
ACSL By Example

Towards a Verified C Standard Library

Version 10.1.1
for

Frama-C (Neon)
January 2015

Jochen Burghardt
Jens Gerlach

Former Authors

Andreas Carben
Liangliang Gu
Kerstin Hartig

Hans Pohl
Juan Soto

Kim Völlinger

The research leading to these results has received funding from the STANCE project1 within
European Union’s Seventh Framework Programme [FP7/2007-2013] under grant agreement num-
ber 317753.2

This body of work was completed within the Device-Soft project, which was supported by the
Programme Inter Carnot Fraunhofer from BMBF (Grant 01SF0804) and ANR.3

Except where otherwise noted, this work is licensed under
http://creativecommons.org/licenses/by-nc-sa/3.0/

1See http://www.stance-project.eu
2project duration: 2012–2015
3project duration: 2009–2012

2

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.stance-project.eu

1. Foreword

This report provides various examples for the formal specification, implementation, and deductive
verification of C programs using the ANSI/ISO-C Specification Language (ACSL [1]) and the WP
plug-in [2] of Frama-C [3] (Framework for Modular Analysis of C programs). The report at hand
has been revised and refers to the Neon release from March 2014 of Frama-C.

We have chosen our examples from the C++ Standard Library whose initial version is still known
as the Standard Template Library (STL).4 The STL contains a broad collection of generic algo-
rithms that work not only on C arrays but also on more elaborate containers, i.e., data structures.
For the purposes of this document we have selected representative algorithms, and converted their
implementation from C++ function templates to C functions that work on arrays of type int.5

We will continue to extend and refine this report by describing additional STL algorithms and data
structures. Thus, step by step, this document will evolve from an ACSL tutorial to a report on a
formally specified and deductively verified standard library for ANSI/ISO-C. Moreover, should
ACSL be extended to a C++ specification language, our work may be extended to a deductively
verified C++ Standard Library.

You may email comments, suggestions or errors to

In particular, we encourage you to check vigilantly whether our formal specifications capture the
essence of the informal description of the STL algorithms.

We appreciate your feedback and hope that this document helps foster the adoption of deductive
verification techniques.

1.1. Changes for Version 10.1.1 (January 2015)

For changes in previous versions see Appendix A.

• use option -wp-split to create simpler (but more) proof obligations

• simplify definition of predicate Count (Section 4.8)

• add new predicates (Listing 5.5.1) for lower and upper bounds of ranges and use it in
4See http://www.sgi.com/tech/stl/
5We are not directly using int in the source code but rather value_type which is a typedef for int.

3

http://www.sgi.com/tech/stl/

– max_element (Section 5.2)

– min_element (Section 5.5)

– lower_bound (Section 6.1)

– upper_bound (Section 6.2)

– equal_range (Section 6.3)

– fill (Section 7.1)

• use a new auxiliary assertion in equal_range to enable the complete automatic verifica-
tion of this algorithm (see Section 6.3)

• add predicate Unchanged (Listing 7.7) and use it to simplify the specification of several
algorithms

– swap_ranges (Section 7.3)

– reverse (Section 7.6)

– remove_copy (Sections 7.9 and 7.10)

– push_stack and push_stack_wd (Section 8.7.6)

– pop_stack and pop_stack_wd (Section 8.7.7)

• add predicate Reverse (Listing 7.10) and use it for more concise specifications of

– reverse_copy (Section 7.5)

– reverse (Section 7.6)

• several changes in the two versions of remove_copy (Sections 7.9 and 7.10)

– use predicate HasValue (Listing 4.11) instead of logic function Count (Listing 4.24)

– add predicate PreserveCount (Listing 7.19)

– reformulate logic function RemoveCount (Listing 7.24)

– add predicate StableRemove (Listing 7.25)

– add predicate RemoveCountMonotonic (Listing 7.28)

– add predicate RemoveCountJump (Listing 7.29)

• use overloading in ACSL to create shorter logic names for Stack (Chapter 8)

• remove unnecessary labels in several Stack functions

4

Contents

1. Foreword 3
1.1. Changes for Version 10.1.1 (January 2015) . 3

2. Introduction 11
2.1. Structure of this document . 12
2.2. Types, arrays, ranges and valid indices . 12

3. The Hoare calculus 15
3.1. The assignment rule . 17
3.2. The sequence rule . 19
3.3. The implication rule . 19
3.4. The choice rule . 19
3.5. The loop rule . 21
3.6. Derived rules . 23

4. Non-mutating algorithms 25
4.1. The equal algorithm . 26
4.2. The mismatch algorithm . 30
4.3. The find algorithm . 32
4.4. The find algorithm reconsidered . 34
4.5. The find_first_of algorithm . 36
4.6. The adjacent_find algorithm . 38
4.7. The search algorithm . 40
4.8. The count algorithm . 43

5. Maximum and minimum algorithms 47
5.1. A note on relational operators . 48
5.2. The max_element algorithm . 50
5.3. The max_element algorithm with predicates 52
5.4. The max_seq algorithm . 54
5.5. The min_element algorithm . 56

6. Binary search algorithms 59
6.1. The lower_bound algorithm . 60
6.2. The upper_bound algorithm . 62
6.3. The equal_range algorithm . 64
6.4. The binary_search algorithm . 66

7. Mutating algorithms 69
7.1. The fill algorithm . 70

5

7.2. The swap algorithm . 72
7.3. The swap_ranges algorithm . 74
7.4. The copy algorithm . 76
7.5. The reverse_copy algorithm . 78
7.6. The reverse algorithm . 80
7.7. The rotate_copy algorithm . 82
7.8. The replace_copy algorithm . 84
7.9. The remove_copy algorithm . 86
7.10. Capturing the stability of remove_copy . 88
7.11. The iota algorithm . 94

8. The Stack data type 97
8.1. Methodology overview . 98
8.2. Stack axioms . 99
8.3. The structure Stack and its associated functions 101
8.4. Stack invariants . 102
8.5. Equality of stacks . 104
8.6. Runtime equality of stacks . 106
8.7. Verification of stack functions . 107
8.8. Verification of stack axioms . 120

9. Formal verification 125

A. History 129
A.1. New in Version 10.1.0 (September 2014) . 129
A.2. New in Version 9.3.1 (not published) . 129
A.3. New in Version 9.3.0 (December 2013) . 130
A.4. New in Version 8.1.0 (not published) . 130
A.5. New in Version 7.1.1 (August 2012) . 130
A.6. New in Version 7.1.0 (December 2011) . 131
A.7. New in Version 6.1.0 (not published) . 131
A.8. New in Version 5.1.1 (February 2011) . 131
A.9. New in Version 5.1.0 (May 2010) . 132
A.10.New in Version 4.2.2 (May 2010) . 132
A.11.New in Version 4.2.1 (April 2010) . 132
A.12.New in Version 4.2.0 (January 2010) . 132

Bibliography 133

6

List of Logic Specifications

2.1. The Predicate IsValidRange . 14

4.2. The predicate IsEqual . 27
4.11. The predicate HasValue . 34
4.14. The predicate HasValueOf . 36
4.17. The predicate HasEqualNeighbors . 38
4.21. The predicate HasSubRange . 40
4.24. The logic function Count . 43

5.1. Requirements for a partial order on value_type 48
5.2. Semantics of derived comparison operators . 48
5.3. Predicates for comparing array elements with a given value 49
5.6. Definition of the IsMaximum predicate . 52
5.11. Definition of the IsMinimum predicate . 56

6.1. The predicate IsSorted . 59

7.7. The predicate Unchanged . 75
7.19. The predicate PreserveCount . 86
7.24. The logic function RemoveCount . 90
7.25. The predicate StableRemove . 91
7.28. The predicate RemoveCountMonotonic . 93
7.29. The predicate RemoveCountJump . 93

8.5. The logical functions Capacity, Size and Top 103
8.6. Predicates for empty an full stacks . 103
8.7. The predicate Valid . 103
8.8. Equality of stacks . 104
8.10. Equality of stacks is an equivalence relation . 105

7

List of Figures

3.2. Example source code fragments and annotations 15
3.3. Loop source code fragments and annotations . 16
3.4. The assignment rule . 17
3.5. An assignment rule example instance . 17
3.6. Simpler, but faulty assignment rule . 18
3.7. An example instance of the faulty rule from Figure 3.6 18
3.8. An example instance of the faulty rule from Figure 3.6 18
3.9. An example instance of the faulty rule from Figure 3.6 18
3.10. The sequence rule . 19
3.11. The implication rule . 19
3.12. The choice rule . 20
3.13. An example application of the choice rule . 20
3.14. The loop rule . 21
3.15. An abstract ring buffer loop . 21

4.20. Matching b[0..n-1] in a[0..m-1] . 40

7.22. Stability of remove_copy . 89
7.23. Stability of remove_copy with respect to indices 89

8.1. Push and pop on a stack . 97
8.2. Methodology Overview . 98
8.4. Interpretation of Stack . 101
8.9. Example of two equal stacks . 104
8.13. Methodology for the verification of well-definition 107

8

List of Tables

3.1. Some ACSL formula syntax . 15

9.1. Results for non-mutating algorithms . 126
9.2. Results for maximum and minimum algorithms 126
9.3. Results for binary search algorithms . 126
9.4. Results for mutating algorithms . 127
9.5. Results for Stack functions . 127
9.6. Results for the well-definition of the Stack functions 128
9.7. Results for Stack axioms . 128

9

2. Introduction

The Framework for Modular Analyses of C, Frama-C [3], is a suite of software tools dedicated
to the analysis of C source code. Its development efforts are conducted and coordinated at two
French public institutions: CEA LIST [4], a laboratory of applied research on software-intensive
technologies, and INRIA Saclay[5], the French National Institute for Research in Computer Sci-
ence and Control in collaboration with LRI [6], the Laboratory for Computer Science at Université
Paris-Sud.

ACSL (ANSI/ISO-C Specification Language) [1] is a formal language to express behavioral prop-
erties of C programs. This language can specify a wide range of functional properties by adding
annotations to the code. It allows to create function contracts containing preconditions and post-
conditions. It is possible to define type and global invariants as well as logic specifications, such as
predicates, lemmas, axioms or logic functions. Furthermore, ACSL allows statement annotations
such as assertions or loop annotations.

Within Frama-C, the WP plug-in [2] enables deductive verification of C programs that have been
annotated with ACSL. The WP plug-in uses Hoare-style weakest precondition computations to
formally prove ACSL properties of C code. Verification conditions are generated and submitted
to external automatic theorem provers or interactive proof assistants.

The Verification Group at Fraunhofer FOKUS[7] see the great potential for deductive verification
using ACSL. However, we recognize that for a novice there are challenges to overcome in order to
effectively use the WP plug-in for deductive verification. In order to help users gain confidence, we
have written this tutorial that demonstrates how to write annotations for existing C programs. This
document provides several examples featuring a variety of annotated functions using ACSL. For
an in-depth understanding of ACSL, we strongly recommend users to read the official Frama-C
introductory tutorial [8] first. The principles presented in this paper are also documented in the
ACSL reference document [9].

Acknowledgement

Many members from the Frama-C community provided valuable input and comments during the
course of the development of this document. In particular, we wish to thank our project partners
from the Device-Soft6 project, Virgile Prevosto, Pascal Cuoq, Armand Puccetti, Florent Kirchner
and Benjamin Monate from CEA LIST, as well as the WP developers Loïc Correnson and Zaynah
Dargaye (also CEA LIST).

We also like to express our gratitude to Claude Marché (LRI/INRIA) and Yannick Moy (AdaCore)
for their helpful comments and detailed suggestions for improvement.

6See http://www.fokus.fraunhofer.de/en/sqc/forschungsthemen/verification/
index.html

11

http://www.fokus.fraunhofer.de/en/sqc/forschungsthemen/verification/index.html
http://www.fokus.fraunhofer.de/en/sqc/forschungsthemen/verification/index.html

2.1. Structure of this document

The functions presented in this document were selected from the C++ Standard Template Library
(STL) [10]. The original C++ implementation was stripped from its generic implementation and
mapped to C arrays of type value_type.

Chapter 3 provides a short introduction into the Hoare Calculus.

We have grouped various STL algorithms in chapters as follows:

• non-mutating algorithms (Chapter 4)

• maximum/minimum algorithms (Chapter 5)

• binary search algorithms (Chapter 6)

• mutating algorithms (Chapter 7)

The order of these chapters reflects their increasing complexity.

Using the example of a stack, we tackle in Chapter 8 the problem of how a data type and its
associated C functions can be specified with ACSL and automatically verified with Frama-C.

2.2. Types, arrays, ranges and valid indices

This section describe several general conventions and basic definitions we use throughout this
document.

2.2.1. Types

In order to keep algorithms and specifications as general as possible, we use abstract type names
on almost all occasions. We currently defined the following types:

typedef int value_type;

typedef unsigned int size_type;

typedef int bool;

Programmers who know the types associated with STL containers will not be surprised that
value_type refers to the type of values in an array whereas size_type will be used for the
indices of an array.

This approach allows one to modify e.g. an algorithm working on an int array to work on a char
array by changing only one line of code, viz. the typedef of value_type. Moreover, we believe
in better readability as it becomes clear whether a variable is used as an index or as a memory for
a copy of an array element, just by looking at its type.

The latter reason also applies to the use of bool. To denote values of that type, we #defined
the identifiers false and true to be 0 and 1, respectively. While any non-zero value is accepted
to denote true in ACSL like in C the algorithms shown in this tutorial will always produce 1 for

12

true. We omit clauses like \result == false || \result == true from our function
contracts for sake of brevity only. They still appear at places where they are needed for the
provers, e.g. Listing 8.19. Due to the above definitions, the ACSL truth-value constant \false
and \true can be used interchangeably with our false and true, respectively, in ACSL clauses,
but not in C code.

2.2.2. Array and ranges

The C Standard describes an array as a “contiguously allocated nonempty set of objects” [11,
§6.2.5.20]. If n is a constant integer expression with a value greater than zero, then

int a[n];

describes an array of type int. In particular, for each i that is greater than or equal to 0 and less
than n, we can dereference the pointer a+i.

Let the following prototype represent a function, whose first argument is the address to a range
and whose second argument is the length of this range.

void example(value_type* a, size_type n);

To be very precise, we have to use the term range instead of array. This is due to the fact, that
functions may be called with empty ranges, i.e., with n == 0. Empty arrays, however, are not
permitted according to the definition stated above. Nevertheless, we often use the term array and
range interchangeably.

2.2.3. Specification of valid ranges in ACSL

The following ACSL fragment expresses the precondition that the function example expects that
for each i, such that 0 <= i < n, the pointer a+i may be safely dereferenced.

/*@
requires 0 <= n;
requires \valid(a+(0.. n-1));

*/
void example(value_type* a, size_type n);

In this case we refer to each index i with 0 <= i < n as a valid index of a.

ACSL’s built-in predicate \valid(a+(0.. n)) refers to all addresses a+i where
0 <= i <= n. However, the array notation int a[n] of the C programming language refers
only to the elements a+i where i satisfies 0 <= i < n. Users of ACSL must therefore specify
\valid(a+(0.. n-1)) in order to express a valid array of length n.

In order to avoid this repeated writing of n-1 we introduce the predicate IsValidRange.

13

/*@
predicate IsValidRange(value_type* a, integer n) =

(0 <= n) && \valid(a+(0.. n-1));

*/

Listing 2.1: The Predicate IsValidRange

Using IsValidRange allows us to shorten the specification of the function example to

/*@
requires IsValidRange(a, n);

*/
void example(value_type* a, size_type n);

The predicate IsValidRange will be frequently referenced in this document.

14

3. The Hoare calculus

In 1969, C.A.R. Hoare introduced a calculus for formal reasoning about properties of imperative
programs [12], which became known as “Hoare Calculus”.

The basic notion is

//@ assert P;
Q;
//@ assert R;

where P and R denote logical expressions and Q denotes a source-code fragment. Informally, this
means “If P holds before the execution of Q, then R will hold after the execution”. Usually, P
and R are called “precondition” and “postcondition” of Q, respectively. The syntax for logical
expressions is described in [9, Section 2.2] in full detail. For the purposes of this tutorial, the
notions shown in Table 3.1 are sufficient. Note that they closely resemble the logical and relational
operators in C.

!P negation “P is not true”
P && Q conjunction “P is true and Q is true”
P || Q disjunction “P is true or Q is true”
P ==> Q implication “if P is true, then Q is true”
P <==> Q equivalence “if, and only if, P is true, then Q is true”
x < y == z relation chain “x is less than y and y is equal to z”
\forall int x; P(x) universal quantifier “P(x) is true for every int value of x”
\exists int x; P(x) existential quantifier “P(x) is true for some int value of x”

Table 3.1.: Some ACSL formula syntax

The Listings 3.2 and 3.3 shows three example source-code fragments and annotations.

//@ assert x % 2 == 1;
++x;
//@ assert x % 2 == 0;

(a)

//@ assert 0 <= x <= y;
++x;
//@ assert 0 <= x <= y + 1;

(b)

Figure 3.2.: Example source code fragments and annotations

15

//@ assert true;
while (--x != 0)

sum += a[x];
//@ assert x == 0;

Figure 3.3.: Loop source code fragments and annotations

Their informal meanings are as follows:

Figure 3.2 (a) “If x has an odd value before execution of the code ++x then x has an even value
thereafter.”

Figure 3.2 (b) “If the value of x is in the range {0, . . . ,y} before execution of the same code, then
x’s value is in the range {0, . . . ,y + 1} after execution.”

Figure 3.3 “Under any circumstances, the value of x is zero after execution of the loop code.”

Any C programmer will confirm that these properties are valid.7 The examples were chosen to
demonstrate also the following issues:

• For a given code fragment, there does not exist one fixed pre- or postcondition. Rather,
the choice of formulas depends on the actual property to be verified, which comes from the
application context. The two examples in Figure 3.2 share the same code fragment, but have
different pre- and postconditions.

• The postcondition need not be the most restricting possible formula that can be derived. In
Figure 3.3, it is not an error that we stated only that 0 <= x although we know that even
1 <= x.

• In particular, pre- and postconditions need not contain all variables appearing in the code
fragment. Neither sum nor a[] is referenced in the formulas of Figure 3.3.

• We can use the predicate true to denote the absence of a properly restricting precondition,
as we did in Figure 3.3.

• It is not possible to express by pre- and postconditions that a given piece of code will always
terminate. Figure 3.3 only states that if the loop terminates, then x == 0 will hold. In fact,
if x has a negative value on entry, the loop will run forever. However, if the loop terminates,
x == 0 will hold, and that is what Figure 3.3 claims.

Usually, termination issues are dealt with separately from correctness issues. Termination
proofs may, however, refer to properties stated (and verified) using the Hoare Calculus.

Hoare provided the rules shown in Figures 3.4 to 3.14 in order to reason about programs. We will
comment on them in the following sections.

7We leave the important issues of overflow aside for a moment.

16

3.1. The assignment rule

We start with the rule that is probably the least intuitive of all Hoare-Calculus rules, viz. the
assignment rule. It is depicted in Figure 3.4, where “P {x 7→e}” denotes the result of substituting
each occurrence of x in P by e.

//@ assert P {x |--> e};
x = e;
//@ assert P;

Figure 3.4.: The assignment rule

For example,

if P is x > 0 && a[2* x] == 0 ,
then P {x 7→ y+1} is y+1 > 0 && a[2*(y+1)] == 0 .

Hence, we get Figure 3.5 as an example instance of the assignment rule. Note that parentheses are
required in the index expression to get the correct 2*(y+1) rather than the faulty 2*y+1.

//@ assert y+1 > 0 && a[2*(y+1)] == 0;
x = y+1;
//@ assert x > 0 && a[2*x] == 0;

Figure 3.5.: An assignment rule example instance

Note that several different expressions P may result in the same expression P {x |--> e}. For
example, all four expressions

x > 0 && a[2* x] == 0 ,
x > 0 && a[2*(y+1)] == 0 ,
y+1 > 0 && a[2* x] == 0 ,

and y+1 > 0 && a[2*(y+1)] == 0 ,

result in y+1 > 0 && a[2*(y+1)] == 0

after applying {x |--> y+1}.

For this reason, the same precondition and statement may result in several different postconditions
(All four above expressions are valid postconditions in Figure 3.5, for example). However, given
a postcondition and a statement, there is only one precondition that corresponds.

When first confronted with Hoare’s assignment rule, most people are tempted to think of a simpler
and more intuitive alternative, shown in Figure 3.6.

