall integer j; r
0 <= j < 10 ==> A[§] != elt; RNE
ensures \result == 0; */ ;
. int search(int elt);

(for (1=(

@ ® ® ® ® ® ® ® ® @

[¢ amu .
Loop Invariant

Solution, part 2

#include '"linear search spec.c'

int search(int elt) {
int k;
/*@ loop invariant 0 <= k <= 10;
@ loop invariant \forall integer i;
@ 0 <=1 < k ==> A[i] < elt; =/
for(k = 0; k < 10; k++)

if(A[k] == elt) return 1;
else if (A[k] > elt) return 0; : L
return 0; o3

} 5

(long m1
{for (i=C

Customization
Runtime Monitor Behavior .
Incomplete Program . S

(long m1
(for (i=(

[r ama . . .
Runtime Monitor Behavior

E-ACSL calls the function e _acsl assert for each
annotation

v

v

by default, this function fails iff the input boolean expression
corresponding to the annotation is false (i.e. 0)

v

a failure generates an error message and aborts the execution

v

possible to customize the behavior of the generated code by
providing its own definition of e_acsl_assert

(long m1
(for (1=(

[r ama . .
Default Monitor Behavior

#include <stdlib.h>
#include <stdio.h>

void e_acsl_assert

(int predicate, char xkind, char xfct,
char *pred_txt, int line)

if (! predicate) {
printf (

"%s failed at line %d in function %s.\n\
The failing predicate is:\n%s.\n",
kind, line, fct, pred_txt);

exit (1) ; 5
(longm1 }

(for(i=C

Custom Monitor Behavior

Invalid Predicate Tracker

#include <stdio.h>

void e_acsl_assert
(int predicate, char xkind, char xfct,
char *pred_txt, int line)

if (! predicate) {
FILE »f = fopen('logfile.log",
fprintf (
£,
"%s failed at line %d in function %s.\n\
The failing predicate is:\n%s.\n",
kind, line, fct, pred_txt);
fclose (f);

a,");

(long m1
(for i=0 }

[r ama
Incomplete Program

» possible to run E-ACSL on code without a main (e.g.
library) or containing undefined functions

» correct only if there is no memory-related annotations

» BE CAREFUL with memory-related annotations:

» may need the option —e—acsl-full-mmodel for
correctness

» less efficient generated code

» if no main is provided, may need to call
__e_acsl_memory_init (resp.
__e_acsl_memory_clean) at the beginning (resp. at the
end) of the main before linking

(long m1
(for (1=(

Softwars Aty

Combinations with Other Analyzers ’

feng 1 Generating Annotations Automatically

Mixing Static Verification and Runtime Assertion Checking

[r ama . . .
@ 009 Generating Annotations Automatically

» Frama-C plug-ins may generate annotations

» the RTE plug-in generates an annotation for each potential
runtime error

» possible to run RTE, then to run E-ACSL
» automatic detection of each runtime error

» option —e-acsl-prepare must be used in case of running.
an analysis before E-ACSL TP

(longm
(for i=C

Generating Annotations Automatically

again the example of sum of matrices:
no need of writing assertions since RTE generates them

int main(void) {

int af] = { 1, 1, 1, 1 };

int b[] = { 2, 2, 2, 2 };

matrix ¢ = sum(a, b, 2);

free(c);

// /%@ assert \valid(&c/[0]); =/
// /%@ assert \valid(&c[2]); */

int trace = c[0]

return 0O;

+ cl2];

(long m1
(for (i=0 }

Example

Goomo © Verifying Annotations Statically

v

Frama-C comes with various static analyzers

> some aim at statically verifying a program

» may guarantee the absence of runtime error

» may ensure that a program satisfies its ACSL specification

> usually require extra work by the user
» adding extra annotations
» parameterizing the tool
» writing stubs .
» what to do when all the code is not statically verified? &
5

fong may also use E-ACSL on such cases

(for (1=(

[r ama
Proof of Programs

Plug-in Wp

> based on Dijkstra’s weakest preconditon calculus

» generates theorems (proof obligations) to ensure that a code
satisfies its ACSL specification

» uses automatic/interactive theorem provers to verify these
theorems

> is able to verify complex specifications ur

» requires to manually add extra annotations (e.g. loop
invariants)

(longm
(for i=C

oo © Mixing E-ACSL and Wp

Main ideas

> idea 1: dynamically check with E-ACSL the properties which
are not statically proved with Wp.

> idea 2: use E-ACSL to test your specification before trying to
prove it with Wp

» use pre-existing test suites
» write test cases manually

» generate test cases with an automatic test generation tool
like the PathCrawler plug-in of Frama-C

» the annotations proved by Wp are not converted by E-ACSL
and so not checked at runtime (except if the option :
—e-acsl-valid is set) =

(long m1
(for (1=(

» must use —e—acsl-prepare when running Wp

Mixing E-ACSL and WP

Softwars Aty

Example

goal: formally specify binary_search according to its informal
specification

/* Takes as input a sorted array, 1its length,
and an int to search for.
Returns the index of a cell which contains
the searched value.
Returns -1 if the key 1is not present in the
array. */
int binary_search(int =xa, int length, int key); ;

(long m1
(for (1=(

[¢ umu .
Value Analysis

Plugin Value

» based on Cousot's abstract interpretation

> computes over-approximations of possible values of variables
at each program point

» evaluates simple E-ACSL annotations

> is able to statically ensure the absence of RTE

» generates extra E-ACSL annotations when it cannot ,
fona guarantee the absence of RTE

(for (1=(

Mixing altogether

» possible to combine Value, WP + E-ACSL

> even possible to send E-ACSL results back into Frama-C

Time for the final demo!

(longm
(for i=0

[¢ zlmu H
Conclusion

We have seen:

» how to specify a C program with the E-ACSL specification
language

» how to detect errors at runtime with the E-ACSL plug-in of
Frama-C

» how to customize E-ACSL

> how to combine E-ACSL with other analyses
» RTE .
- WP -
» Value LTS

(long m1
{for (i=C

PathCrawler

v

Bibliography

» user manuals: http://frama-c.com/download.html

» M. Delahaye, N. Kosmatov, and J. Signoles.
Common specification language for static and dynamic
analysis of C programs.
Symposium on Applied Computing 2013 (SAC'13).

» N. Kosmatov, G. Petiot, and J. Signoles.
An optimized memory monitoring for runtime assertion
checking of C programs.
Runtime Verification 2013 (RV'13).

» P. Cuoq, F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles,[
and B. Yakobowski. g
R Frama-c: a software analysis perspective.
Software Engineering and Formal Methods 2012 (SEFM'12).

http://frama-c.com/download.html

	Presentation of Frama-C
	Context
	Frama-C Overview
	ACSL and E-ACSL
	First Steps

	Runtime Verification
	Checking Assertions
	Function Contract
	Integers
	Errors in Annotations
	Memory-Related Annotations

	Customization
	Runtime Monitor Behavior
	Incomplete Program

	Combinations with Other Analyzers
	Generating Annotations Automatically
	Mixing Static Verification and Runtime Assertion Checking

