Postdoctoral Position

Function Synthesis for C Programs
from Formal Specifications

Keywords: function synthesis, code generation, formal specification, Frama-C,
C, ACSL, OCaml.

Context: CEA LIST, Software Security Labs

The Software Security Laboratory (LSL) has an ambitious goal: help designers,
developers and validation experts ship high-confidence systems and software.
Objects in our surroundings are getting more and more complex, and we have
built a reputation for efficiently using formal reasoning to demonstrate their
trustworthiness. Within the CEA LIST Institute, LSL is dedicated to inventing
the best possible means to conduct formal verification. We design methods and
tools that leverage innovative approaches to ensure that real-world systems can
comply with the highest safety and security standards. And in doing so, we get
to interact with the most creative people in academia and the industry.

Our organizational structure is simple: those who pioneer new concepts are
the ones who get to implement them. We are a fast-growing thirty-person
team, and your work will have a direct and visible impact on the state of formal
verification.

CEA LIST’s new offices are located at the heart of Campus Paris Saclay, in
the largest European cluster of public and private research.

Work Description

LSL is the main developer of Frama-C [4] (http://frama-c.com), a code anal-
ysis platform for C programs which provides several collaborative analyzers as
plug-ins. Frama-C itself is developed in OCaml. Frama-C allows the user to
annotate C programs with formal specifications written in the ACSL specifi-
cation language [1]. Frama-C can then ensure that a C program satisfies its
formal specification by relying on weakest preconditions calculus or abstract
interpretation.

The above-mentionned static analysis techniques may be used on a partial
program, that is a program containing external library functions, as soon as
they are specified enough. However dynamic analysis techniques like monitoring
or testing cannot be used on such partial programs because they cannot be
executed. For instance, code generated from E-ACSL [3|, a Frama-C plug-in
for checking ACSL annotations at runtime, cannot be executed in such a case.

The aim of this postdoc is to address this limitation by designing a way to
automatically generate a C function body b from an ACSL function contract ¢
in a way that b satisfies ¢. Such a code generation is named function synthesis [5]
in the litterature. Like any interesting research problem in formal methods, it
is undecidable in the general case.

A first step will be to survey the existing litterature to study what already
exists, how to adapt existing works to C programs annotated with ACSL an-
notations and how to improve state-of-the-art techniques to handle new kinds
of annotations. Then a full compilation scheme will be designed and proved
correct. Finally it will be implemented in OCaml as a new Frama-C plug-in
and experimented on a realistic case study.



References

1]

2]

3]

4]

[5]

Patrick Baudin, Jean-Christophe Filliatre, Claude Marché, Benjamin
Monate, Yannick Moy, and Virgile Prevosto. ACSL: ANSI/ISO C Speci-

fication Language. Version 1.8, March 2014.

Pascal Cuoq, Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien
Signoles, and Boris Yakobowski. Frama-C, A software Analysis Perspective.
In Software Engineering and Formal Methods (SEFM), October 2012.

Mickagl Delahaye, Nikolai Kosmatov, and Julien Signoles. Common specifi-
cation language for static and dynamic analysis of C programs. In the 28th
Annual ACM Symposium on Applied Computing (SAC), pages 1230-1235.
ACM, March 2013.

Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles, and
Boris Yakobowski. Frama-c: A software analysis perspective. Formal Aspects
of Computing, pages 1-37, 2015. Extended version of [2].

Viktor Kuncak, Mikaél Mayer, Ruzica Piskac, and Philippe Suter. Complete
functional synthesis. In Proceedings of the 2010 ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI '10, pages
316-329, New York, NY, USA, 2010. ACM.

Applications

Knowledge in several of the following fields is required:

e (first order) logic

e semantics of programming languages (in particular, the ISO C 99 pro-
gramming language)

e compilation techniques
e formal specification

e functionnal programming (in particular, OCaml programming)

Contact: Julien Signoles (julien.signoles@Qcea.fr)