17

//@ assert P;
x = e;
//@assert P && x ==

e;

Figure 3.6.: Simpler, but faulty assignment rule

Figures 3.7–3.9 show some example instances of this faulty rule.

//@ assert y > 0;
x = y+1;
//@ assert y > 0 && x == y+1;

Figure 3.7.: An example instance of the faulty rule from Figure 3.6

While Figure 3.7 happens to be ok, Figures 3.8 and 3.9 lead to postconditions that are obviously
nonsensical formulas.

//@ assert true;
x = x+1;
//@assert x == x+1;

Figure 3.8.: An example instance of the faulty rule from Figure 3.6

The reason is that in the assignment in Figure 3.8 the left-hand side variable x also appears in the
right-hand side expression e, while the assignment in Figure 3.9 just destroys the property from
its precondition.

//@ assert x < 0;
x = 5;
//@ assert x < 0 && x == 5;

Figure 3.9.: An example instance of the faulty rule from Figure 3.6

Note that the correct example Figure 3.7 can as well be obtained as an instance of the correct rule
from Figure 3.4, since replacing x by y+1 in its postcondition yields y > 0 && y+1 == y+1 as
precondition, which is logically equivalent to just y > 0.

18

3.2. The sequence rule

The sequence rule, shown in Figure 3.10, combines two code fragments Q and S into a single one
Q ; S. Note that the postcondition for Q must be identical to the precondition of S. This just
reflects the sequential execution (“first do Q, then do S”) on a formal level. Thanks to this rule, we
may “annotate” a program with interspersed formulas, as it is done in Frama-C.

//@ assert P
;

Q;
//@ assert R

;

and

//@ assert R
;

S;
//@ assert T

;

{

//@ assert P
;

Q ; S;
//@ assert T

;

Figure 3.10.: The sequence rule

3.3. The implication rule

The implication rule, shown in Figure 3.11, allows us at any time to weaken a postcondition and
to sharpen a precondition. We will provide application examples together with the next rule.

//@ assert P
;

Q;
//@ assert R

;

{
//@ assert P‘;
Q;
//@ assert R‘;

if P‘ ==> P

and R ==> R‘

Figure 3.11.: The implication rule

3.4. The choice rule

The choice rule, depicted in Figure 3.12, is needed to verify if(...){...} else{...} state-
ments. Both branches must establish the same postcondition, viz. S. The implication rule can be
used to weaken differing postconditions S1 of a then branch and S2 of an else branch into a
unified postcondition S1||S2, if necessary. In each branch, we may use what we know about
the condition B, e.g. in the else branch, that it is false. If the else branch is missing, it can be
considered as consisting of an empty sequence, having the postcondition P && !B.

Figure 3.13 shows an example application of the choice rule. The variable i may be used as an
index into a ring buffer int a[n]. The shown code fragment just advances the index i appropri-
ately. We verified that i remains a valid index into a[] provided it was valid before. Note the use

19

//@ assert P &&
B;

Q;
//@ assert S;

and

//@ assert P && !
B;

R;
//@ assert S;

{

//@ assert
P;

if (B) {
Q;

} else {
R;

}
//@ assert

S;

Figure 3.12.: The choice rule

of the implication rule to establish preconditions for the assignment rule as needed, and to unify
the postconditions of the then and else branch, as required by the choice rule.

//@ assert 0 <= i < n given precondition
if (i < n-1){

//@ assert 0 <= i < n - 1; using that the condition i < n-1; holds in the
//@ assert 1 <= i+1 < n; then part by the implication rule
i = i+1;

//@ assert 1 <= i < n; by the assignment rule
//@ assert 0 <= i < n; weakened by the implication rule

} else {

//@ assert 0 <= i == n-1 < n; using that then condition i < n-1 fails in the
//@ assert 0 == 0 && 0 < n; else part weakened by the implication rule
i = 0;

//@ assert i == 0 && 0 < n; by the assignment rule
//@ assert 0 <= i < n; weakened by the implication rule

}

//@ assert 0 <= i < n; by the choice rule from the then and the else part

Figure 3.13.: An example application of the choice rule

20

3.5. The loop rule

The loop rule, shown in Figure 3.14, is used to verify a while loop. This requires to find an
appropriate formula, P, which is preserved by each execution of the loop body. P is also called a
loop invariant.

//@ assert P &&
B;

S;
//@ assert P;

{

//@ assert P;
while (B)
{

S;
}
//@ assert ! B && P

;

Figure 3.14.: The loop rule

To find it requires some intuition in many cases; for this reason, automatic theorem provers usually
have problems with this task.

As said above, the loop rule does not guarantee that the loop will always eventually terminate. It
merely assures us that, if the loop has terminated, the postcondition holds. To emphasis this, the
properties verifiable with the Hoare Calculus are usually called “partial correctness” properties,
while properties that include program termination are called “total correctness” properties.

As an example application, let us consider an abstract ring-buffer loop as shown in Figure 3.15.

//@ assert 0 < n; given precondition
//@ assert 0 <= 0 < n; follows trivially
int i = 0;

//@ assert 0 <= i < n; by the assignment rule
while(!done){
//@ assert 0 <= i < n && !done; may be assumed by the loop rule
a[i] = getchar();

//@ assert 0 <= i < n && !done; required property of getchar
//@ assert 0 <= i < n; weakened by the implication rule
if (i < n-1)i++; else i = 0;

//@ assert 0 <= i < n; as seen above (Figure 3.13)
process(a, i, &done);

//@ assert 0 <= i < n; required property of process
}

//@ assert 0 <= i < n; by the loop rule

Figure 3.15.: An abstract ring buffer loop

Figure 3.15 shows a verification proof for the index i lying always within the valid range [0..n
-1] during, and after, the loop. It uses the proof from Figure 3.13 as a sub-part. Note the following

21

issues:

• To reuse the proof from Figure 3.13, we had to drop the conjunct !done, since we didn’t
consider it in Figure 3.13. In general, we may not infer

//@ assert P && S;
Q;
//@ assert R && S;

from
//@ assert P;
Q;
//@ assert R;

since the code fragment Q may just destroy the property S. This is obvious for Q being the
fragment from Figure 3.13, and S being e.g. i != 0.

Suppose for a moment that process had been implemented in a way such that it refuses
to set done to true unless it is false at entry. In this case, we would really need that
!done still holds after execution of Figure 3.13. We would have to do the proof again,
looping-through an additional conjunct !done.

• We have similar problems to carry the property 0 <= i < n && !done and 0 <= i <

n over the statement a[i] = getchar() and process(a, i, &done), respectively.
We need to specify that neither getchar nor process is allowed to alter the value of i
or n. In ACSL, there is a particular language construct assigns for that purpose, which is
introduced in Section 7.2 on Page 72.

• In our example, the loop invariant can be established between any two statements of the
loop body. However, this need not be the case in general. The loop rule only requires the
invariant holds before the loop and at the end of the loop body. For example, process
could well change the value of i8 and even n intermediately, as long as it re-establishes the
property 0 <= i < n immediately prior to returning.

• The loop invariant, 0 <= i < n, is established by the proof in Figure 3.13 also after ter-
mination of the loop. Thus, e.g., a final a[i] = ’\0’ after the loop would be guaranteed
not to lead to a bounds violation.

• Even if we would need the property 0 <= i < n to hold only immediately before the
assignment a[i] = getchar(), since, e.g., process’s body didn’t use a or i, we would
still have to establish 0 <= i < n as a loop invariant by the loop rule, since there is no
other way to obtain any property inside a loop body. Apart from this formal reason it is
obvious that 0 <= i < n wouldn’t hold during the second loop iteration unless we re-
established it at the end of the first one, and that is just what the while rule requires.

8 We would have to change the call to process(a, &i, &done) and the implementation of process
appropriately. In this case we couldn’t rely on the above-mentioned assigns clause for process.

22

3.6. Derived rules

The above rules don’t cover all kinds of statements allowed in C. However, missing C-statements
can be rewritten into a form that is semantically equivalent and covered by the Hoare rules.

For example,

switch (E) {
case E1: Q1; break; ...
case En: Qn; break;
default: Q0; break;

}

is semantically equivalent to

if (E == E1) {
Q1;

} else ... if (E == En) {
Qn;

} else {
Q0;

}

if E doesn’t have side-effects. While the if-else form is usually slower in terms of execution
speed on a real computer, this doesn’t matter for verification purposes, which are separate from
execution issues.

Similarly, for (P; Q; R) {S} can be re-expressed as P; while (Q) {S ; R}, and so on.

It is then possible to derive a Hoare rule for each kind of statement not previously discussed, by
applying the classical rules to the corresponding re-expressed code fragment. However, we do not
present these derived rules here.

Although procedures cannot be re-expressed in the above way if they are (directly or mutually)
recursive, it is still possible to derive Hoare rules for them. This requires the finding of appropriate
“procedure invariants” similar to loop invariants. Non-recursive procedures can, of course, just be
inlined to make the classical Hoare rules applicable.

Note that goto cannot be rewritten in the above way; in fact, programs containing goto state-
ments cannot be verified with the Hoare Calculus. See [13] for a similar calculus that can deal with
arbitrary flowcharts, and hence arbitrary jumps. In fact, Hoare’s work was based on that calculus.
Later calculi inspired from Hoare’s work have been designed to re-integrate support for arbitrary
jumps. However, in this tutorial, we will not discuss example programs containing a goto.

23

4. Non-mutating algorithms

In this chapter, we consider non-mutating algorithms, i.e., algorithms that neither change their
arguments nor any objects outside their scope. This requirement can be formally expressed with
the following assigns clause:

assigns \nothing;

Each algorithm in this chapter therefore uses this assigns clause in its specification.

The specifications of these algorithms are not very complex. Nevertheless, we have tried to arrange
them so that the earlier examples are simpler than the later ones. All algorithms work on one-
dimensional arrays (“ranges”).

equal (Section 4.1 on Page 26) compares two ranges element-by-element. Here, we will
present to versions to specify to specify such a function.

mismatch (Section 4.2 on Page 30) returns the smallest index where two ranges differ. An
implementation of equal using mismatch is also presented.

find (Section 4.3 on Page 32) provides sequential or linear search and returns the smallest
index at which a given value occurs in a range. In Section 4.4, on Page 34, a predicate is
introduced in order to simplify the specification.

find_first_of (Section 4.5, on Page 36) provides similar to find a sequential search, but
unlike find it does not search for a particular value, but for the least index of a given range
which occurs in another range.

adjacent_find (Section 4.6 on Page 38) can be used to find equal neighbors in an array.

search (Section 4.7, on Page 40) finds a subsequence that is identical to a given sequence when
compared element-by-element and returns the position of the first occurrence.

count (Section 4.8, on Page 43) returns the number of occurrences of a given value in a range.
Here we will employ some user-defined axioms to formally specify count.

25

4.1. The equal algorithm

The equal algorithm in the C++ Standard Library compares two generic sequences. For our
purposes we have modified the generic implementation9 to that of an array of type value_type.
The signature now reads:

bool equal(const value_type* a, size_type n, const value_type* b);

The function returns true if a[i] == b[i] holds for each 0 <= i < n. Otherwise, equal
returns false.

4.1.1. Formal specification of equal

The ACSL specification of equal is shown in Listing 4.1. We discuss the specification now line
by line.

/*@
requires IsValidRange(a, n);
requires IsValidRange(b, n);

assigns \nothing;

behavior all_equal:
assumes \forall integer i; 0 <= i < n ==> a[i] == b[i];
ensures \result;

behavior some_not_equal:
assumes \exists integer i; 0 <= i < n && a[i] != b[i];
ensures !\result;

complete behaviors;
disjoint behaviors;

*/
bool equal(const value_type* a, size_type n, const value_type* b);

Listing 4.1: Formal specification of equal

The first part of our specification are the preconditions, which must be existent before the algo-
rithm is executed. Those requirements can be specified with the requires-clause in ACSL. In
case of the equal algorithm it is needed that n is non-negative and that the pointers a and b point
to n contiguously allocated objects of type value_type (see also Section 2.2).

In the second part of our specification we make a statement about objects and arguments that
changed by the function. Since equal is a non-mutating algorithm and does not modify any
memory location outside its scope we just define assigns \nothing (see Page 25).

Finally, we must define the postconditions, which must satisfy after the equal algorithm is fin-
ished. Therefore we have two behaviors:

9See http://www.sgi.com/tech/stl/equal.html.

26

http://www.sgi.com/tech/stl/equal.html

The behavior all_equal applies if an element-wise comparison of the two ranges yields that they
In this case the function equal is expected to return true. Finally, the behavior some_not_equal
applies if there is at least one valid index i where the elements a[i] and b[i] differ. In this case
the function equal is expected to return false.

The negation of the formula

\forall integer i; 0 <= i < n ==> a[i] == b[i];

in behavior all_equal is just the formula

\exists integer i; 0 <= i < n && a[i] != b[i];

in behavior some_not_equal. Therefore, these two behaviors complement each other.

The complete behaviors-clause in Listing 4.1 expresses the fact that for all ranges a and b

that satisfy the preconditions of the contract at least one of the specified named behaviors, in this
case all_equal and some_not_equal, applies.

The disjoint behaviors-clause in Listing 4.1 formalizes the fact that for all ranges a and b

that satisfy the preconditions of the contract at most one of the specified named behaviors, in this
case all_equal and some_not_equal, applies.

4.1.2. The IsEqual predicate

The fact that two arrays a[0]..a[n-1] and b[0]..b[n-1] are equal when compared element
by element, is a property we might need again in other specifications, as it describes a very basic
behavior.

The motto don’t repeat yourself is not just good programming practice.10 It is also true for concise
and easy to understand specifications. We will therefore introduce specification elements that we
can apply to the equal algorithm as well as to other specifications and implementations with the
described behavior.

In Listing 4.2 we introduce the predicate IsEqual.

/*@
predicate

IsEqual{A,B}(value_type* a, integer n, value_type* b) =
\forall integer i; 0 <= i < n ==>

\at(a[i], A) == \at(b[i], B);

*/

Listing 4.2: The predicate IsEqual

This predicate formalizes the fact that the arrays a[0]..a[n-1] and b[0]..b[n-1] are equal
when compared element by element. The letters A and B are labels11 that must be supplied when
using the predicate IsEqual. We use labels in the definition of IsEqual to extend its appli-
cability. The expression \at(a[i], A) means that a[i] is evaluated at the label A. Frama-C

10Compare http://en.wikipedia.org/wiki/Don’t_repeat_yourself.
11Labels are used in C to name the target of the goto jump statement.

27

http://en.wikipedia.org/wiki/Don't_repeat_yourself

defines several standard labels, e.g. Old and Post, a programmer can use to refer to the pre-
state or post-state, respectively, of a function. For more details on labels we refer to the ACSL
specification [9, p. 39].

Using this predicate we can reformulate the specification of equal in Listing 4.1 as shown in
Listing 4.3. Here we use the predefined label Here. When used in an ensures clause the la-
bel Here refers to the pre-state of a function.

/*@
requires IsValidRange(a, n);
requires IsValidRange(b, n);

assigns \nothing;

ensures \result <==> IsEqual{Here,Here}(a, n, b);

*/
bool equal(const value_type* a, size_type n, const value_type* b);

Listing 4.3: Formal specification of equal using the IsEqual predicate

Note that the equivalence is needed in the ensures clause. Putting an equality instead is not legal
in ACSL, because IsEqual is a predicate.

4.1.3. Implementation of equal

Listing 4.4 shows one way to implement the function equal. In our description, we concentrate
on the loop annotations.

The first loop invariant is needed to prove that all accesses to a and b occur with valid indices.
However, we may not require simply

loop invariant 0 <= i < n;

since the very last loop iteration would violate this formula. Therefore, we have to weaken the
formula to that shown in the implementation of Listing 4.4, which is preserved by all iterations
of the loop. Note that 0 <= i < n is still valid immediately before the array accesses in, since
we may assume there in addition that the loop condition i < n holds. However, 0 <= i < n is
invalid after completion of the loop, while the loop invariant is guaranteed to hold there, too, cf.
the loop rule in Figure 3.14 on Page 21.

Most important is the last loop invariant. It complies with the postcondition of the specification in
Listing 4.3 and is needed to prove that for each iteration all elements of a and b up to that iteration
step are equal. The loop assigns-clause in Listing 4.4 expresses that only the loop index is modified
in any iteration. This is in accordance with the fact that equal is a non-mutating algorithm. The
loop variant is needed to generate correct verification conditions for the termination of the for-
loop. In order to prove the termination of the loop, Frama-C needs to know an expression whose
value is decreased by each and every loop cycle and is always positive12[9, Subsections 2.4.2,

12Except for possibly the very last iteration.

28

bool equal(const value_type* a, size_type n, const value_type* b)
{
/*@

loop invariant 0 <= i <= n;
loop invariant \forall integer k; 0 <= k < i ==> a[k] == b[k];
loop assigns i;
loop variant n-i;

*/
for (size_type i = 0; i < n; i++)
{

if (a[i] != b[i])
{
return false;

}
}

return true;
}

Listing 4.4: Implementation of equal

2.5.1]. For a for loop as simple as that the expression n-i is sufficient for that purpose. Again,
we can use the predicate IsEqual in order to simplify the second loop invariant, which complies
our postcondition. Listing 4.5 shows the modified implementation using the predicate IsEqual.

bool equal(const value_type* a, size_type n, const value_type* b)
{
/*@

loop invariant 0 <= i <= n;
loop invariant IsEqual{Here,Here}(a, i, b);
loop assigns i;
loop variant n-i;

*/
for (size_type i = 0; i < n; i++)
{

if (a[i] != b[i])
{
return false;

}
}

return true;
}

Listing 4.5: Implementation of equal using the IsEqual predicate

29

4.2. The mismatch algorithm

The mismatch algorithm is closely related to the negation of equal from Section 4.1. Its
signature reads

size_type mismatch(const value_type* a, int n,
const value_type* b);

The function mismatch returns the smallest index where the two ranges a and b differ. If no
such index exists, that is, if both ranges are equal then mismatch returns the length n of the two
ranges.13

4.2.1. Formal specification of mismatch

We use the IsEqual predicate defined in Listing 4.2 also for the formal specification of mismatch
that is shown in Listing 4.6.

Note in particular the use of IsEqual in the specification shown in Listing 4.6 in order to ex-
press that mismatch returns the smallest index where the two arrays differ. Note also that the
completeness and disjointedness of the behaviors all_equal and some_not_equal has now
become immediately obvious, since their assumes clauses are just literal negations of each other.

/*@
requires IsValidRange(a, n);
requires IsValidRange(b, n);

assigns \nothing;

behavior all_equal:
assumes IsEqual{Here,Here}(a, n, b);
ensures \result == n;

behavior some_not_equal:
assumes !IsEqual{Here,Here}(a, n, b);
ensures 0 <= \result < n;
ensures a[\result] != b[\result];
ensures IsEqual{Here,Here}(a, \result, b);

complete behaviors;
disjoint behaviors;

*/
size_type mismatch(const value_type* a, size_type n,

const value_type* b);

Listing 4.6: Formal specification of mismatch

13See also http://www.sgi.com/tech/stl/mismatch.html.

30

http://www.sgi.com/tech/stl/mismatch.html

4.2.2. Implementation of mismatch

Listing 4.7 shows an implementation of mismatch that we have enriched with some loop anno-
tations to support the deductive verification.

size_type mismatch(const value_type* a, size_type n,
const value_type* b)

{
/*@

loop invariant 0 <= i <= n;
loop invariant IsEqual{Here,Here}(a, i, b);
loop assigns i;
loop variant n-i;

*/
for (size_type i = 0; i < n; i++)

if (a[i] != b[i])
{
return i;

}

return n;
}

Listing 4.7: Implementation of mismatch

We use the predicate IsEqual as shown in Listing 4.7 in order to express that all indices k that
are less than the current index i satisfy the condition a[k] == b[k]. This is necessary to prove
that mismatch indeed returns the smallest index where the two ranges differ.

4.2.3. Implementation of equal by calling mismatch

Listing 4.8 shows an implementation of the equal algorithm by a simple call of mismatch.14

bool equal(const value_type* a, size_type n, const value_type* b)
{
return mismatch(a, n, b) == n;

}

Listing 4.8: Implementation of equal with mismatch

14See also the note on the relationship of equal and mismatch on http://www.sgi.com/tech/stl/
equal.html.

31

http://www.sgi.com/tech/stl/equal.html
http://www.sgi.com/tech/stl/equal.html

4.3. The find algorithm

The find algorithm in the C++ standard library implements sequential search for general se-
quences.15 We have modified the generic implementation, which relies heavily on C++ templates,
to that of a range of type value_type. The signature now reads:

size_type find(const value_type* a, size_type n, value_type val);

The function find returns the least valid index i of a where the condition a[i] == val holds.
If no such index exists then find returns the length n of the array.

4.3.1. Formal specification of find

The formal specification of find in ACSL is shown in Listing 4.9.

/*@
requires IsValidRange(a, n);

assigns \nothing;

behavior some:
assumes \exists integer i; 0 <= i < n && a[i] == val;
ensures 0 <= \result < n;
ensures a[\result] == val;
ensures \forall integer i; 0 <= i < \result ==> a[i] != val;

behavior none:
assumes \forall integer i; 0 <= i < n ==> a[i] != val;
ensures \result == n;

complete behaviors;
disjoint behaviors;

*/
size_type find(const value_type* a, size_type n, value_type val);

Listing 4.9: Formal specification of find

The requires-clause indicates that n is non-negative and that the pointer a points to n contigu-
ously allocated objects of type value_type (see Section 2.2).

The assigns-clause indicates that find (as a non-mutating algorithm), does not modify any
memory location outside its scope (see Page 25).

We have subdivided the specification of find into two behaviors (named some and none). The
behavior some applies if the sought-after value is contained in the array. We express this condition
by using the assumes-clause. The next line expresses that if the assumptions of the behavior are
satisfied then find will return a valid index. The algorithm also ensures that the returned (valid)
index i, a[i] == val holds. Therefore we define this property in the second postcondition of

15See http://www.sgi.com/tech/stl/find.html.

32

http://www.sgi.com/tech/stl/find.html

behavior some. Finally, it is important to express that find return the smallest index i for which
a[i] == val holds (see last postcondition of behavior some).

The behavior none covers the case that the sought-after value is not contained in the array (see
assumes-clause of behavior none in Listing 4.9). In this case, find must return the length n of
the range a.

Note that the formula in the assumes-clause of the behavior some is the negation of the assumes
-clause of the behavior none. Therefore, we can express that these two behaviors are complete
and disjoint.

4.3.2. Implementation of find

Listing 4.10 shows a straightforward implementation of find. The only noteworthy elements of
this implementation are the loop annotations.

size_type find(const value_type* a, size_type n, value_type val)
{
/*@

loop invariant 0 <= i <= n;
loop invariant \forall integer k; 0 <= k < i ==> a[k] != val;
loop assigns i;
loop variant n-i;

*/
for (size_type i = 0; i < n; i++)

if (a[i] == val)
{
return i;

}

return n;
}

Listing 4.10: Implementation of find

The first loop invariant is needed to prove that accesses to a only occur with valid indices. With
the second loop invariant is needed for the proof of the postconditions of the behavior some
(see Listing 4.9). It expresses that for each iteration the sought-after value is not yet found up to
that iteration step.

Finally, the loop variant n-i is needed to generate correct verification conditions for the termina-
tion of the loop.

33

4.4. The find algorithm reconsidered

In this section we specify the find algorithm in a slightly different way when compared to Sec-
tion 4.3. Our approach is motivated by a considerable number of closely related formulas. We
have in Listings 4.9 and 4.10 the following formulas

\exists integer i; 0 <= i < n && a[i] == val;
\forall integer i; 0 <= i < \result ==> a[i] != val;
\forall integer i; 0 <= i < n ==> a[i] != val;
\forall integer k; 0 <= k < i ==> a[k] != val;

Note that the first formula is the negation of the third one.

In order to be more explicit about the commonalities of these formulas we define a predicate,
called HasValue (see Listing 4.11), which describes the situation that there is a valid index i

such that

a[i] == val

holds.

/*@
predicate

HasValue{A}(value_type* a, integer n, value_type val) =
\exists integer i; 0 <= i < n && a[i] == val;

*/

Listing 4.11: The predicate HasValue

Note that we needed to provide a label, viz. A, to the predicate, since its evaluation depends on a
memory state, viz. then contents of a[]. ACSL allows to abbreviate \at(a[i],A) by a[i] if,
as in our predicate body, A is the only available label.

With this predicate we can encapsulate all uses of the ∀ and ∃ quantifiers in both the specification
of the function contract of find and in the loop annotations. The result is shown in Listings 4.12
and 4.13.

4.4.1. Formal specification of find

This approach leads to a specification of find that is more readable than the one described in
Section 4.3.

In particular, it can be seen immediately that the conditions in the assumes clauses of the two
behaviors some and none are mutually exclusive since one is the literal negation of the other.
Moreover, the requirement that find returns the smallest index can also be expressed using the
HasValue predicate, as depicted with the last postcondition of behavior some as shown in List-
ing 4.12.

34

/*@
requires IsValidRange(a, n);

assigns \nothing;

behavior some:
assumes HasValue(a, n, val);
ensures 0 <= \result < n;
ensures a[\result] == val;
ensures !HasValue(a, \result, val);

behavior none:
assumes !HasValue(a, n, val);
ensures \result == n;

complete behaviors;
disjoint behaviors;

*/
size_type find(const value_type* a, size_type n, value_type val);

Listing 4.12: Formal specification of find using the HasValue predicate

4.4.2. Implementation of find

The predicate HasValue is also used in the loop annotation inside the implementation of find.

size_type find(const value_type* a, size_type n, value_type val)
{
/*@

loop invariant 0 <= i <= n;
loop invariant !HasValue(a, i, val);
loop assigns i;
loop variant n-i;

*/
for (size_type i = 0; i < n; i++)

if (a[i] == val)
{
return i;

}

return n;
}

Listing 4.13: Implementation of find with loop annotations based on HasValue

35

4.5. The find_first_of algorithm

The find_first_of algorithm16 is closely related to find (see Sections 4.3 and 4.4).

size_type find_first_of(const value_type* a, size_type m,
const value_type* b, size_type n);

As in find it performs a sequential search. However, whereas find searches for a particular
value, find_first_of returns the least index i such that a[i] is equal to one of the values
b[0], . . ., b[n-1].

4.5.1. Formal specification of find_first_of

Similar to our approach in Section 4.4, we define a predicate HasValueOf that formalizes the
fact that there are valid indices i for a and j of b such that a[i] == b[j] hold. One way to
achieve this would be to define HasValueOf as follows:

/*@
predicate
HasValueOf{A}(value_type* a, integer m,

value_type* b, integer n) =
\exists integer i, j; 0 <= i < m &&

0 <= j < n && a[i] == b[j];

*/

However, we have chosen to reuse the predicate HasValue (Listing 4.11) to define the HasValueOf
predicate. The result is shown in Listing 4.14.

/*@
predicate

HasValueOf{A}(value_type* a, integer m,
value_type* b, integer n) =

\exists integer i; 0 <= i < m && HasValue{A}(b, n, \at(a[i],A))
;

*/

Listing 4.14: The predicate HasValueOf

Both the predicates HasValueOf and HasValue occur in the formal specification of
find_first_of (see Listing 4.15). Note how similar the specification of
find_first_of becomes to that of find (Listing 4.12) when using these predicates.

16See http://www.sgi.com/tech/stl/find_first_of.html.

36

http://www.sgi.com/tech/stl/find_first_of.html

/*@
requires IsValidRange(a, m);
requires IsValidRange(b, n);

assigns \nothing;

behavior found:
assumes HasValueOf(a, m, b, n);
ensures 0 <= \result < m;
ensures HasValue(b, n, a[\result]);
ensures !HasValueOf(a, \result, b, n);

behavior not_found:
assumes !HasValueOf(a, m, b, n);
ensures \result == m;

complete behaviors;
disjoint behaviors;

*/
size_type find_first_of(const value_type* a, size_type m,

const value_type* b, size_type n);

Listing 4.15: Formal specification of find_first_of

4.5.2. Implementation of find_first_of

Our implementation of find_first_of is shown in Listing 4.16.

size_type find_first_of (const value_type* a, size_type m,
const value_type* b, size_type n)

{
/*@

loop invariant 0 <= i <= m;
loop invariant \forall integer k; 0 <= k < i ==> !HasValue(b, n,

a[k]);
loop invariant !HasValueOf(a, i, b, n);
loop assigns i;
loop variant m-i;

*/
for (size_type i = 0; i < m; i++)

if (find(b, n, a[i]) < n)
{
return i;

}

return m;
}

Listing 4.16: Implementation of find_first_of

37

Note the call of the find function shown in the Listing above. In the original STL implemen-
tation17, find_first_of does not call find but rather inlines it. The reason for this were
probably efficiency considerations. We opted for an implementation of find_first_of that
emphasizes reuse. Besides, leading to a more concise implementation, we also have to write less
loop annotations.

4.6. The adjacent_find algorithm

The adjacent_find algorithm18

size_type adjacent_find(const value_type* a, size_type n);

returns the smallest valid index i, such that i+1 is also a valid index and such that

a[i] == a[i+1]

holds. The adjacent_find algorithm returns n if no such index exists.

4.6.1. Formal specification of adjacent_find

As in the case of other search algorithms, we first define a predicate HasEqualNeighbors
(see Listing 4.17) that captures the essence of finding two adjacent indices at which the array
holds equal values.

/*@
predicate

HasEqualNeighbors{A}(value_type* a, integer n) =
\exists integer i; 0 <= i < n-1 && a[i] == a[i+1];

*/

Listing 4.17: The predicate HasEqualNeighbors

We use the predicate HasEqualNeighbors to define the formal specification of adjacent_find
(see Listing 4.18).

4.6.2. Implementation of adjacent_find

The implementation of adjacent_find, including loop (in)variants is shown in Listing 4.19.
Please note the use of the predicate HasEqualNeighbors in the loop invariant to match the
similar postcondition of behavior some.

17 See http://www.sgi.com/tech/stl/stl_algo.h
18 See http://www.sgi.com/tech/stl/adjacent_find.html

38

http://www.sgi.com/tech/stl/stl_algo.h
http://www.sgi.com/tech/stl/adjacent_find.html

/*@
requires IsValidRange(a, n);

assigns \nothing;

behavior some:
assumes HasEqualNeighbors(a, n);
ensures 0 <= \result < n-1;
ensures a[\result] == a[\result+1];
ensures !HasEqualNeighbors(a, \result);

behavior none:
assumes !HasEqualNeighbors(a, n);
ensures \result == n;

complete behaviors;
disjoint behaviors;

*/
size_type adjacent_find(const value_type* a, size_type n);

Listing 4.18: Formal specification of adjacent_find

size_type adjacent_find(const value_type* a, size_type n)
{
if (0 == n)
{

return n;
}

/*@
loop invariant 0 <= i < n;
loop invariant !HasEqualNeighbors(a, i+1);
loop assigns i;
loop variant n-i;

*/
for (size_type i = 0; i < n - 1; i++)

if (a[i] == a[i + 1])
{
return i;

}

return n;
}

Listing 4.19: Implementation of adjacent_find

39

4.7. The search algorithm

The search algorithm in the C++ standard library finds a subsequence that is identical to a given
sequence when compared element-by-element. For our purposes we have modified the generic
implementation to that of an array of type value_type.19 The signature now reads:

size_type search(const value_type* a, size_type m,
const value_type* b, size_type n)

The function search returns the first index i of the array a where the condition a[i+k]==b[k]

for each 0 <= k < n holds. If no such index exists then search returns the length m of the
array a. Figure 4.20 tries to illustrate the requirement of search that b[0..n-1] cannot be
found in the subrange a[0..\result+n-2].

b0 ... bn-1b1

b0 ... bn-1b1

result result+n-1result+1

0 1 n-1

a

b

Figure 4.20.: Matching b[0..n-1] in a[0..m-1]

4.7.1. Formal specification of search

Our specification of search starts with introducing the predicate HasSubRange in Listing 4.21.
This predicate formalizes the fact that the sequence a contains a subsequence which is identical to
the sequence b.

/*@
predicate

HasSubRange{A}(value_type* a, integer m,
value_type* b, integer n) =

\exists size_type k; (0 <= k <= m-n) && IsEqual{A,A}(a+k, n, b);

*/

Listing 4.21: The predicate HasSubRange

The ACSL specification of search is shown in Listing 4.22.

19See http://www.sgi.com/tech/stl/search.html.

40

http://www.sgi.com/tech/stl/search.html

/*@
requires IsValidRange(a, m);
requires IsValidRange(b, n);

assigns \nothing;

ensures (n == 0 || m == 0) ==> \result == 0;

behavior has_match:
assumes HasSubRange(a, m, b, n);
ensures 0 <= \result <= m-n;
ensures IsEqual{Here,Here}(a+\result, n, b);
ensures !HasSubRange(a, \result+n-1, b, n);

behavior no_match:
assumes !HasSubRange(a, m, b, n);
ensures \result == m;

complete behaviors;
disjoint behaviors;

*/
size_type search(const value_type* a, size_type m,

const value_type* b, size_type n);

Listing 4.22: Formal specification of search

The behavior has_match applies if the sequence a contains a subsequence, which is identical to
the sequence b. We express this condition with assumes by using the predicate HasSubRange
as shown in Listing 4.22 which is mentioned above.

The first ensures clause of behavior has_match indicates that the return value must be in the
range [0..m-n]. The second one expresses that search returns the smallest index where b can
be found in a. Finally, in the last line under behavior has_match we indicate that the sequence a
contains a subsequence (from the position \result), which is identical to the sequence b.

The behavior no_match covers the case that there is no such subsequence in sequence a, which
equals to the sequence b. In this case, search must return the length m of the range a. In any
case, if the ranges a or b are empty, then the return value will be 0. We express this fact with the
following line:

ensures (n == 0 || m == 0) ==> \result == 0;

The formula in the assumes clause of the behavior has_match is the negation of the assumes
clause of the behavior no_match. Therefore, we can express that these two behaviors are complete
and disjoint.

41

4.7.2. Implementation of search

Our implementation of search is shown in Listing 4.23. It follows the C++ standard library
implementation in being easy to understand, but needing an order of magnitude of m*n operations.
In contrast, the sophisticated algorithm from [14] needs only m+n operations.20

size_type search(const value_type* a, size_type m,
const value_type* b, size_type n)

{
if ((n == 0) || (m == 0))
{

return 0;
}

if (n > m)
{

return m;
}

/*@
loop invariant 0 <= i <= m-n+1;
loop invariant !HasSubRange(a, n+i-1, b, n);
loop assigns i;
loop variant m-i;

*/
for (size_type i = 0; i <= m - n; i++)
{

if (equal(a + i, n, b)) // Is there a match?
{
return i;

}
}

return m;
}

Listing 4.23: Implementation of search

The second loop invariant is needed for the proof of the postconditions of the behavior has_match
(see Listing 4.22). It expresses that for each iteration the subsequence, which equals to the se-

quence b, is not yet found up to that iteration step.

20This question has been also discussed by the C++ standardization committee, see http://www.open-std.
org/jtc1/sc22/wg21/docs/papers/2014/n3905.html

42

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3905.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3905.html

4.8. The count algorithm

The count algorithm in the C++ standard library counts the frequency of occurrences for a par-
ticular element in a sequence. For our purposes we have modified the generic implementation21 to
that of arrays of type value_type. The signature now reads:

size_type count(const value_type* a, size_type n, value_type val);

Informally, the function returns the number of occurrences of val in the array a.

4.8.1. An axiomatic definition of counting

The specification of count will be fairly short because it employs the logic function Count
whose (considerably) longer definition is given in Listing 4.24.22 We will reuse this axiomatic
definition of counting for the specification of other algorithms, e.g., remove_copy (Section 7.9).

/*@
axiomatic CountAxiomatic
{

logic integer Count{L}(value_type* a, integer n, value_type v)
reads a[0..n-1];

axiom CountEmpty:
\forall value_type *a, v, integer n;

n <= 0 ==> Count(a, n, v) == 0;

axiom CountOneHit:
\forall value_type *a, v, integer n;

(a[n] == v ==> Count(a, n + 1, v) == Count(a, n, v) + 1);

axiom CountOneMiss:
\forall value_type *a, v, integer n;

(a[n] != v ==> Count(a, n + 1, v) == Count(a, n, v));

axiom CountRead{L1,L2}:
\forall value_type *a, v, integer n;

(\forall integer k; 0 <= k < n ==> \at(a[k],L1) == \at(a[k],L2
))

==> Count{L1}(a, n, v) == Count{L2}(a, n, v);

}

*/

Listing 4.24: The logic function Count

21 See http://www.sgi.com/tech/stl/count.html.
22This definition of Count is a generalization of the logic function nb_occ of the ACSL specification [9].

43

http://www.sgi.com/tech/stl/count.html

The logic function Count in Listing 4.24 determines the number of occurrences of a value v in
the index range [0..n-1] of an array of type value_type.

• The ACSL keyword axiomatic is used to gather the logic function Count and its defining
axioms. Note that the interval bound n and the return value for Count are of type integer.

• Axiom CountEmpty covers the case of an empty range.

• Axioms CountOneHit and CountOneMiss reduce counting of a range of length n + 1 to a
range of length n.

• The reads clause specifies the set of memory locations on which Count depends. Specif-
ically, it states that Count only depends on the range a[0..n-1]. Axiom CountRead

then ensures that Count produces the same result if the values a[0..n-1] do not change
between two program states indicated by the labels L1 and L2, respectively. This axiom
is helpful if one has to verify mutating algorithms that are specified with Count, e.g.,
remove_copy in Section 7.9.

4.8.2. Formal specification of count

Listing 4.25 shows how we use the logic function count to specify count in ACSL. Note that our
specification also states that the result of count is non-negative and less than or equal the says of
the array.

/*@
requires IsValidRange(a, n);

assigns \nothing;

ensures \result == Count(a, n, val);
ensures 0 <= \result <= n;

*/
size_type count(const value_type* a, size_type n, value_type val);

Listing 4.25: Formal specification of count

44

4.8.3. Implementation of count

Listing 4.26 shows a possible implementation of count. Note that we refer to the logic function
Count in one of the loop invariants.

size_type count(const value_type* a, size_type n, value_type val)
{
size_type counted = 0;

/*@
loop invariant 0 <= i <= n;
loop invariant 0 <= counted <= i;
loop invariant counted == Count(a, i, val);
loop assigns i, counted;
loop variant n-i;

*/
for (size_type i = 0; i < n; ++i)

if (a[i] == val)
{
counted++;

}

return counted;
}

Listing 4.26: Implementation of count

45

5. Maximum and minimum algorithms

In this chapter we discuss the formal specification of algorithms that compute the maximum or
minimum values of their arguments. As the algorithms in Chapter 4, they also do not modify any
memory locations outside their scope. The most important new feature of the algorithms in this
chapter is that they compare values using binary operators such as <.

We consider in this chapter the following algorithms.

max_element (Section 5.2, on Page 50) returns an index to a maximum element in range.
Similar to find it also returns the smallest of all possible indices. An alternative specifica-
tion which relies on user-defined predicates will be introduced in Section 5.3, on Page 52).

max_seq (Section 5.4, on Page 54) is very similar to max_element and will serve as an
example of modular verification. It returns the maximum value itself rather than an index to
it.

min_element which can be used to find the smallest element in an array (Section 5.5).

First, however, we discuss in Section 5.1 general properties that must be satisfied by the relational
operators.

47

5.1. A note on relational operators

Note that in order to compare values, STL algorithms usually rely solely on the less than operator <
or special function objects.23 To be precises, the operator < must be a partial order,24 which means
that the following rules hold.

irreflexivity ∀x : ¬(x < x)
asymmetry ∀x, y : x < y =⇒ ¬(y < x)
transitivity ∀x, y, z : x < y ∧ y < z =⇒ x < z

If you wish check that the operator < of our value_type25 satisfies this properties you can for-
mulate lemmas in ACSL and verify them with Frama-C. (see Listing 5.1).

/*@
lemma LessIrreflexivity:

\forall value_type a; !(a < a);

lemma LessAntisymmetry:
\forall value_type a, b; (a < b) ==> !(b < a);

lemma LessTransitivity:
\forall value_type a, b, c; (a < b) && (b < c) ==> (a < c);

*/

Listing 5.1: Requirements for a partial order on value_type

It is of course possible to specify and implement the algorithms of this chapter by only using
operator <. For example, a <= b can be written as a < b || a == b, or, for our particular
ordering on value_type, as !(b < a). However, for the purpose of this introductory document
we have opted for a more user friendly representation.

Listing 5.2 formulates condition on the semantics of the derived operator >, <= and >=.

/*@
lemma Greater:

\forall value_type a, b; (a > b) <==> (b < a);

lemma LessOrEqual:
\forall value_type a, b; (a <= b) <==> !(b < a);

lemma GreaterOrEqual:
\forall value_type a, b; (a >= b) <==> !(a < b);

*/

Listing 5.2: Semantics of derived comparison operators

23See http://www.sgi.com/tech/stl/LessThanComparable.html.
24See http://en.wikipedia.org/wiki/Partially_ordered_set
25See Section 2.2

48

http://www.sgi.com/tech/stl/LessThanComparable.html
http://en.wikipedia.org/wiki/Partially_ordered_set

We also provide a group of predicates that concisely express the comparison of the elements in
an array segment with a given value (see Listing 5.5.1). We will use these predicates both in this
chapter and in Chapter binary-search.

/*@
predicate ConstantRange(value_type* a, integer first,

integer last, value_type val) =
\forall integer i; first <= i < last ==> a[i] == val;

predicate StrictLowerBound(value_type* a, integer first,
integer last, value_type val) =

\forall integer i; first <= i < last ==> val < a[i];

predicate LowerBound(value_type* a, integer first,
integer last, value_type val) =

\forall integer i; first <= i < last ==> !(a[i] < val);

predicate StrictUpperBound(value_type* a, integer first,
integer last, value_type val) =

\forall integer i; first <= i < last ==> a[i] < val;

predicate UpperBound(value_type* a, integer first,
integer last, value_type val) =

\forall integer i; first <= i < last ==> !(val < a[i]);

*/

Listing 5.3: Predicates for comparing array elements with a given value

49

5.2. The max_element algorithm

The max_element algorithm in the C++ Standard Template Library26 searches the maximum
of a general sequence. The signature of our version of max_element reads:

size_type max_element(const value_type* a, size_type n);

The function finds the largest element in the range a[0, n). More precisely, it returns the unique
valid index i such that

1. for each index k with 0 <= k < n the condition a[k] <= a[i] holds and

2. for each index k with 0 <= k < i the condition a[k] < a[i] holds.

The return value of max_element is n if and only if there is no maximum, which can only occur
if n == 0.

5.2.1. Formal specification of max_element

A formal specification of max_element in ACSL is shown in Listing 5.4.

/*@
requires IsValidRange(a, n);

assigns \nothing;

behavior empty:
assumes n == 0;
ensures \result == 0;

behavior not_empty:
assumes 0 < n;

ensures 0 <= \result < n;
ensures \forall integer i; 0 <= i < n ==> a[i] <= a[\result];
ensures \forall integer i; 0 <= i < \result ==> a[i] < a[\result];

complete behaviors;
disjoint behaviors;

*/
size_type max_element(const value_type* a, size_type n);

Listing 5.4: Formal specification of max_element

We have subdivided the specification of max_element into two behaviors (named empty and
not_empty). The behavior empty contains the specification for the case that the range contains
no elements. The behavior not_empty applies if the range has a positive length.

26See http://www.sgi.com/tech/stl/max_element.html

50

http://www.sgi.com/tech/stl/max_element.html

The second ensures clause of behavior not_empty indicates that the returned valid index k

refers to a maximum value of the array. The third one expresses that k is indeed the first
occurrence of a maximum value in the array.

Given the requirement 0 <= n which is a part of IsValidRange(a, n), the formula in the
assumes clause of the behavior empty is the negation of the assumes clause of the behavior
not_empty. Therefore, we can express that these two behaviors are complete and disjoint.

5.2.2. Implementation of max_element

Listing 5.5 shows an implementation of max_element. In our description, we concentrate on
the loop annotations.

size_type max_element(const value_type* a, size_type n)
{
if (n == 0)
{

return 0;
}

size_type max = 0;

/*@
loop invariant 0 <= i <= n;
loop invariant 0 <= max < n;
loop invariant \forall integer k; 0 <= k < i ==> a[k] <= a[max];
loop invariant \forall integer k; 0 <= k < max ==> a[k] < a[max];
loop assigns max, i;
loop variant n-i;

*/
for (size_type i = 1; i < n; i++)

if (a[max] < a[i])
{
max = i;

}

return max;
}

Listing 5.5: Implementation of max_element

The second loop invariant is needed to prove the first postcondition of behavior not_empty
in Listing 5.4. Using the next loop invariant we prove the second postcondition of behavior
not_empty in Listing 5.4. Finally, the last postcondition of this behavior can be proved with the
endmost loop invariant.

51

5.3. The max_element algorithm with predicates

In this section we present another specification of the max_element algorithm. The main dif-
ference is that we employ two user defined predicates. First we define the predicate IsMaximum
by using the previously introduced predicate UpperBound (Listing 5.5.1) by stating that it is an
upper bound that belongs to the sequence a[0..n − 1].

/*@
predicate IsMaximum{L}(value_type* a, integer n, integer max) =

0 <= max < n && UpperBound(a, 0, n, a[max]);

*/

Listing 5.6: Definition of the IsMaximum predicate

5.3.1. Formal specification of max_element

The new formal specification of max_element in ACSL is shown in Listing 5.7. Note that we
also use the predicate StrictUpperBound (Listing) in order to express that max_element
returns the first maximum position in [0..n − 1].

/*@
requires IsValidRange(a, n);

assigns \nothing;

behavior empty:
assumes n == 0;

ensures result: \result == 0;

behavior not_empty:
assumes 0 < n;

ensures result: 0 <= \result < n;
ensures maximum: IsMaximum(a, n, \result);
ensures first: StrictUpperBound(a, 0, \result, a[\result]);

complete behaviors;
disjoint behaviors;

*/
size_type max_element(const value_type* a, size_type n);

Listing 5.7: Formal specification of max_element

52

5.3.2. Implementation of max_element

Listing 5.8 shows implementation of max_element with rewritten loop invariants. In the loop
invariants we also employ the predicates UpperBound and StrictUpperBound that we have
used in the specification.

size_type max_element(const value_type* a, size_type n)
{
if (n == 0)
{

return 0;
}

size_type max = 0;

/*@
loop invariant bound: 0 <= i <= n;
loop invariant min: 0 <= max < n;
loop invariant lower: UpperBound(a, 0, i, a[max]);
loop invariant first: StrictUpperBound(a, 0, max, a[max]);

loop assigns max, i;
loop variant n-i;

*/
for (size_type i = 0; i < n; i++)
{

if (a[max] < a[i])
{
max = i;

}
}

return max;
}

Listing 5.8: Implementation of max_element

53

5.4. The max_seq algorithm

In this section we consider the function max_seq (see Chapter 3, [8]) that is very similar to the
max_element function of Section 5.2. The main difference between max_seq and max_element
is that max_seq returns the maximum value (not just the index of it). Therefore, it requires a non-
empty range as an argument.

Of course, max_seq can easily be implemented using max_element (see Listing 5.10). More-
over, using only the formal specification of max_element in Listing 5.4 we are also able to
deductively verify the correctness of this implementation. Thus, we have a simple example of
modular verification in the following sense:

Any implementation of max_element that is separately proven to implement the
contract in Listing 5.4 makes max_seq behave correctly. Once the contracts have
been defined, the function max_element could be implemented in parallel, or just
after max_seq, without affecting the verification of max_seq.

5.4.1. Formal specification of max_seq

A formal specification of max_seq in ACSL is shown in Listing 5.9.

/*@
requires n > 0;
requires \valid(p+ (0..n-1));

assigns \nothing;

ensures \forall integer i; 0 <= i <= n-1 ==> \result >= p[i];
ensures \exists integer e; 0 <= e <= n-1 && \result == p[e];

*/
value_type max_seq(const value_type* p, size_type n) ;

Listing 5.9: Formal specification of max_seq

Using the first requires-clause we express that max_seq needs a non-empty range as input.
Additionally, the second requires is needed to state that the block pointed to by p must contain
at least n elements. In other words, p[0], p[1], ..,p[n-1] must all be valid memory accesses.
Also possible would be the already-known notation IsValidRange(p, n).

By using the ensures-clause we express our postconditions. They formalize that max_seq
indeed returns the maximum value of the range.

54

5.4.2. Implementation of max_seq

Listing 5.10 shows the trivial implementation of max_seq using max_element. Since max_seq
requires a non-empty range the call of max_element returns an index to a maximum value in
the range. The fact that max_element returns the smallest index is of no importance in this
context.

value_type max_seq(const value_type* p, size_type n)
{
return p[max_element(p, n)];

}

Listing 5.10: Implementation of max_seq

55

5.5. The min_element algorithm

The min_element algorithm in the C++ standard library27 searches the minimum in a general
sequence. The signature of our version of min_element reads:

size_type min_element(const value_type* a, size_type n);

The function min_element finds the smallest element in the range a[0..n-1]. More precisely,
it returns the unique valid index i such that The return value of min_element is n if and only if
n == 0. First we define the predicate IsMinimum by using the previously introduced predicate
LowerBound (Listing 5.5.1) by stating that it is an lower bound that belongs to the sequence
a[0..n − 1].

/*@
predicate IsMinimum{L}(value_type* a, integer n, integer min) =

0 <= min < n && LowerBound(a, 0, n, a[min]);

*/

Listing 5.11: Definition of the IsMinimum predicate

5.5.1. Formal specification of min_element

/*@
requires IsValidRange(a, n);

assigns \nothing;

behavior empty:
assumes n == 0;

ensures result: \result == 0;

behavior not_empty:
assumes 0 < n;

ensures result: 0 <= \result < n;
ensures minimum: IsMinimum(a, n, \result);
ensures first: StrictLowerBound(a, 0, \result, a[\result]);

complete behaviors;
disjoint behaviors;

*/
size_type min_element(const value_type* a, size_type n);

Listing 5.12: Formal specification of min_element

27See http://www.sgi.com/tech/stl/min_element.html.

56

http://www.sgi.com/tech/stl/min_element.html

The ACSL specification of min_element is shown in Listing 5.12. Note that we also use the
predicate StrictLowerBound (Listing) in order to express that min_element returns the
first minimum position in [0..n − 1].

5.5.2. Implementation of min_element

Listing 5.13 shows implementation of min_element with rewritten loop invariants. In the loop
invariants we also employ the predicates LowerBound and StrictLowerBound that we have
used in the specification.

size_type min_element(const value_type* a, size_type n)
{
if (0 == n)
{

return n;
}

size_type min = 0;

/*@
loop invariant bound: 0 <= i <= n;
loop invariant min: 0 <= min < n;
loop invariant lower: LowerBound(a, 0, i, a[min]);
loop invariant first: StrictLowerBound(a, 0, min, a[min]);

loop assigns min, i;
loop variant n-i;

*/
for (size_type i = 0; i < n; i++)
{

if (a[i] < a[min])
{
min = i;

}
}

return min;
}

Listing 5.13: Implementation of min_element

57

6. Binary search algorithms

In this chapter, we consider the four binary search algorithms of the STL, namely

• lower_bound in Section 6.1

• upper_bound in Section 6.2

• equal_range in Section 6.3

• binary_search in Section 6.4.

All binary search algorithms require that their input array is sorted in ascending order. The predi-
cate IsSorted in Listing 6.1 formalizes these requirements.

/*@
predicate

IsSorted{L}(value_type* a, integer n) =
\forall integer i, j; 0 <= i < j < n ==> a[i] <= a[j];

*/

Listing 6.1: The predicate IsSorted

As in the case of the of maximum/minimum algorithms from Chapter 5 the binary search algo-
rithms primarily use the less-than operator < (and the derived operators <=, > and >=) to determine
whether a particular value is contained in a sorted range. Thus, different to the find algorithm in
Section 4.3, the equality operator == will play only a supporting part in the specification of binary
search.

In order to make the specifications of the binary search algorithms more compact and (arguably)
more readable we use the predicates from Listing 5.5.1.

59

6.1. The lower_bound algorithm

The lower_bound algorithm is one of the four binary search algorithms of the STL. For our
purposes we have modified the generic implementation28 to that of an array of type value_type.
The signature now reads:

size_type lower_bound(const value_type* a, size_type n,
value_type val);

As with the other binary search algorithms lower_bound requires that its input array is sorted in
ascending order. Specifically, lower_bound will return the largest index i with 0 <= i <= n

such that for each index k with 0 <= k < i the condition a[k] < val holds. This specification
makes lower_bound a bit tricky to use as a search algorithm:

• If lower_bound returns n then for each index i with 0 <= i < n holds a[i] < val.
Thus, val is not contained in a.

• If, however, lower_bound returns an index r with 0 <= r < n then we can only be sure
that a[i] < val holds for 0 <= i < r and that val <= a[i] holds for r <= i < n.

6.1.1. Formal specification of lower_bound

The ACSL specification of lower_bound is shown in Listing 6.2.

/*@
requires IsValidRange(a, n);
requires IsSorted(a, n);

assigns \nothing;

ensures result: 0 <= \result <= n;
ensures left: StrictUpperBound(a, 0, \result, val);
ensures right: LowerBound(a, \result, n, val);

*/
size_type
lower_bound(const value_type* a, size_type n, value_type val);

Listing 6.2: Formal specification of lower_bound

• The preconditions express, by using the predicate IsSorted, that the values in the (valid)
array need to be sorted in ascending order.

• The postconditions formalize the central properties, mentioned above, of the return value of
lower_bound.

28See http://www.sgi.com/tech/stl/lower_bound.html.

60

http://www.sgi.com/tech/stl/lower_bound.html

6.1.2. Implementation of lower_bound

Our implementation of lower_bound is shown in Listing 6.3. Each iteration step narrows down
the range that contains the sought-after result. The loop invariants express that in each iteration
step all indices less than the temporary left bound left contain values smaller than val and all
indices not less than the temporary right bound right contain values not smaller than val.

size_type
lower_bound(const value_type* a, size_type n, value_type val)
{
size_type left = 0;
size_type right = n;
size_type middle = 0;

/*@
loop invariant bound: 0 <= left <= right <= n;
loop invariant left: StrictUpperBound(a, 0, left, val);
loop invariant right: LowerBound(a, right, n, val);

loop assigns middle, left, right;
loop variant right - left;

*/
while (left < right)
{

middle = left + (right - left) / 2;

if (a[middle] < val)
{
left = middle + 1;

}
else
{
right = middle;

}
}

return left;
}

Listing 6.3: Implementation of lower_bound

61

6.2. The upper_bound algorithm

The upper_bound29 algorithm is a version of the binary_search algorithm closely related
to lower_bound of Section 6.1.

The signature reads:

size_type upper_bound(const value_type* a, size_type n,
value_type val)

In contrast to the lower_bound algorithm the upper_bound algorithm locates the largest
index i with 0 <= i <= n such that for each index k with 0 <= k < i the condition a[k] <=

val holds. This means:

• If upper_bound returns n then we can only be sure that for each index 0 <= i < n the
relationship a[i] <= val.

• If upper_bound returns an index r with 0 <= r < n then we can be sure that val < a

[i] holds for i where r <= i < n. Thus, if upper_bound returns 0 then we know that
val is not contained in a.

6.2.1. Formal specification of upper_bound

The ACSL specification of upper_bound is shown in Listing 6.4.

/*@
requires IsValidRange(a, n);
requires IsSorted(a, n);

assigns \nothing;

ensures result: 0 <= \result <= n;
ensures left: UpperBound(a, 0, \result, val);
ensures right: StrictLowerBound(a, \result, n, val);

*/
size_type
upper_bound(const value_type* a, size_type n, value_type val);

Listing 6.4: Formal specification of upper_bound

The specification is quite similar to the specification of lower_bound (see Listing 6.2). The
difference can be seen in the postconditions. As we are searching for the upper bound this time,
upper_bound has to ensures that

• all indices less than the returned one belong to elements are less than or equal to val

• all indices greater than or equal to the returned one belong to elements that are greater than
val.

29See http://www.sgi.com/tech/stl/upper_bound.html.

62

http://www.sgi.com/tech/stl/upper_bound.html

6.2.2. Implementation of upper_bound

Our implementation of upper_bound is shown in Listing 6.5.

The loop invariants express that for each iteration step all indices less than the temporary left
bound left contain values not greater than val and all indices not less than the temporary right
bound right contain values greater than val.

size_type
upper_bound(const value_type* a, size_type n, value_type val)
{
size_type left = 0;
size_type right = n;
size_type middle = 0;

/*@
loop invariant bound: 0 <= left <= right <= n;
loop invariant left: UpperBound(a, 0, left, val);
loop invariant right: StrictLowerBound(a, right, n, val);

loop assigns middle, left, right;
loop variant right - left;

*/
while (left < right)
{

middle = left + (right - left) / 2;

if (a[middle] <= val)
{
left = middle + 1;

}
else
{
right = middle;

}
}

return right;
}

Listing 6.5: Implementation of upper_bound

63

6.3. The equal_range algorithm

The equal_range algorithm is one of the four binary search algorithms of the STL. For our
purposes we have modified the generic implementation30 to that of an array of type value_type.
Moreover, instead of a pair of iterators, our version of equal_range returns a pair of indices.
To be more precisely, the return type of equal_range is

struct size_type_pair
{

size_type first;
size_type second;

};

Thus, the signature of equal_range now reads:

size_type_pair equal_range(const value_type* a, size_type n,
value_type val);

As with the other binary search algorithms equal_range requires that its input array is sorted
in ascending order. The specification of equal_range states that it combines the results of the
algorithms lower_bound (Section 6.1) and upper_bound (Section 6.2). Thus, if pair is the
return value of equal_range(a, n, val), then pair.first shall equal
lower_bound(a, n, val) whereas pair.second shall equal upper_bound(a, n, val).

6.3.1. Formal specification of equal_range

The ACSL specification of equal_range is shown in Listing 6.6.

/*@
requires IsValidRange(a, n);
requires IsSorted(a, n);

assigns \nothing;

ensures result: 0 <= \result.first <= \result.second <= n;
ensures left: StrictUpperBound(a, 0, \result.first, val);
ensures middle: ConstantRange(a, \result.first, \result.second, val

);
ensures right: StrictLowerBound(a, \result.second, n, val);

*/
size_type_pair
equal_range(const value_type* a, size_type n, value_type val);

Listing 6.6: Formal specification of equal_range

The preconditions express that the values in the (valid) array need to be sorted in ascending order.

30See http://www.sgi.com/tech/stl/equal_range.html.

64

http://www.sgi.com/tech/stl/equal_range.html

The postconditions express that the pair of indices (f , s) returned by equal_range satisfy the
following properties:

• 0 ≤ f ≤ s ≤ n

• the set of indices [f , s) =
{
i | f ≤ i < s

}
is the largest set for which a[i] = val holds

6.3.2. Implementation of equal_range

Our implementation of equal_range is shown in Listing 6.7. We call the two functions
lower_bound and upper_bound and return their respective results as a pair. However, in-
stead of doing this straightforward, we use the auxiliary function make_pair31 and formulate an
assertion for its arguments first ≤ second. Using this assertion simplifies the task of automat-
ically proving the postcondition in Listing 6.6.

/*@
assigns \nothing;

ensures \result.first == first;
ensures \result.second == second;

*/
size_type_pair make_pair(size_type first, size_type second)
{
size_type_pair pair;
pair.first = first;
pair.second = second;

return pair;
}

size_type_pair
equal_range(const value_type* a, size_type n, value_type val)
{
size_type first = lower_bound(a, n, val);
size_type second = upper_bound(a, n, val);
//@ assert aux: second < n ==> val < a[second];

return make_pair(first, second);
}

Listing 6.7: Implementation of equal_range

In an earlier version of this document we had proven the similar assertion first <= second

with the interactive theorem prover Coq. After reviewing this proof we formulated the new
assertion aux that uses a fact from the postcondition of upper_bound (Listing 6.4). The benefit
of this reformulation is that both the assertion aux and the postcondition first <= second can
now be verified automatically.

31This functions is modelled after the C++ template function std::make_pair.

65

6.4. The binary_search algorithm

The binary_search algorithm is one of the four binary search algorithms of the STL. For our
purposes we have modified the generic implementation32 to that of an array of type value_type.
The signature now reads:

bool binary_search(const value_type* a, size_type n,
value_type val);

Again, binary_search requires that its input array is sorted in ascending order. It will return
true if there exists an index i in a such that a[i] == val holds.33

6.4.1. Formal specification of binary_search

The ACSL specification of binary_search is shown in Listing 6.8.

/*@
requires IsValidRange(a, n);
requires IsSorted(a, n);

assigns \nothing;

ensures result: \result <==> \exists integer i; 0 <= i < n && a[i]
== val;

*/
bool binary_search(const value_type* a, size_type n, value_type val);

Listing 6.8: Formal specification of binary_search

Note that we can use our previously introduced predicate HasValue (see Page 34) in Listing 6.9.
It is interesting to compare this specification with that of find in Listing 4.12. Both find and
binary_search allow to determine whether a value is contained in an array. The fact that the
C++ standard library requires that find has linear complexity whereas binary_search must
have a logarithmic complexity can currently not be expressed with ACSL.

32See http://www.sgi.com/tech/stl/binary_search.html.
33To be more precise: The C++ standard library requires that (a[i] <= val)&& (val <= a[i]) holds.

For our definition of value_type (see Section 2.2) this means that val equals a[i].

66

http://www.sgi.com/tech/stl/binary_search.html

/*@
requires IsValidRange(a, n);
requires IsSorted(a, n);

assigns \nothing;

ensures result: \result <==> HasValue(a, n, val);

*/
bool binary_search(const value_type* a, size_type n, value_type val);

Listing 6.9: Formal specification of binary_search using the HasValue predicate

6.4.2. Implementation of binary_search

Our implementation of binary_search is shown in Listing 6.10.

bool binary_search(const value_type* a, size_type n, value_type val)
{
size_type i = lower_bound(a, n, val);
return i < n && a[i] <= val;

}

Listing 6.10: Implementation of binary_search

The function binary_search first calls lower_bound from Section 6.1. Remember that if
lower_bound returns an index 0 <= i < n then we can be sure that val <= a[i] holds.

67

7. Mutating algorithms

Let us now turn our attention to another class of algorithms, viz. mutating algorithms, i.e., algo-
rithms that change one or more ranges. In Frama-C, you can explicitly specify that, e.g., entries
in an array a may be modified by a function f, by including the following assigns clause into the
f’s specification:

assigns a[0..length-1];

The expression length-1 refers to the value of length when f is entered, see [9, Section 2.3.2].
Below are the seven example algorithms we will discuss next.

fill (Section 7.1 on Page 70) initializes each element of an array by a given fixed value.

swap (Section 7.2 on Page 72) exchanges two values.

swap_ranges (Section 7.3 on Page 74) exchanges the contents of the arrays of equal length, el-
ement by element. We use this example to present “modular verification”, as swap_ranges
reuses the verified properties of swap.

copy (Section 7.4 on Page 76) copies a source array to a destination array.

reverse_copy and reverse (Sections 7.5 and 7.6 on Pages 78 and 80, respectively) re-
verse an array. Whereas
reverse_copy copies the result to a separate destination array, the reverse algorithm
works in place.

rotate_copy (Section 7.7 on Page 82) rotates a source array by m positions and copies the
results to a destination array.

replace_copy (Section 7.8 on Page 84) copies a source array to a destination array, but sub-
stitutes each occurrence of a given old value by a given new value.

remove_copy copies a source array to a destination array, but omits each occurrence of a given
value. We provide two specifications for remove_copy:

• First we provide a relatively simple contract that omits, however, an important aspect
of the informal specification (see Section 7.9 on Page 86).

• In Section 7.10 (Page 88) we show how the missing part of the specification can be
expressed.

iota (Section 7.11 on Page 94) writes consecutive integers into an array. Here we have do deal
with possible integer overflows when iota is executed.

69

7.1. The fill algorithm

The fill algorithm in the C++ Standard Library initializes general sequences with a particular
value. For our purposes we have modified the generic implementation34 to that of an array of type
value_type. The signature now reads:

void fill(value_type* a, size_type n, value_type val);

7.1.1. Formal specification of fill

Listing 7.1 shows the formal specification of fill in ACSL. We can express the postcondition of
fill simply by using the predicate ConstantRange from Listing 5.5.1.

/*@
requires IsValidRange(a, n);

assigns a[0..n-1];

ensures constant: ConstantRange(a, 0, n, val);

*/
void fill(value_type* a, size_type n, value_type val);

Listing 7.1: Formal specification of fill

34See http://www.sgi.com/tech/stl/fill.html

70

http://www.sgi.com/tech/stl/fill.html

7.1.2. Implementation of fill

Listing 7.2 shows an implementation of fill.

void fill(value_type* a, size_type n, value_type val)
{
/*@

loop invariant bound: 0 <= i <= n;
loop invariant constant: ConstantRange(a, 0, i, val);

loop assigns i, a[0..n-1];
loop variant n-i;

*/
for (size_type i = 0; i < n; ++i)
{

a[i] = val;
}

}

Listing 7.2: Implementation of fill

The loop invariant bound is necessary to prove that each access to the range a occurs with valid
indices. The loop invariant constant expresses that for each iteration the array is filled with
the value of val up to the index i of the iteration. Note that we use here again the predicate
ConstantRange from Listing 5.5.1.

71

7.2. The swap algorithm

The swap algorithm35 in the C++ STL exchanges the contents of two variables. Similarly, the
iter_swap algorithm36 exchanges the contents referenced by two pointers. Since C and hence
ACSL, does not support an & type constructor (“declarator”), we will present an algorithm that
processes pointers and refer to it as swap.

Our version of the original signature now reads:

void swap(value_type* p, value_type* q);

7.2.1. Formal specification of swap

The ACSL specification for the swap function is shown in Listing 7.3.

/*@
requires \valid(p);
requires \valid(q);

assigns *p;
assigns *q;

ensures *p == \old(*q);
ensures *q == \old(*p);

*/
void swap(value_type* p, value_type* q);

Listing 7.3: Formal specification of swap

The preconditions which formalize by the requires-clause states that both argument pointers to
the swap function must be dereferenceable.

The assigns-clauses formalize that the swap algorithm modifies only the entries referenced by
the pointers p and q. Nothing else may be altered. Equivalently, we could have used a clause

assigns *p, *q;

instead. In general, when more than one assigns clause appears in a function’s specification, it
permitted to modify any of the referenced locations. However, if no assigns clause appears at all,
the function is free to modify any memory location, see [9, Section 2.3.2]. To forbid a function to
do any modifications outside its scope, a clause

assigns \nothing;

must be used, as we practised in the example specifications in Chapter 4.

Upon termination of swap the entries must be mutually exchanged. We can express those post-
conditions by using the ensures-clause. The expression \old(*p) refers to the pre-state of the

35See http://www.sgi.com/tech/stl/swap.html.
36See http://www.sgi.com/tech/stl/iter_swap.html.

72

http://www.sgi.com/tech/stl/swap.html
http://www.sgi.com/tech/stl/iter_swap.html

function contract, whereas by default, a postcondition refers the values after the functions has been
terminated.

7.2.2. Implementation of swap

Listing 7.4 shows the usual straight-forward implementation of swap. No interspersed ACSL is
needed to get it verified by Frama-C.

void swap(value_type* p, value_type* q)
{
value_type save = *p;

*p = *q;

*q = save;
}

Listing 7.4: Implementation of swap

73

7.3. The swap_ranges algorithm

The swap_ranges algorithm37 in the C++ STL exchanges the contents of two expressed ranges
element-wise. After translating C++ reference types and iterators to C, our version of the original
signature reads:

void swap_ranges(value_type* a, size_type n, value_type* b);

We do not return a value since it would equal n, anyway.

This function refers to the previously discussed algorithm swap. Thus, swap_ranges serves
as another example for “modular verification”. The specification of swap will be automatically
integrated into the proof of swap_ranges.

7.3.1. Formal specification of swap_ranges

Listing 7.5 shows an ACSL specification for the swap_ranges algorithm.

/*@
requires IsValidRange(a, n);
requires IsValidRange(b, n);
requires \separated(a+(0..n-1), b+(0..n-1));

assigns a[0..n-1];
assigns b[0..n-1];

ensures IsEqual{Here,Old}(a, n, b);
ensures IsEqual{Old,Here}(a, n, b);

*/
void swap_ranges(value_type* a, size_type n, value_type* b);

Listing 7.5: Formal specification of swap_ranges

The swap_ranges algorithm works correctly only if a and b do not overlap. Because of that
fact we use the separated-clause to tell Frama-C that a and b must not overlap.

With the assigns-clause we postulate that the swap_ranges algorithm alters the elements
contained in two distinct ranges, modifying the corresponding elements and nothing else.

The postconditions of swap_ranges specify that the content of each element in its post-state
must equal the pre-state of its counterpart. We can use the predicate IsEqual (see Listing 4.2)
together with the label Old and Here to express the postcondition of swap_ranges. In our
specification in Listing 7.5, for example, we specify that the array a in the memory state that
corresponds to the label Here is equal to the array b at the label Old. Since we are specifying a
postcondition Here refers to the post-state of swap_ranges whereas Old refers to the pre-state.

37See http://www.sgi.com/tech/stl/swap_ranges.html.

74

http://www.sgi.com/tech/stl/swap_ranges.html

7.3.2. Implementation of swap_ranges

Listing 7.6 shows an implementation of swap_ranges together with the necessary loop anno-
tations.

void swap_ranges(value_type* a, size_type n, value_type* b)
{
/*@

loop invariant 0 <= i <= n;
loop invariant IsEqual{Here,Pre}(a, i, b);
loop invariant IsEqual{Here,Pre}(b, i, a);

loop invariant Unchanged{Here,Pre}(a, i, n);
loop invariant Unchanged{Here,Pre}(b, i, n);

loop assigns i, a[0..n-1], b[0..n-1];
loop variant n-i;

*/
for (size_type i = 0; i < n; ++i)
{

swap(a+i, b+i);
}

}

Listing 7.6: Implementation of swap_ranges

For the postcondition of the specification in Listing 7.5 to hold, our loop invariants must ensure
that at each iteration all of the corresponding elements that have already been visited are swapped.

Note that there are two additional loop invariants which claim that all the elements that have not
visited yet equal their original values. This a workaround that allows us to prove the postconditions
of swap_ranges despite the fact that the loop assigns is coarser than it should be. The predicate
Unchanged from Listing 7.7 is used to express this property.

/*@
predicate

Unchanged{A,B}(value_type* a, integer first, integer last) =
\forall integer i; first <= i < last

==> \at(a[i], A) == \at(a[i], B);

*/

Listing 7.7: The predicate Unchanged

75

7.4. The copy algorithm

The copy algorithm in the C++ Standard Library implements a duplication algorithm for general
sequences. For our purposes we have modified the generic implementation38 to that of a range of
type value_type. The signature now reads:

void copy(const value_type* a, size_type n, value_type* b);

Informally, the function copies every element from the source range a to the destination range b.

The verification of copy is very similar to that of swap_ranges, cf. Section 7.3.

7.4.1. Formal specification of copy

The ACSL specification of copy is shown in Listing 7.8.

/*@
requires IsValidRange(a, n);
requires IsValidRange(b, n);
requires \separated(a+(0..n-1), b+(0..n-1));

assigns b[0..n-1];

ensures IsEqual{Here,Old}(a, n, a);
ensures IsEqual{Here,Here}(a, n, b);

*/
void copy(const value_type* a, const size_type n, value_type* b);

Listing 7.8: Formal specification of copy

The copy algorithm expects that the ranges a and b are valid. Also important is that the ranges
do not overlap, this property is expressed with the separated-clause in our specification.

Furthermore the function copy assigns the elements from the source range a to the destination
range b, modifying the memory of the elements pointed to by b. Nothing else must be altered. To
state this we use the assigns-clause.

In the final part of the specification we postulate the postcondition of copy, which ensures that
the contents of a were actually copied to b. Again, we can use the IsEqual predicate from
Section 4.1 to express that the array a equals b after copy has been called.

38See http://www.sgi.com/tech/stl/copy.html.

76

http://www.sgi.com/tech/stl/copy.html

7.4.2. Implementation of copy

Listing 7.9 shows an implementation of the copy function.

void copy(const value_type* a, size_type n, value_type* b)
{
/*@

loop invariant 0 <= i <= n;
loop invariant IsEqual{Here,Here}(a, i, b);
loop assigns i, b[0..n-1];
loop variant n-i;

*/
for (size_type i = 0; i < n; ++i)
{

b[i] = a[i];
}

}

Listing 7.9: Implementation of copy

Here are some remarks on its loop invariants.

For the postcondition to be true, we must ensure that for every element i, the comparison a[i]

== b[i] is true. This can be expressed by using the IsEqual predicate.

The assigns clause ensures that nothing but the range b[0..i-1] and the loop variable i is
modified. In order to prove the termination of the loop for every possible n we use the loop variant
n-i and cover it with an assertion.

77

7.5. The reverse_copy algorithm

The reverse_copy39 algorithm of the C++ Standard Library invert the order of elements in a
sequence. reverse_copy does not change the input sequence and copies its result to the output
sequence. For our purposes we have modified the generic implementations to that of a range of
type value_type. The signature now reads:

void reverse_copy(const value_type* a, size_type n, value_type* b);

7.5.1. Formal specification of reverse_copy

Informally, reverse_copy copies the elements from the array a into array b such that the copy
is a reverse of the original array. Thus, after calling reverse_copy the following conditions
shall be satisfied.

b[0] == a[n-1]
b[1] == a[n-2]
...

...
...

b[n-1] == a[0]

In order to concisely formalize these condition we write the two (overloaded) predicates Reverse
that are shown in Listing 7.10.

/*@
predicate
Reverse{A,B}(value_type* a, integer n, value_type* b,

integer first, integer last) =
\forall integer k; first <= k < last

==> \at(a[k], A) == \at(b[n-1-k], B);

predicate
Reverse{A,B}(value_type* a, integer n, value_type* b) =

Reverse{A,B}(a, n, b, 0, n);

*/

Listing 7.10: Predicate Reverse

39See http://www.sgi.com/tech/stl/reverse_copy.html.

78

http://www.sgi.com/tech/stl/reverse_copy.html

The ACSL specification of reverse_copy is shown in Listing 7.11.

/*@
requires IsValidRange(a, n);
requires IsValidRange(b, n);
requires \separated(a+(0..n-1), b+(0..n-1));

assigns b[0..(n-1)];

ensures Reverse{Here,Here}(a, n, b);

*/
void reverse_copy(const value_type* a, size_type n, value_type* b);

Listing 7.11: Formal specification of reverse_copy

The postcondition states that the contents of a was copied reversely to b.

7.5.2. Implementation of reverse_copy

Listing 7.12 shows an implementation of the reverse_copy function.

void reverse_copy(const value_type* a, size_type n, value_type* b)
{
/*@

loop invariant 0 <= i <= n;
loop invariant Reverse{Here,Here}(b, n, a, 0, i);
loop assigns i, b[0..n-1];
loop variant n-i;

*/
for (size_type i = 0; i < n; ++i)
{

b[i] = a[n - 1 - i];
}

}

Listing 7.12: Implementation of reverse_copy

For the postcondition to be true, we must ensure that for every element i, the comparison b[i]

== a[n-1-i] holds. This is formalized by the loop invariants. You can see that it is very similar
to the postcondition in Listing 7.11.

79

7.6. The reverse algorithm

The reverse40 algorithm of the C++ Standard Library invert the order of elements in a sequence.
The reverse algorithm works in place, meaning, that it modifies its input sequence. For our
purposes we have modified the generic implementations to that of a range of type value_type.
The signature now reads:

void reverse(value_type* a, size_type n);

7.6.1. Formal specification of reverse

The ACSL specification for the reverse function is shown in listing 7.13.

/*@
requires IsValidRange(a, n);

assigns a[0..(n-1)];

ensures Reverse{Here,Old}(a, n, a);

*/
void reverse(value_type* a, size_type n);

Listing 7.13: Formal specification of reverse

In the postcondition we use again the predicate Reverse from Listing 7.10.

40See http://www.sgi.com/tech/stl/reverse.html.

80

http://www.sgi.com/tech/stl/reverse.html

7.6.2. Implementation of reverse

Listing 7.14 shows an implementation of the reverse function where the elements of the first
half of the array are swapped with the corresponding elements of the second half. Note the asser-
tion for the variable half in the loop body.

void reverse(value_type* a, size_type n)
{
const size_type half = n / 2;

/*@
loop invariant 0 <= i <= half;

loop invariant Reverse{Here,Pre}(a, n, a, 0, i);
loop invariant Unchanged{Here,Pre}(a, i, n - i);
loop invariant Reverse{Here,Pre}(a, n, a, n-i, n);

loop assigns i, a[0..n-1];
loop variant half - i;

*/
for (size_type i = 0; i < half; ++i)
{

//@ assert 0 < half ==> i < n-1-i;
swap(&a[i], &a[n - 1 - i]);

}
}

Listing 7.14: Implementation of reverse

We reuse the predicates Reverse (Listing 7.10) and Unchanged (Listing 7.7) in order to write
concise loop invariants.

81

7.7. The rotate_copy algorithm

The rotate_copy algorithm in the C++ Standard Library rotates a sequence by m positions and
copies the results to another same sized sequence. For our purposes we have modified the generic
implementation41 to that of a range of type value_type. The signature now reads:

void rotate_copy(const value_type* a, size_type m,
size_type n, value_type* b);

Informally, the function copies the elements from the array a into array b such that the copy is a
rotated version of the original array. In other words: After calling rotate_copy the following
conditions shall be satisfied.

b[0] == a[m]
b[1] == a[m+1]
...

...
...

b[n-m-1] == a[n-1]

b[n-m] == a[0]
b[n-m+1] == a[1]

...
...

...

b[n-1] == a[m-1]

This function refers to the previously discussed algorithm copy. Thus, rotate_copy serves as
another example for “modular verification”. The specification of copy will be integrated into the
proof of rotate_copy.

41See http://www.sgi.com/tech/stl/rotate_copy.html.

82

http://www.sgi.com/tech/stl/rotate_copy.html

7.7.1. Formal specification of rotate_copy

The ACSL specification of rotate_copy is shown in Listing 7.15.

/*@
requires IsValidRange(a, n);
requires IsValidRange(b, n);
requires \separated(a+(0..n-1), b+(0..n-1));
requires 0 <= m <= n;

assigns b[0..(n-1)];

ensures IsEqual{Here,Here}(a, m, b+(n-m));
ensures IsEqual{Here,Here}(a+m, n-m, b);

*/
void rotate_copy(const value_type* a, size_type m, size_type n,

value_type* b);

Listing 7.15: Formal specification of rotate_copy

Here are some remarks on the specification

• The separated-clause tells WP that a and b must not overlap.

• The assigns-clause expresses that rotate_copy modifies only the elements in the
range b.

7.7.2. Implementation of rotate_copy

Listing 7.16 shows an implementation of the rotate_copy function. The implementation sim-
ply call the function copy twice.

void rotate_copy(const value_type* a, size_type m, size_type n,
value_type* b)

{
copy(a, m, b + (n - m));
copy(a + m, n - m, b);

}

Listing 7.16: Implementation of rotate_copy

83

7.8. The replace_copy algorithm

The replace_copy algorithm of the C++ Standard Library substitutes specific elements from
general sequences. Here, the general implementation42 has been altered to process value_type
ranges. The new signature reads:

size_type replace_copy(const value_type* a, size_type n,
value_type* b,
value_type old_val, value_type new_val);

The replace_copy algorithm copies the elements from the range a[0..n] to range b[0..n
], substituting every occurrence of old_val by new_val. The return value is the length of the
range. As the length of the range is already a parameter of the function this return value does not
contain new information. However, the length returned is analogous to the implementation of the
C++ Standard Library.

7.8.1. Formal specification of replace_copy

The ACSL specification of replace_copy is shown in Listing 7.17.

/*@
requires IsValidRange(a, n);
requires IsValidRange(b, n);
requires \separated(a+(0..n-1), b+(0..n-1));

assigns b[0..n-1];

ensures \forall integer i; 0 <= i < n
==> (\old(a[i]) == oldv ==> b[i] == newv);

ensures \forall integer i; 0 <= i < n
==> (\old(a[i]) != oldv ==> b[i] == \old(a[i]));

ensures \forall integer i; 0 <= i < n ==> a[i] == \old(a[i]);
ensures \result == n;

*/
size_type replace_copy(const value_type* a, size_type n,

value_type* b,
value_type oldv, value_type newv);

Listing 7.17: Formal specification of the replace_copy

In particular, the specification requires that the arrays a and b are non-overlapping. The core
functionality of replace_copy is specified as follows: For every element a[j] of a, we have
two possibilities. Either it equals old_val or it is different from old_val. In the former case,
we specify that the corresponding element b[j] has to be substituted with new_val. In the latter
case, we specify that b[j] must be a[j].

42See http://www.sgi.com/tech/stl/replace_copy.html.

84

http://www.sgi.com/tech/stl/replace_copy.html

7.8.2. Implementation of replace_copy

An implementation (including loop annotations) of replace_copy is shown in Listing 7.18.
Note how the structure of the loop annotations resembles the specification of Listing 7.17.

size_type replace_copy(const value_type* a, size_type n,
value_type* b,
value_type oldv, value_type newv)

{
/*@

loop invariant 0 <= i <= n;
loop invariant \forall integer k; 0 <= k < i ==>

\at(a[k], Pre) == oldv ==> b[k] == newv;

loop invariant \forall integer k; 0 <= k < i ==>
\at(a[k], Pre) != oldv ==> b[k] == \at(a[k], Pre);

loop assigns i, b[0..n-1];
loop variant n-i;

*/
for (size_type i = 0; i < n; ++i)
{

b[i] = (a[i] == oldv ? newv : a[i]);
}

return n;
}

Listing 7.18: Implementation of the replace_copy algorithm

85

7.9. The remove_copy algorithm

The remove_copy algorithm of the C++ Standard Library copies all elements of a sequence
other than a given value. Here, the general implementation has been altered to process value_type
ranges.43 The new signature reads:

size_type remove_copy(const value_type* a, size_type n,
value_type* b, value_type v);

The most important facts of this algorithms are

1. The return value is the length of the resulting range.

2. The remove_copy algorithm copies elements that are not equal to v from range a[0..n
-1] to the range b[0..\result-1].

3. The algorithm is stable, that is, the relative order of the elements in b is the same as in a.

7.9.1. Formal specification of remove_copy

In order to achieve a concise specification we start with introducing two auxiliary predicates.

We use the predicate PreserveCount in Listing lst:preservecount in order to express that the
number of elements that are different from v is the same in the source and target ranges.

/*@
predicate

PreserveCount(value_type* a, size_type m,
value_type* b, size_type n, value_type v) =

\forall value_type x; x != v ==>
Count(a, m, x) == Count(b, n, x);

*/

Listing 7.19: The predicate PreserveCount

The predicate Unchanged from Listing 7.7 is used to express that remove_copy does not
change the elements b[\result..n-1].

43See http://www.sgi.com/tech/stl/remove_copy.html.

86

http://www.sgi.com/tech/stl/remove_copy.html

Listing 7.20 shows our first attempt to specify remove_copy.

/*@
requires IsValidRange(a, n);
requires IsValidRange(b, n);
requires \separated(a+(0..n-1), b+(0..n-1));

assigns b[0..(n-1)];
ensures unchanged: Unchanged{Here,Old}(b, \result, n);

ensures bound: 0 <= \result <= n;
ensures result: \result == n - Count(a, n, v);
ensures removed: !HasValue(b, \result, v);
ensures preserved: PreserveCount(a, n, b, \result, v);

*/
size_type remove_copy(const value_type* a, size_type n,

value_type* b, value_type v);

Listing 7.20: Formal specification of the remove_copy function

Note the re-use of predicate HasValue (Listing 4.11) to express that the target range does not
contain the value v.

We use the logic function Count from Section 4.8 to express that only the elements that differ
from v are copied:

• The return value of remove_copy is the number of copied elements. This value must
obviously be equal to n diminished by the number of occurrences of v in a[0..n-1].

• We use Count to express that any value that differs from v appears as often in the input
range a[0..n-1] as in the output range b[0..n-1].

While this formal specification is a good representation of the informal requirements it does not
capture that remove_copy is stable: Given a range a = {1,0,5,2,0,5} and a value v = 0

the expected result of remove_copy is b = {1,5,2,5}. However, since Count is invariant
under permutations the specification in Listing 7.20 would also allow the result b = {5,5,1,2}.
In Section 7.10 we will discuss how the stability of remove_copy can be captured in an ACSL
specification.

87

7.9.2. Implementation of remove_copy

An implementation of remove_copy is shown in Listing 7.21. Not surprisingly, the logical
function Count and the predicates PreserveCount and Unchanged also appear in the loop
invariants of remove_copy.

size_type remove_copy(const value_type* a, size_type n,
value_type* b, value_type v)

{
size_type j = 0;

/*@
loop invariant bound: 0 <= j <= i <= n;
loop invariant result: j == i - Count(a, i, v);
loop invariant removed: !HasValue(b, j, v);
loop invariant preserved: PreserveCount(a, i, b, j, v);
loop invariant unchanged: Unchanged{Here,Pre}(b, j, n);

loop assigns i, j, b[0..n-1];
loop variant n-i;

*/
for (size_type i = 0; i < n; ++i)
{

if (a[i] != v)
{
b[j++] = a[i];

}
}

return j;
}

Listing 7.21: Implementation of the remove_copy function

7.10. Capturing the stability of remove_copy

The most important facts of this algorithms are

1. The remove_copy algorithm copies elements that are different from v from the range
a[0..n-1] to a range beginning at b[0].

2. The return value is the number of copied elements.

3. The algorithm is stable, that is, the relative order of the elements in b is the same as in a.

88

A particular challenge in the specification of remove_copy is how to express the stability of the
removal. Figure 7.22 shows how remove_copy is supposed to copy elements that differ from v

from one range to the other.

v a v v a v c d v eb

a a c d eb

a

b

Figure 7.22.: Stability of remove_copy

Figure 7.23 shows, with respect to array indices, how the elements different from v “slide” to po-
sitions with smaller indices. The main observation here is that an element slides as many positions
down as there are elements in front of it that equal v.

v a v v a v c d v eb

0 1 2 3 6 74 5 8 9 10

0 1 2 3 6 74 5 8 9 10

a a c d ebb

a

Figure 7.23.: Stability of remove_copy with respect to indices

As it turns out, it is quite easy44 to express this property using the previously introduced logic
function Count (see Listing 4.24 on Page 43). We simply define in Listing 7.24 a logic function
RemoveCount which subtracts from every position i the number of occurrences of v that come
before i. Note that RemoveCount(a, v, i) equals the number of elements of a[0..i-1] that
are copied to the destination range b[0..n-1] by remove_copy.

44 To tell the truth, it took us quite some time to really understand how easy it is!

89

/*@
logic

integer RemoveCount{L}(value_type* a, integer i, value_type v) =
i - Count{L}(a, i, v);

lemma RemoveCountEmpty:
\forall value_type *a, v, integer i;

i <= 0 ==> RemoveCount(a, i, v) == i;

lemma RemoveCountHit:
\forall value_type *a, v, integer i; a[i] == v

==> RemoveCount(a, i+1, v) == RemoveCount(a, i, v);

lemma RemoveCountMiss:
\forall value_type *a, v, integer i; a[i] != v

==> RemoveCount(a, i+1, v) == RemoveCount(a, i, v) + 1;

lemma RemoveCountRead{L1,L2}:
\forall value_type *a, v, integer i;

(\forall integer k; 0 <= k < i ==>
\at(a[k], L1) == \at(a[k], L2))

==> RemoveCount{L1}(a, i, v) == RemoveCount{L2}(a, i, v);

*/

Listing 7.24: The logic function RemoveCount

Also, note that RemoveCount is defined for all integers, including those indices i where a[i]
equals v (see the dashed lines in Figure 7.23). In the specification of remove_copy we will,
however, only use RemoveCount for indices where a[i] is different from v.

90

7.10.1. Formal specification of remove_copy

The predicate StableRemove (Listing 7.25) uses RemoveCount to formally capture the sta-
bility with respect to corresponding elements of the source and target ranges.

/*@
predicate

StableRemove(value_type* a, integer n,
value_type* b, value_type v) =

\forall integer i; 0 <= i < n ==>
a[i] != v ==> b[RemoveCount(a, i, v)] == a[i];

*/

Listing 7.25: The predicate StableRemove

Listing 7.26 shows improved specification of remove_copy that also captures the required sta-
bility.

/*@
requires IsValidRange(a, n);
requires IsValidRange(b, n);
requires \separated(a+(0..n-1), b+(0..n-1));

assigns b[0..(n-1)];

ensures bound: 0 <= \result <= n;
ensures result: \result == RemoveCount(a, n, v);
ensures removed: !HasValue(b, \result, v);
ensures unchanged: Unchanged{Here,Old}(b, \result, n);
ensures preserved: PreserveCount(a, n, b, \result, v);
ensures stable: StableRemove(a, n, b, v);

*/
size_type remove_copy(const value_type* a, size_type n,

value_type* b, value_type v);

Listing 7.26: Improved formal specification of remove_copy

There are essentially two changes compared to the specification in Listing 7.20 on Page 87.

1. We now use RemoveCount in order to specify the expected return value in postcondition
result.

2. We use StableRemove in the new postcondition stable. Here we exactly specify to
which element in the output range b[0..n-1] an element of the input range a[0..n-1],
that is different from v, is copied.

91

7.10.2. Implementation of remove_copy

Listing 7.27 shows the additional loop annotations that are necessary to verify the stronger speci-
fication in Listing 7.26.

size_type remove_copy(const value_type* a, size_type n,
value_type* b, value_type v)

{
size_type j = 0;

/*@
loop invariant bound: 0 <= j <= i <= n;
loop invariant result: j == RemoveCount(a, i, v);
loop invariant removed: !HasValue(b, j, v);
loop invariant preserved: PreserveCount(a, i, b, j, v);
loop invariant mono: RemoveCountMonotonic(a, i, v);
loop invariant jump: RemoveCountJump(a, i, v);
loop invariant stable: StableRemove(a, i, b, v);
loop invariant unchanged: Unchanged{Here,Pre}(b, j, n);

loop assigns i, j, b[0..n-1];
loop variant n-i;

*/
for (size_type i = 0; i < n; ++i)
{

if (a[i] != v)
{
b[j++] = a[i];

}
}

return j;
}

Listing 7.27: Implementation of remove_copy with additional loop invariants

Compare to the first implementation of remove_copy (Listing 7.21) there are additional loop
invariants stable, mono, and jump. We need these loop invariants to prove the property stable
in Listing 7.26.

For the properties mono and jump we introduce two predicates RemoveCountMonotonic
(Listing 7.28) and RemoveCountJump (Listing 7.29) that concisely capture monotonicity prop-
erties of the logic function RemoveCount.

92

/*@
predicate

RemoveCountMonotonic(value_type* a, integer n, value_type v) =
\forall integer i; 0 <= i <= n ==>

RemoveCount(a, i, v) <= RemoveCount(a, n, v);

*/

Listing 7.28: The predicate RemoveCountMonotonic

/*@
predicate

RemoveCountJump(value_type* a, integer n, value_type v) =
\forall integer i; 0 <= i < n ==> a[i] != v ==>

RemoveCount(a, i, v) < RemoveCount(a, n, v);

*/

Listing 7.29: The predicate RemoveCountJump

93

7.11. The iota algorithm

The iota algorithm in the C++ STL assigns sequentially increasing values to a range, where the
start value is user defined. Our version of the original signature45 reads:

void iota(value_type* a, size_type n, value_type val);

Starting at val, the function assigns consecutive integers to the range a. When specifying iota
we must be careful to deal with possible overflows.

7.11.1. Formal specification of iota

The ACSL specification of iota is shown in Listing 7.30.

Note that the specification of iota refers to INT_MAX which is defined in limits.h.

/*@
requires IsValidRange(a, n);
requires val + n <= INT_MAX;
requires n <= INT_MAX;

assigns a[0..n-1];

ensures \forall integer k; 0 <= k < n ==> a[k] == val + k;

*/
void iota(value_type* a, size_type n, value_type val);

Listing 7.30: Formal specification of iota

At first, the algorithm requires that a is a valid range. We refer to Section 2.2 for a discussion of
how valid range are specified. Additional it is necessary to avoid integer overflow hence the length
n of the array and the sum val+n must not greater than the constant INT_MAX.

The iota algorithm initializes and modifies the elements in range a our specification must contain
the line assigns a[0..n-1]. Elements outside the range are not altered.

Upon termination, each element of a contains the sum of its index within a and the argument val.

45See http://www.sgi.com/tech/stl/iota.html.

94

http://www.sgi.com/tech/stl/iota.html

7.11.2. Implementation of iota

Listing 7.31 shows an implementation of the iota function.

void iota(value_type* a, size_type n, value_type val)
{
/*@

loop invariant 0 <= i <= n;
loop invariant val == \at(val, Pre) + i;
loop invariant \forall integer k;

0 <= k < i ==> a[k] == \at(val, Pre) + k;
loop assigns i, val, a[0..n-1];
loop variant n-i;

*/
for (size_type i = 0; i < n; ++i)
{

a[i] = val++;
}

}

Listing 7.31: Implementation of iota

The second loop invariant describes that in each iteration of the loop the current value val is
equal to the sum of the value val in state of function entry and the loop index i (note the use of
the \at clause here). This invariant is essential to prove the last invariant which represents the
postcondition from our specification Listing 7.30.

95

8. The Stack data type

Originally, ACSL is tailored to the task of specifying and verifying one single C function at a time.
However, in practice we are also faced with the task to implement a family of functions, usually
around some sophisticated data structure, which have to obey certain rules of interdependence.
In this kind of task, we are not interested in the properties of a single function (usually called
“implementation details”), but in properties describing how several function play together (usually
called “abstract interface description”, or “abstract data type properties”).

This chapter introduces a methodology to formally denote and verify the latter property sets using
ACSL. For a more detailed discussion of our approach to the formal verification of Stack we
refer to this thesis [15].

A stack is a data type that can hold objects and has the property that, if an object a is pushed on
a stack before object b, then a can only be removed (popped) after b. A stack is, in other words,
a first-in, last-out data type (see Figure 8.1). The top function of a stack returns the last element
that has been pushed on a stack.

b

a

push pop

top

Figure 8.1.: Push and pop on a stack

We consider only stacks that have a finite capacity, that is, that can only hold a maximum number c
of elements that is constant throughout their lifetime. This restriction allows us to define a stack
without relying on dynamic memory allocation. When a stack is created or initialized, it contains
no elements, i.e., its size is 0. The function push and pop increases and decreases the size of a
stack by at most one, respectively.

97

8.1. Methodology overview

Figure 8.2 gives an overview of our methodology to specify and verify abstract data types (verifi-
cation of one axiom shown only).

Implementation
of pop

Specification
of pop

/*@
 requires s ≈ t;
 requires !IsFullStack(s);
 ...
 ensures s ≈ t;
*/
void
axiom_8_8(Stack* s, Stack* t, value_type v)
{
 push(s, v);
 pop(s);
}

⌝full(s) ➞ pop(push(s, v)) = s

Axiom 8.8

Specification
of push

Implementation
of push

Figure 8.2.: Methodology Overview

What we will basically do is:

1. specify axioms about how the stack functions should interact with each other (Section 8.2),

2. define a basic implementation of C data structures (only one in our example, viz.
struct Stack; see Section 8.3) and some invariants the instances of them have to obey
(Section 8.4),

3. provide for each stack function an ACSL contract and a C implementation (Section 8.7),

4. verify each function against its contract (Section 8.7),

5. transform the axioms into ACSL-annotated C code (Section 8.8), and

6. verify that code, using access function contracts and data-type invariants as necessary (Sec-
tion 8.8).

Section 8.5 provides an ACSL-predicate deciding whether two instances of a struct Stack are
considered to be equal (indication by “≈” in Figure 8.2), while Section 8.6 gives a corresponding
C implementation. The issue of an appropriate definition of equality of data instances is familiar
to any C programmer who had to replace a faulty comparison if(s1 == s2) by the correct
if(strcmp(s1,s2)== 0) to compare two strings char *s1,*s2 for equality.

98

8.2. Stack axioms

To specify the interplay of the stack access functions, we use a set of axioms46, all but one of them
having the form of a conditional equation.

Let V denote an arbitrary type. We denote by S c the type of stacks with capacity c > 0 of elements
of type V . The aforementioned functions then have the following signatures.

init : S c → S c,

push : S c × V → S c,

pop : S c → S c,

top : S c → V,
size : S c → N.

With B denoting the boolean type we will also define two auxiliary functions

empty : S c → B,

full : S c → B.

To qualify as a stack these functions must satisfy the following rules which are also referred to as
stack axioms.

8.2.1. Stack initialization

After a stack has been initialized its size is 0.

size(init(s)) = 0. (8.1)

The auxiliary functions empty and full are defined as follows

empty(s), iff size(s) = 0, (8.2)
full(s), iff size(s) = c. (8.3)

We expect that for every stack s the following condition holds

0 ≤ size(s) ≤ c. (8.4)

46There is an analogy in geometry: Euclid (e.g. [16]) invented the use of axioms there, but still kept definitions of
point, line, plane, etc. Hilbert [17] recognized that the latter are not only unformalizable, but also unnecessary,
and dropped them, keeping only the formal descriptions of relations between them.

99

8.2.2. Adding an element to a stack

To push an element v on a stack the stack must not be full. If an element has been pushed on an
eligible stack, its size increases by 1

size(push(s, v)) = size(s) + 1, if ¬full(s). (8.5)

Moreover, the element pushed on a stack is the top element of the resulting stack

top(push(s, v)) = v, if ¬full(s). (8.6)

8.2.3. Removing an element from a stack

An element can only be removed from a non-empty stack. If an element has been removed from
an eligible stack the stack size decreases by 1

size(pop(s)) = size(s) − 1, if ¬empty(s). (8.7)

If an element is pushed on a stack and immediately afterwards an element is removed from the
resulting stack then the final stack is equal to the original stack

pop(push(s, v)) = s, if ¬full(s). (8.8)

Conversely, if an element is removed from a non-empty stack and if afterwards the top element of
the original stack is pushed on the new stack then the resulting stack is equal to the original stack.

push(pop(s), top(s)) = s, if ¬empty(s). (8.9)

8.2.4. A note on exception handling

We don’t impose a requirement on push(s, v) if s is a full stack, nor on pop(s) or top(s) if s
is an empty stack. Specifying the behavior in such exceptional situations is a problem by its own;
a variety of approaches is discussed in the literature. We won’t elaborate further on this issue, but
only give an example to warn about “innocent-looking” exception specifications that may lead to
undesired results.

If we’d introduce an additional error value err in the element type V and require top(s)= err

if s is empty, we’d be faced with the problem of specifying the behavior of push(s, err). At
first glance, it would seem a good idea to have err just been ignored by push, i.e. to require

push(s, err) = s. (8.10)

However, we then could derive for any non-full and non-empty stack s, that

size(s)
= size(pop(push(s, err))) by 8.8
= size(pop(s)) as assumed in 8.10
= size(s) - 1 by 8.7

i.e. no such stacks could exist, or all int values would be equal.

100

8.3. The structure Stack and its associated functions

We now introduce one possible C implementation of the above axioms. It is centred around the C
structure Stack shown in Listing 8.3.

struct Stack
{
value_type* obj;

size_type capacity;

size_type size;
};

typedef struct Stack Stack;

Listing 8.3: Definition of struct Stack

This struct holds an array obj of non-zero length called capacity. The capacity of a stack is the
maximum number of elements this stack can hold. The field size indicates the number elements
that are currently in the stack. See also Figure 8.4 which attempts to interpret this definition
according to Figure 8.1.

obj[1]

...

obj[0]

...

obj[size-1]

size

capacity

top of stack

Figure 8.4.: Interpretation of Stack

101

Based on the stack functions from Section 8.2, we declare the following access functions as part
of our Stack data type.

void init_stack(Stack* s);

bool equal_stack(const Stack* s, const Stack* t);

size_type size_stack(const Stack* s);

bool empty_stack(const Stack* s);

bool full_stack(const Stack* s);

value_type top_stack(const Stack* s);

void push_stack(Stack* s, value_type v);

void pop_stack(Stack* s);

Most of these functions directly correspond to methods of the C++ std::stack template class.47

The function equal_stack corresponds to the comparison operator ==, whereas one use of
init_stack is to bring a stack into a well-defined initial state. The function full_stack has
no counterpart in std::stack. This reflects the fact that we avoid dynamic memory allocation,
while std::stack does not.

8.4. Stack invariants

Not every possible instance of type Stack is considered a valid one, e.g., with our definition of
Stack in Listing 8.3, Stack s = {{0,0,0,0},4,5} is not. Below, we will define an ACSL-
predicate Valid that discriminates valid and invalid instances.

Before, we introduce in Listing 8.5 the auxiliary logical function Capacity and Size which we
can use in specifications to refer to the fields capacity and size of Stack, respectively. This
listing also contains the logical function Top which defines the array element with index size-1
as the top place of a stack. The reader can consider this as an attempt to hide implementation
details from the specification.

We also introduce in Listing 8.6 two predicates that express the concepts of empty and full stacks
by referring to a stack’s size and capacity (see Equations (8.2) and (8.3)).

There are some obvious invariants that must be fulfilled by every valid object of type Stack:

• The stack capacity shall be strictly greater than zero (an empty stack is ok but a stack that
cannot hold anything is not useful).

• The pointer obj shall refer to an array of length capacity.

• The number of elements size of a stack the must be non-negative and not greater than its
capacity.

47See http://www.sgi.com/tech/stl/stack.html

102

http://www.sgi.com/tech/stl/stack.html

/*@
logic size_type Capacity{L}(Stack* s) = s->capacity;

logic size_type Size{L}(Stack* s) = s->size;

logic value_type* Storage{L}(Stack* s) = s->obj;

logic value_type Top{L}(Stack* s) = s->obj[s->size-1];

*/

Listing 8.5: The logical functions Capacity, Size and Top

/*@
predicate Empty{L}(Stack* s) = Size(s) == 0;

predicate Full{L}(Stack* s) = Size(s) == Capacity(s);

*/

Listing 8.6: Predicates for empty an full stacks

These invariants are formalized in the predicate Valid of Listing 8.7.

/*@
predicate

Valid{L}(Stack* s) = \valid(s) &&
\separated(s, Storage(s) + (0..Capacity(s)-1)) &&
0 < Capacity(s) &&
0 <= Size(s) <= Capacity(s) &&
IsValidRange(Storage(s), Capacity(s));

*/

Listing 8.7: The predicate Valid

Note how the use of the previously defined logical functions and predicates (including the predi-
cate
IsValidRange from Listing 2.1 on Page 14) allows us to define the stack invariant without di-
rectly referring to the fields of Stack. As we usually have to deal with a pointer s of type Stack
we add the necessary \valid(s) to the predicate Valid.

103

8.5. Equality of stacks

Defining equality of instances of non-trivial data types, in particular in object-oriented languages,
is not a trivial task. The book Programming in Scala[18, Chapter 28] devotes to this topic a whole
chapter of more than twenty pages. In the following two sections we give a few hints how ACSL
and Frama-C can help to correctly define equality for a simple data type.

We consider two stacks as equal if they have the same capacity, the same size and if they contain
the same objects. To be more precise, let s and t two pointers of type Stack, then we define the
predicate Equal as in Listing 8.8.

/*@
predicate

Equal{S,T}(Stack* s, Stack* t) =
Capacity{S}(s) == Capacity{T}(t) &&
Size{S}(s) == Size{T}(t) &&
IsEqual{S,T}(Storage{S}(s), Size{S}(s), Storage{T}(t));

*/

Listing 8.8: Equality of stacks

Our use of labels in Listing 8.8 makes the specification somewhat hard to read (in particular in
the last line where we reuse the predicate IsEqual from Page 27). However, this definition of
Equal will allow us later to compare the same stack object at different points of a program. The
logical expression Equal{A,B}(s,t) reads informally as: The stack object *s at program point
A equals the stack object *t at program point B.

The reader might wonder why we do include the capacity of a stack into the definition of stack
equality. If equal stacks could have different capacities then, according to our definition of the
predicate Full in Listing 8.6, we could have to equal stacks where one is full and the other one
not.

A finer, but very important point in our specification of equality of stacks is that the elements of
the arrays s->obj and t->obj are compared only up to s->size and not up to s->capacity

. Thus the two stacks s and t in Figure 8.9 are considered equal although there is an obvious
difference in their internal arrays.

4 2 1217 2

capacity = 5
size = 3

Stack s

4 2 817 4

capacity = 5
size = 3

Stack s

Figure 8.9.: Example of two equal stacks

104

If we define an equality relation (=) of objects for a data type such as Stack, we have to make
sure that the following rules hold.

reflexivity ∀s ∈ S : s = s, (8.11a)
symmetry ∀s, t ∈ S : s = t =⇒ t = s, (8.11b)

transitivity ∀s, t, u ∈ S : s = t ∧ t = u =⇒ s = u. (8.11c)

Any relation that satisfies the conditions (8.11) is referred to as an equivalence relation. The
mathematical set of all instances that are considered equal to some given instance s is called the
equivalence class of s with respect to that relation.

Listing 8.10 shows a formalization of these three rules for the relation Equal; it can be automat-
ically verified that they are a consequence of the definition of Equal in Listing 8.8.

/*@
lemma Reflexive{S} :

\forall Stack* s; Equal{S,S}(s, s);

lemma Symmetric{S,T} :
\forall Stack *s, *t;
Equal{S,T}(s, t) ==> Equal{T,S}(t, s);

lemma Transitive{S,T,U}:
\forall Stack *s, *t, *u;
Equal{S,T}(s, t) && Equal{T,U}(t, u) ==> Equal{S,U}(s, u);

*/

Listing 8.10: Equality of stacks is an equivalence relation

The two stacks in Figure 8.9 show that an equivalence class of Equal can contain more than one
element.48 The stacks s and t in Figure 8.9 are also referred to as two representatives of the same
equivalence class. In such a situation, the question arises whether a function that is defined on a
set with an equivalence relation can be defined in such a way that its definition is independent of
the chosen representatives.49 We ask, in other words, whether the function is well-defined on the
set of all equivalence classes of the relation Equal.50 The question of well-definition will play an
important role when verifying the functions of the Stack (see Section 8.7).

48This is a common situation in mathematics. For example, the equivalence class of the rational number 1
2 contains

infinitely many elements, viz. 1
2 ,

2
4 ,

7
14 ,

49This is why mathematicians have to prove that 1
2 + 3

5 equals 7
14 + 3

5 .
50See http://en.wikipedia.org/wiki/Well-definition.

105

http://en.wikipedia.org/wiki/Well-definition

8.6. Runtime equality of stacks

The function equal_stack is the C equivalent for the Equal predicate. The specification of
equal_stack is shown in Listing 8.11. Note that this specifications explicitly refers to valid
stacks.

/*@
requires Valid(s);
requires Valid(t);

assigns \nothing;

ensures \result <==> Equal{Here,Here}(s, t);
ensures \result == true || \result == false;

*/
bool equal_stack(const Stack* s, const Stack* t);

Listing 8.11: Specification of equal_stack

The implementation of equal_stack in Listing 8.12 compares two stacks according to the
same rules of predicate Equal.

bool equal_stack(const Stack* s, const Stack* t)
{
//@ assert IsValidRange(s->obj, s->size);
//@ assert IsValidRange(t->obj, t->size);
return (s->capacity == t->capacity) &&

(s->size == t->size) &&
equal(s->obj, s->size, t->obj);

}

Listing 8.12: Implementation of equal_stack

106

8.7. Verification of stack functions

In this section we verify the functions init_stack (Section 8.7.1), size_stack (Section 8.7.2),
empty_stack (Section 8.7.3), full_stack (Section 8.7.4), top_stack (Section 8.7.5),
and push_stack (Section 8.7.6) pop_stack (Section 8.7.7), of the data type Stack. To be
more precise, we provide for each of function foo_stack:

• an ACSL specification of foo_stack

• a C implementation of foo_stack

• a C function foo_stack_wd51 accompanied by a an ACSL contract that expresses that the
implementation of foo_stack is well-defined. Figure 8.13 shows our methodology for
the verification of well-definition in the pop example, (≈) again indicating the user-defined
Stack equality.

Specification
of pop

/*@
 requires s ≈ t;
 requires !IsEmptyStack(s);
 ...
 ensures s ≈ t;
*/
void pop_stack_wd(Stack *s, Stack *t)
{
 pop(s);
 pop(t);
}

Figure 8.13.: Methodology for the verification of well-definition

Note that the specifications of the various functions will explicitly refer to the internal state of
Stack. In Section 8.8 we will show that the interplay of these functions satisfy the stack axioms
from Section 8.2.

51The suffix _wd stands for well definition.

107

8.7.1. The function init_stack

Listing 8.14 shows the ACSL specification of init_stack. Note that our specification of the
post-conditions contains a redundancy because a stack is empty if and only if its size is zero.

/*@
requires \valid(s);
requires 0 < capacity;
requires IsValidRange(storage, capacity);
requires \separated(s, storage + (0..capacity-1));

assigns s->obj;
assigns s->capacity;
assigns s->size;

ensures Valid(s);
ensures Capacity(s) == capacity;
ensures Size(s) == 0;
ensures Empty(s);
ensures Storage(s) == storage;

*/
void init_stack(Stack* s, value_type* storage, size_type capacity);

Listing 8.14: Specification of init_stack

Listing 8.14 shows the implementation of init_stack. It simply sets the field size to zero.

void init_stack(Stack* s, value_type* storage, size_type capacity)
{
s->obj = storage;
s->capacity = capacity;
//@ assert \separated(s, s->obj + (0..s->capacity-1));
s->size = 0;

}

Listing 8.15: Implementation of init_stack

108

8.7.2. The function size_stack

The function size_stack is the runtime version of the logical function Size from Listing 8.5
on Page 103. The specification of size_stack in Listing 8.16 simply states that size_stack
produces the same result as Size.

/*@
requires Valid(s);

assigns \nothing;

ensures \result == Size(s);

*/
size_type size_stack(const Stack* s);

Listing 8.16: Specification of size_stack

As in the definition of the logical function Size the implementation of size_stack in Fig-
ure 8.17 simply returns the field size.

size_type size_stack(const Stack* s)
{
return s->size;

}

Listing 8.17: Implementation of size_stack

Listing 8.18 shows our check whether size_stack is well-defined. Since size_stack nei-
ther modifies the state of its Stack argument nor that of any global variable we only check
whether it produces the same result for equal stacks. Note that we simply may use operator == to
compare integers since we didn’t introduce a nontrivial equivalence relation on that data type.

/*@
requires Valid(s) && Valid(t);
requires Equal{Here,Here}(s, t);

assigns \nothing;

ensures \result;

*/
bool size_stack_wd(const Stack* s, const Stack* t)
{
return size_stack(s) == size_stack(t);

}

Listing 8.18: Well-definition of size_stack

109

8.7.3. The function empty_stack

The function empty_stack is the runtime version of the predicate Empty from Listing 8.6 on
Page 103.

/*@
requires Valid(s);

assigns \nothing;

ensures \result == 1 <==> Empty(s);
ensures \result == 0 <==> !Empty(s);

*/
bool empty_stack(const Stack* s);

Listing 8.19: Specification of empty_stack

As in the definition of the predicate Empty the implementation of empty_stack in Figure 8.20
simply checks whether the size of the stack is zero.

bool empty_stack(const Stack* s)
{
return size_stack(s) == 0;

}

Listing 8.20: Implementation of empty_stack

Listing 8.21 shows our check whether empty_stack is well-defined.

/*@
requires Valid(s);
requires Valid(t);
requires Equal{Here,Here}(s, t);

assigns \nothing;

ensures \result;

*/
bool empty_stack_wd(const Stack* s, const Stack* t)
{
return empty_stack(s) == empty_stack(t);

}

Listing 8.21: Well-definition of empty_stack

110

8.7.4. The function full_stack

The function full_stack is the runtime version of the predicate Full from Listing 8.6 on
Page 103.

/*@
requires Valid(s);

assigns \nothing;

ensures \result == 1 <==> Full(s);
ensures \result == 0 <==> !Full(s);

*/
bool full_stack(const Stack* s);

Listing 8.22: Specification of full_stack

As in the definition of the predicate Full the implementation of full_stack in Figure 8.23
simply checks whether the size of the stack equals its capacity.

bool full_stack(const Stack* s)
{
return size_stack(s) == s->capacity;

}

Listing 8.23: Implementation of full_stack

Listing 8.24 shows our check whether full_stack is well-defined.

/*@
requires Valid(s);
requires Valid(t);
requires Equal{Here,Here}(s, t);

assigns \nothing;

ensures \result;

*/
bool full_stack_wd(const Stack* s, const Stack* t)
{
return full_stack(s) == full_stack(t);

}

Listing 8.24: Well-definition of full_stack

Observe that the well-definition of full_stack depends on the fact that we consider two stacks
as equal only if their capacities agree, cf. Listing 8.8. Without that restriction, e.g. the stacks
{{6,7,8,9},4,4} and {{6,7,8,9,0,0,0,0},8,4}would be considered equal, although
the former is full while the latter is not.

111

8.7.5. The function top_stack

The function top_stack is the runtime version of the logical function Top from Listing 8.5
on Page 103. The specification of top_stack in Listing 8.25 simply states that for non-empty
stacks top_stack produces the same result as Top which in turn just returns the element obj[
size-1] of Stack.

/*@
requires Valid(s);

assigns \nothing;

ensures !Empty(s) ==> \result == Top(s);

*/
value_type top_stack(const Stack* s);

Listing 8.25: Specification of top_stack

For a non-empty stack the implementation of top_stack in Figure 8.26 simply returns the
element obj[size-1]. Note that our implementation of top_stack does not crash when it is
applied to an empty stack. In this case we return the first element of the internal, non-empty array
obj. This is consistent with our specification of top_stack which only refers to non-empty
stacks.

value_type top_stack(const Stack* s)
{
// repeat known facts to help WP
//@ assert IsValidRange(s->obj, s->size);
if (!empty_stack(s))
{

return s->obj[s->size - 1];
}
else
{

return s->obj[0];
}

}

Listing 8.26: Implementation of top_stack

112

Listing 8.27 shows our check whether top_stack well-defined for non-empty stacks.

/*@
requires Valid(s) && !Empty(s);
requires Valid(t) && !Empty(t);
requires Equal{Here,Here}(s, t);

assigns \nothing;

ensures \result;

*/
bool top_stack_wd(const Stack* s, const Stack* t)
{
return top_stack(s) == top_stack(t);

}

Listing 8.27: Well-definition of top_stack

Since our axioms in Section 8.2 did not impose any restriction on the behavior of top_stack(
s) for an empty s, it is sufficient to prove well-definition of top_stack(s) only for nonempty
s. This justifies the restricting ...&&!IsEmptyStack(...) in the first and second requires

clause.

113

8.7.6. The function push_stack

Listing 8.28 shows the ACSL specification of the function push_stack. In accordance with
Axiom (8.5), push_stack is supposed to increase the number of elements of a non-full stack
by one. The specification also demands that the value that is pushed on a non-full stack becomes
the top element of the resulting stack (see Axiom (8.6)).

/*@
requires Valid(s);

assigns s->size;
assigns s->obj[s->size];

behavior not_full:
assumes !Full(s);

assigns s->size;
assigns s->obj[s->size];

ensures Valid(s);
ensures Size(s) == Size{Old}(s) + 1;
ensures Top(s) == v;
ensures !Empty(s);
ensures Unchanged{Pre,Here}(Storage(s), 0, Size{Pre}(s));
ensures Storage(s) == Storage{Old}(s);
ensures Capacity(s) == Capacity{Old}(s);

behavior full:
assumes Full(s);

assigns \nothing;

ensures Valid(s);
ensures Full(s);
ensures Unchanged{Pre,Here}(Storage(s), 0, Size(s));
ensures Size(s) == Size{Old}(s);
ensures Storage(s) == Storage{Old}(s);
ensures Capacity(s) == Capacity{Old}(s);

complete behaviors;
disjoint behaviors;

*/
void push_stack(Stack* s, value_type v);

Listing 8.28: Specification of push_stack

114

The implementation of push_stack is shown in Listing 8.29. It checks whether its argument is
a non-full stack in which case it increases the field size by one but only after it has assigned the
function argument to the element obj[size].

void push_stack(Stack* s, value_type v)
{
if (!full_stack(s))
{

//@ assert IsValidRange(s->obj, s->size);
//@ assert s->size < s->capacity;
s->obj[s->size++] = v;

}
}

Listing 8.29: Implementation of push_stack

115

Listing 8.30 shows our check whether push_stack is well-defined. Since push_stack does
not return a value but rather modifies its argument we check whether it turns equal stacks into
equal stacks.

/*@
requires Valid(s);
requires Valid(t);
requires Equal{Here,Here}(s, t);
requires !Full(s);
requires !Full(t);
requires Separated(s, t);

ensures Valid(s);
ensures Valid(t);
ensures Equal{Here,Here}(s, t);

*/
void push_stack_wd(Stack* s, Stack* t, value_type v)
{
push_stack(s, v);
//@ ghost Between:

//@ assert Capacity{Pre}(t) == Capacity(t);
//@ assert Size{Pre}(t) == Size(t);

//@ assert Unchanged{Pre,Here}(Storage(t), 0, Size(t));
//@ assert IsEqual{Here,Here}(Storage(t), Size(t), Storage(s));

//@ assert !Full(t);
//@ assert Valid(t);
//@ assert Separated(s,t);
push_stack(t, v);
//@ assert Capacity(s) == Capacity(t);
//@ assert Size(s) == Size(t);

//@ assert Unchanged{Between,Here}(Storage(s), 0, Size(s));
//@ assert IsEqual{Here,Between}(Storage(t), Size{Between}(t),

Storage(s));

//@ assert Capacity{Between}(s) == Capacity(s);
//@ assert 0 <= Size(s) <= Capacity(s);

}

Listing 8.30: Well-definition of push_stack

116

8.7.7. The function pop_stack

Listing 8.31 shows the ACSL specification of the function pop_stack. In accordance with
Axiom (8.7) pop_stack is supposed to reduce the number of elements in a non-empty stack
by one. In addition to the requirements imposed by the axioms, our specification demands that
pop_stack changes no memory location if it is applied to an empty stack.

/*@
requires Valid(s);
ensures Valid(s);

assigns s->size;

behavior not_empty:
assumes !Empty(s);

assigns s->size;

ensures Size(s) == Size{Old}(s) - 1;
ensures !Full(s);
ensures Unchanged{Pre,Here}(Storage(s), 0, Size(s));
ensures Storage(s) == Storage{Old}(s);
ensures Capacity(s) == Capacity{Old}(s);

behavior empty:
assumes Empty(s);

assigns \nothing;

ensures Empty(s);
ensures Unchanged{Pre,Here}(Storage(s), 0, Size(s));
ensures Size(s) == Size{Old}(s);
ensures Storage(s) == Storage{Old}(s);
ensures Capacity(s) == Capacity{Old}(s);

complete behaviors;
disjoint behaviors;

*/
void pop_stack(Stack* s);

Listing 8.31: Specification of pop_stack

117

The implementation of pop_stack is shown in Listing 8.32. It checks whether its argument is a
non-empty stack in which case it decreases the field size by one.

void pop_stack(Stack* s)
{
if (!empty_stack(s))
{

//@ assert 0 < s->size <= s->capacity;
--s->size;

}
}

Listing 8.32: Implementation of pop_stack

Listing 8.33 shows our check whether pop_stack is well-defined. Since pop_stack does not
return a value but rather modifies its argument we check whether it turns equal stacks into equal
stacks.

118

/*@
requires Valid(s);
requires Valid(t);
requires Equal{Here,Here}(s, t);
requires Separated(s, t);

assigns s->size;
assigns t->size;

ensures Valid(s);
ensures Valid(t);
ensures Equal{Here,Here}(s, t);

*/
void pop_stack_wd(Stack* s, Stack* t)
{
//@ assert (Empty(s) || !Empty(s));
pop_stack(s);
//@ ghost Between:

//@ assert Capacity{Pre}(t) == Capacity(t);
//@ assert Size{Pre}(t) == Size(t);

//@ assert Unchanged{Pre,Here}(Storage(t), 0, Size(t));
//@ assert IsEqual{Here,Here}(Storage(t), Size(s), Storage(s));

//@ assert Empty(t) || !Empty(t);
//@ assert Empty(t) <==> Empty{Pre}(s);
//@ assert Separated(s, t);
pop_stack(t);

//@ assert Capacity(s) == Capacity(t);
//@ assert Size(s) == Size(t);

//@ assert Unchanged{Between,Here}(Storage(s), 0, Size(s));
//@ assert IsEqual{Here,Between}(Storage(t), Size{Between}(s),

Storage(s));

//@ assert Capacity{Between}(s) == Capacity(s);
//@ assert 0 <= Size(s) <= Capacity(s);

}

Listing 8.33: Well-definition of pop_stack

119

8.8. Verification of stack axioms

In this section we show that the stack functions defined in Section 8.7 satisfy the stack Axioms of
Section 8.2.

8.8.1. Resetting a stack

Our formulation in ACSL/C of the Axiom in Equation (8.1) on Page 99 is shown in Listing 8.34.

/*@
requires \valid(s);
requires 0 < capacity;
requires IsValidRange(storage, capacity);
requires \separated(s, storage + (0..capacity-1));

assigns s->obj, s->capacity, s->size;

ensures Valid(s);
ensures \result == 0;

*/
size_type axiom_size_of_init(Stack* s, value_type* storage, size_type

capacity)
{
init_stack(s, storage, capacity);
return size_stack(s);

}

Listing 8.34: Specification of Axiom (8.1)

8.8.2. Adding an element to a stack

Axioms (8.5) and (8.6) describe the behavior of a stack when an element is added.

Except for the assigns clauses, the ACSL-specification refers only to encapsulating logical func-
tions and predicates defined in Section 8.4. If ACSL would provide a means to define encapsulat-
ing logical functions returning also sets of memory locations, the expressions in assigns clauses
would not need to refer to the details of our Stack implementation.52 As an alternative, assigns
clauses could be omitted, as long as the proofs are only used to convince a human reader.

52In [9, § 2.3.4], a powerful sublanguage to build memory location set expressions is defined, lacking, however, just
function definitions.

120

/*@
requires Valid(s);
requires !Full(s);

assigns s->size;
assigns s->obj[s->size];

ensures Valid(s);
ensures \result == Size{Old}(s) + 1;

*/
size_type axiom_size_of_push(Stack* s, value_type v)
{
push_stack(s, v);
return size_stack(s);

}

Listing 8.35: Specification of Axiom (8.5)

/*@
requires Valid(s);
requires !Full(s);

assigns s->size;
assigns s->obj[s->size];

ensures \result == v;

*/
value_type axiom_top_of_push(Stack* s, value_type v)
{
push_stack(s, v);
return top_stack(s);

}

Listing 8.36: Specification of Axiom (8.6)

121

8.8.3. Removing an element from a stack

This section shows the Listings for Axioms 8.7, 8.8 and 8.9 which describe the behavior of a stack
when an element is removed.

/*@
requires Valid(s);
requires !Full(s);

assigns s->size;
assigns s->obj[s->size];

ensures Equal{Pre,Here}(s, s);

*/
void axiom_pop_of_push(Stack* s, value_type v)
{
push_stack(s, v);
pop_stack(s);

}

Listing 8.37: Specification of Axiom (8.8)

The annotated code has been obtained from the axioms in a fully systematical way. In order to
transform a condition equation p→ s = t:

• Generate a clause requires p.

• Generate a clause requires x1 == ... == xn for each variable x with n occurrences
in s and t.

• Change the i-th occurrence of x to xi in s and t.

• Translate both terms s and t to reversed polish notation.

• Generate a clause ensures y1 == y2, where y1 and y2 denote the value corresponding
to the translated s and t, respectively.

This makes it easy to implement a tool that does the translation automatically, but yields a slightly
longer contract in our example. For other data types, employing axioms with non-trivial left- and
right-hand-sides, e.g. for queues,

(
¬full(q) ∧ ¬empty(q)

)
→ pop(push(q, v)) = push(pop(q), v)

the contract length is not increased.

122

/*@
requires Valid(s);
requires !Empty(s);

assigns s->size;

ensures \result == Size{Old}(s) - 1;

*/
size_type axiom_size_of_pop(Stack* s)
{
pop_stack(s);
return size_stack(s);

}

Listing 8.38: Specification of Axiom (8.7)

/*@
requires Valid(s) && !Empty(s);

assigns s->size;
assigns s->obj[s->size-1];

ensures Equal{Here,Old}(s, s);

*/
void axiom_push_of_pop_top(Stack* s)
{
const value_type val = top_stack(s);
pop_stack(s);
push_stack(s, val);

}

Listing 8.39: Specification of Axiom (8.9)

123

9. Formal verification

In this chapter we introduce the formal verification tools used in this tutorial. We will afterwards
present to what extent the examples from Chapters 4–8 could be deductively verified.

Within Frama-C, the WP plug-in [2] enables deductive verification of C programs that have been
annotated with the ANSI/ISO-C Specification Language (ACSL)[1]. The WP plug-in uses weakest
precondition computations to generate proof obligations. To formally prove the ACSL properties,
these proof obligations can be submitted to external automatic theorem provers or interactive proof
assistants.

For our experiments we used the WP plugin-in of Neon-20140301 release of Frama-C53 together
with automatic theorem provers Alt-Ergo (version 0.99.1) and CVC4 (version 1.4) and the inter-
active theorem prover Coq (version 8.4.5).

Here are the options of Frama-C that we used and that influence the number of generated proof
obligations.

-wp
-wp-model Typed+ref
-wp-rte
-warn-signed-downcast
-warn-signed-overflow
-warn-unsigned-downcast
-warn-unsigned-overflow
-wp-split

For each algorithm we list in the following tables the number of generated verification conditions
(VC), as well as the percentage of proven verification conditions. The tables show that all verifica-
tion conditions could be verified. Moreover, with the exception of the more precise specification
of remove_copy (Section 7.10) all algorithms are completely verified by the automatic theo-
rem provers (Qed54, Alt-Ergo and CVC4). We discharged the remaining few proof obligations of
remove_copy with Coq (see Table 9.4).

Please note that the number of proven verification conditions do not reflect on the quality/strength
of the individual provers. The reason for that is that we “pipe” each verification condition sequen-
tially through Qed, Alt-Ergo, CVC4 and Coq. If one prover succeeds, then the remaining provers
are not called.

53See http://http://frama-c.com/install-neon-20140301.html
54Qed is the simplification engine of WP

125

http://http://frama-c.com/install-neon-20140301.html

Algorithm Section VCs Individual Provers
All Proven (%) Qed Alt-Ergo CVC4 Coq

equal 4.1 22 22 100 12 10 0 0
equal (IsEqual) 4.1 18 18 100 9 9 0 0
equal (mismatch) 4.2 7 7 100 6 1 0 0
mismatch 4.2 28 28 100 16 12 0 0
find 4.3 27 27 100 14 13 0 0
find (2) 4.4 27 27 100 16 11 0 0
find_first_of 4.5 36 36 100 23 13 0 0
adjacent_find 4.6 36 36 100 20 16 0 0
search 4.7 59 59 100 31 28 0 0
count 4.8 31 31 100 17 14 0 0

Table 9.1.: Results for non-mutating algorithms

Algorithm Section VCs Individual Provers
All Proven (%) Qed Alt-Ergo CVC4 Coq

properties of operator < 5.1 6 6 100 4 2 0 0
max_element 5.2 45 45 100 29 16 0 0
max_element (2) 5.3 45 45 100 29 16 0 0
max_seq 5.4 8 8 100 4 4 0 0
min_element 5.5 45 45 100 29 16 0 0

Table 9.2.: Results for maximum and minimum algorithms

Algorithm Section VCs Individual Provers
All Proven (%) Qed Alt-Ergo CVC4 Coq

lower_bound 6.1 36 36 100 18 18 0 0
upper_bound 6.2 36 36 100 18 18 0 0
equal_range 6.3 22 22 100 17 5 0 0
binary_search 6.4 12 12 100 8 4 0 0
binary_search (2) 6.4 12 12 100 8 4 0 0

Table 9.3.: Results for binary search algorithms

126

Algorithm Section VCs Individual Provers
All Proven (%) Qed Alt-Ergo CVC4 Coq

fill 7.1 17 17 100 7 9 1 0
swap 7.2 8 8 100 8 0 0 0
swap_ranges 7.3 34 34 100 9 21 4 0
copy 7.4 19 19 100 7 11 1 0
reverse_copy 7.5 21 21 100 7 12 2 0
reverse 7.6 34 34 100 11 20 3 0
rotate_copy 7.7 16 16 100 4 11 1 0
replace_copy 7.8 34 34 100 14 16 4 0
remove_copy 7.9 47 47 100 22 21 4 0
remove_copy (2) 7.10 61 61 100 22 32 3 4
iota 7.11 22 22 100 12 9 1 0

Table 9.4.: Results for mutating algorithms

Algorithm Section VCs Individual Provers
All Proven (%) Qed Alt-Ergo CVC4 Coq

equal_stack 8.6 29 29 100 13 16 0 0
init_stack 8.7.1 15 15 100 1 14 0 0
size_stack 8.7.2 6 6 100 1 5 0 0
empty_stack 8.7.3 10 10 100 5 5 0 0
full_stack 8.7.4 11 11 100 5 6 0 0
top_stack 8.7.5 18 18 100 7 11 0 0
push_stack 8.7.6 58 58 100 37 18 3 0
pop_stack 8.7.7 45 45 100 30 15 0 0

Table 9.5.: Results for Stack functions

127

Algorithm Section VCs Individual Provers
All Proven (%) Qed Alt-Ergo CVC4 Coq

size_stack_wd 8.7.2 12 12 100 8 4 0 0
empty_stack_wd 8.7.3 12 12 100 8 4 0 0
full_stack_wd 8.7.4 12 12 100 8 4 0 0
top_stack_wd 8.7.5 12 12 100 8 4 0 0
push_stack_wd 8.7.6 22 22 100 2 15 5 0
pop_stack_wd 8.7.7 27 27 100 4 22 1 0

Table 9.6.: Results for the well-definition of the Stack functions

Algorithm Section VCs Individual Provers
All Proven (%) Qed Alt-Ergo CVC4 Coq

axiom_size_of_init 8.8.1 19 19 100 10 9 0 0
axiom_size_of_push 8.8.2 14 14 100 5 9 0 0
axiom_top_of_push 8.8.2 13 13 100 4 9 0 0
axiom_pop_of_push 8.8.3 12 12 100 1 11 0 0
axiom_size_of_pop 8.8.3 11 11 100 5 6 0 0
axiom_push_of_pop_top 8.8.3 17 17 100 7 10 0 0

Table 9.7.: Results for Stack axioms

128

A. History

This chapter describes the changes in previous versions of this document. For the most recent
changes see Section 1.1.

The version numbers of this document are related to the versioning of Frama-C [3]. The versions
of Frama-C are named consecutively after the elements of the periodic table. Therefore, our
version numbering (X.Y.Z) are constructed as follows:

X the major number of our tutorial is the atomic number55 of the chemical element after which
Frama-C is named.

Y the Frama-C subrelease number

Z the subrelease number of this tutorial

A.1. New in Version 10.1.0 (September 2014)

• remove additional labels in the assumes clauses of some stack function that were necessary
due to an error in Oxygen

• provide a second version of remove_copy (see Sections 7.9 and 7.10) in order to explain
the specification of the stability of the algorithms

• coarsen loop assigns of mutating algorithms

• temporarily remove the unique_copy algorithm

A.2. New in Version 9.3.1 (not published)

• specify bounds of the return value of count and fix reads clause of Count predicate (Sec-
tion 4.8)

• use an auxiliary function make_pair in the implementation of equal_range (Section 6.3)

• provide more precise loop assigns clauses for the mutating algorithms (Chapter 7)

– simplify implementation of fill (Section 7.1)

– removed the ensures \valid(p) clause in specification of swap (Section 7.2)

– simplify implementation of swap_ranges (Section 7.3)

55See http://en.wikipedia.org/wiki/Atomic_number

129

http://en.wikipedia.org/wiki/Atomic_number

– simplify implementation of copy (Section 7.4)

– fix implementation of reverse_copy after discovering an undefined behavior (Sec-
tion 7.5)

– new implementation of reverse that uses a simple for-loop (Section 7.6)

– simplify implementation of replace_copy (Section 7.8)

– refactor specification and simplify implementation of remove_copy (Section 7.9)

• remove work-around with Pre-label in assumes clauses of push_stack (Section 8.7.6)
and pop_stack (Section 8.7.7)

A.3. New in Version 9.3.0 (December 2013)

• adjustments for Fluorine release of Frama-C

• swap now ensures that its pointer arguments are valid after the function has been called

• change definition of size_type to unsigned int

• change implementation of the iota algorithm (Section 7.11). The content of the field a is
calculated by increasing the value val instead of sum val+i.

• change implementation of fill.

• The specification/implementation of Stack (Chapter 8) has been revised by Kim Völlinger [15]
and now has a much better verification rate.

A.4. New in Version 8.1.0 (not published)

• simplified specification and loop annotations of replace_copy (Section 7.8)

• add binary search variant equal_range (Section 6.3)

• greatly simplified specification of remove_copy (Section 7.9) by using the logic function
Count

• remove chapter on heap operations

A.5. New in Version 7.1.1 (August 2012)

• improvements with respect to several suggestions and comments of Yannick Moy, e.g.,
specification refinements of remove_copy, reverse_copy and iota

• restricted verification of algorithms to WP with Alt-Ergo

• replaced deprecated \valid_range by \valid in definition of IsValidRange

• fixed inconsistencies in the description of the Stack data type (Chapter 8)

130

• binary search algorithms (Chapter 6) can now be proven without additional axioms for inte-
ger division

• changed axioms into lemmas to document that provability is expected, even if not currently
granted

• adopted new Fraunhofer logo and contact email

A.6. New in Version 7.1.0 (December 2011)

• changed to Frama-C Nitrogen

• changed to Why 2.30

• discussed both plug-ins WP and Jessie

• removed swap_values algorithm

A.7. New in Version 6.1.0 (not published)

• changed definition of Stack

• renamed reset_stack to init_stack

A.8. New in Version 5.1.1 (February 2011)

• prepared algorithms for checking by the new WP plug-in of Frama-C

• changed to Alt-Ergo Version 0.92, Z3 Version 2.11 and Why 2.27

• added List of user-defined predicates and logic functions

• added remarks on the relation of logical values in C and ACSL (see Section 2.2)

• rewrote section on equal (Section 4.1) and mismatch (Section 4.2)

• used a simpler logical function to count elements in an array (see Section 4.8)

• added search algorithm (see Section 4.7)

• added Chapter 5 to unite the maximum/minimum algorithms

• added Chapter 6 for the new lower_bound, upper_bound and binary_search al-
gorithms

• added swap_values algorithm

• used IsEqual predicate for swap_ranges (Section 7.3) and copy (Section 7.4)

• added reverse_copy and reverse algorithms (see Section 7.6)

• added rotate_copy algorithm (see Section 7.7)

131

• added unique_copy algorithm

• added Chapter 8 on specification of the data type Stack

A.9. New in Version 5.1.0 (May 2010)

• adaption to Frama-C Boron and Why 2.26 releases

• changed from the -jessie-no-regions command-line option to using the pragma
SeparationPolicy(value)

A.10. New in Version 4.2.2 (May 2010)

• changed to latest version of CVC3 2.2

• added additional remarks to our implementation of find_first_of

• changed size_type (int) to integer in all specifications

• removed casts in fill and iota

• renamed is_valid_range as IsValidRange

• renamed has_value as HasValue

• renamed predicate all_equal as IsEqual

• extended timeout to 30 sec.

A.11. New in Version 4.2.1 (April 2010)

• added alternative specification of remove_copy algorithm that uses ghost variables

• added Chapter on heap operations

• added mismatch algorithm

• moved algorithms adjacent_find and min_element from the appendix to Chapter 4

• added typedefs size_type and value_type and used them in all algorithms

• renamed is_valid_int_range as is_valid_range

A.12. New in Version 4.2.0 (January 2010)

• complete rewrite of previous release

• adaption to Frama-C Beryllium 2 release

132

Bibliography

[1] ANSI/ISO C Specification Language. http://frama-c.com/acsl.html.

[2] WP Plug-in. http://frama-c.com/wp.html.

[3] Frama-C Software Analyzers. http://frama-c.com.

[4] CEA LIST, Laboratory of Applied Research on Software-Intensive Technologies. http:
//www-list.cea.fr/gb/index_gb.htm.

[5] INRIA-Saclay, French National Institute for Research in Computer Science and Control .
http://www.inria.fr/saclay/.

[6] LRI, Laboratory for Computer Science at Université Paris-Sud. http://www.lri.fr/.

[7] Fraunhofer-Institut für Offene Kommunikationssysteme (FOKUS). http://www.
fokus.fraunhofer.de.

[8] Virgile Prevosto. ACSL Mini-Tutorial. http://frama-c.com/download/
acsl-tutorial.pdf.

[9] Patrick Baudin, Pascal Cuoq, Jean-Christophe Filliâtre, Claude Marché, Benjamin
Monate, Yannick Moy, and Virgile Prevosto. ANSI/ISO C Specification Language, Ver-
sion 1.8 Frama-C Nitrogen implementation. http://frama-c.com/download/
acsl-implementation-Neon-20140301.pdf, March 2014.

[10] Standard Template Library Programmer’s Guide. http://www.sgi.com/tech/stl,
2010.

[11] Programming languages – C, Committee Draft. http://www.open-std.org/JTC1/
SC22/WG14/www/docs/n1362.pdf, 2009.

[12] C.A.R. Hoare. An axiomatic basis for computer programming. Communications of the ACM,
12:576–583, 1969.

[13] Robert W. Floyd. Assigning meanings to programs. In J. T. Schwartz, editor, Proc. Sym-
posium on Applied Mathematics, volume 19 of Mathematical Aspects of Computer Science,
pages 19–32, Providence, RI, 1967. American Mathematical Society.

[14] Donald E. Knuth, James H. Morris, and Vaughan R. Pratt. Fast pattern matching in strings.
SIAM J Comput, 6(2):323–350, Jun 1977.

[15] Kim Völlinger. Einsatz des Beweisassistenten Coq zur deduktiven Programmverifikation.
Diplomarbeit, Humboldt Universität zu Berlin, Germany, August 2013.

[16] Richard Fitzpatrick J.L. Heiberg. Euclid’s Elements of Geometry. http://farside.
ph.utexas.edu/euclid.html, Austin/TX, 2008.

[17] David Hilbert. Grundlagen der Geometrie. B.G.Teubner, Stuttgart, 1968.

133

http://frama-c.com/acsl.html
http://frama-c.com/wp.html
http://frama-c.com
http://www-list.cea.fr/gb/index_gb.htm
http://www-list.cea.fr/gb/index_gb.htm
http://www.inria.fr/saclay/
http://www.lri.fr/
http://www.fokus.fraunhofer.de
http://www.fokus.fraunhofer.de
http://frama-c.com/download/acsl-tutorial.pdf
http://frama-c.com/download/acsl-tutorial.pdf
http://frama-c.com/download/acsl-implementation-Neon-20140301.pdf
http://frama-c.com/download/acsl-implementation-Neon-20140301.pdf
http://www.sgi.com/tech/stl
http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1362.pdf
http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1362.pdf
http://farside.ph.utexas.edu/euclid.html
http://farside.ph.utexas.edu/euclid.html

[18] Martin Odersky, Lex Spoon, and Bill Venners. Programming in Scala. Artima, 2008.

134

	Foreword
	Changes for Version 10.1.1 (January 2015)

	Introduction
	Structure of this document
	Types, arrays, ranges and valid indices

	The Hoare calculus
	The assignment rule
	The sequence rule
	The implication rule
	The choice rule
	The loop rule
	Derived rules

	Non-mutating algorithms
	The equal algorithm
	The mismatch algorithm
	The find algorithm
	The find algorithm reconsidered
	The find_first_of algorithm
	The adjacent_find algorithm
	The search algorithm
	The count algorithm

	Maximum and minimum algorithms
	A note on relational operators
	The max_element algorithm
	The max_element algorithm with predicates
	The max_seq algorithm
	The min_element algorithm

	Binary search algorithms
	The lower_bound algorithm
	The upper_bound algorithm
	The equal_range algorithm
	The binary_search algorithm

	Mutating algorithms
	The fill algorithm
	The swap algorithm
	The swap_ranges algorithm
	The copy algorithm
	The reverse_copy algorithm
	The reverse algorithm
	The rotate_copy algorithm
	The replace_copy algorithm
	The remove_copy algorithm
	Capturing the stability of remove_copy
	The iota algorithm

	The Stack data type
	Methodology overview
	Stack axioms
	The structure Stack and its associated functions
	Stack invariants
	Equality of stacks
	Runtime equality of stacks
	Verification of stack functions
	Verification of stack axioms

	Formal verification
	History
	New in Version 10.1.0 (September 2014)
	New in Version 9.3.1 (not published)
	New in Version 9.3.0 (December 2013)
	New in Version 8.1.0 (not published)
	New in Version 7.1.1 (August 2012)
	New in Version 7.1.0 (December 2011)
	New in Version 6.1.0 (not published)
	New in Version 5.1.1 (February 2011)
	New in Version 5.1.0 (May 2010)
	New in Version 4.2.2 (May 2010)
	New in Version 4.2.1 (April 2010)
	New in Version 4.2.0 (January 2010)

	Bibliography

