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Abstract. We present functional dependencies, a convenient,
formal, but high-level, specification format for a piece of pro-
cedural software (function). Functional dependencies specify
the set of memory locations which may be modified by the
function (i.e the frame condition), and for each modified lo-
cation, the set of memory locations that influence its final
value. Verifying that a function respects pre-defined func-
tional dependencies can be tricky: the embedded world uses
C and Ada, which have arrays and pointers. Existing systems
we know of that manipulate functional dependencies, Caveat
and SPARK, are restricted to pointer-free subsets of these lan-
guages. This article deals with functional dependencies in a
programming language with full aliasing.

We show how to use a weakest precondition calculus to
generate a verification condition for pre-existing functional
dependencies requirements. This verification condition can
then be checked using automated theorem provers or proof
assistants. With our approach, it is possible to verify the spec-
ification as it was written beforehand. We assume little about
the verification condition generator and its internals. Our work
takes place in the C analysis framework Frama-C, where an
experimental implementation of the technique described here
has been implemented on top of the WP plugin in the devel-
opment version of the tool.

1 Introduction

Critical embedded software often needs to be assessed against
a certain number of criteria, depending on criticality level and
application domain. These criteria are described in norms,
such as DO-178B [29] for the avionics industry, or the def-
inition of Safety Integrity Levels (SIL) [7] for the railway
industry.

In this context, properties such as the absence of run-
time errors, absence of dead-code, or functional specifica-
tions, are verified. Different techniques have been invented to

help check these properties: tests with more or less stringent
coverage criteria, model-checking [8], static analysis and ab-
stract interpretation [9], and deductive verification [14].

The DO-178 standard, for instance, lists in its “Reviews
and Analyses of the Source Code” 6.3.4 section:
“Compliance with the software architecture: The objective is
to ensure that the Source Code matches the data flow and
control flow defined in the software architecture.”

This article focuses on a particular class of lightweight
specifications, that we call functional dependencies, that are
exactly designed to answer the “data flow” part of this re-
quirement in a context with aliasing (pointers can be found in
code subject to the less critical levels of DO-178). Functional
dependencies of a function f express the following informa-
tion.

— the set 2 of locations that may be written to during £’s
execution. This is also known as the frame condition of
the function.

— for each z € 7, the set 777 of locations that influence the
final value of z.

In other words, the code of £ must be such that there ex-
ists mathematical functions ¢, such that the value of each z
at the end of the function is ¢, (7). In addition, any loca-
tion which is not present in 7 must be unchanged by f. The
set T of locations that may be written to during an execu-
tion of £, is similar to the information found in assignable
clauses of JML or in the notion of memory footprint [5]. A
technique to verify this first part of functional dependencies
has been proposed in [24], and the present article only deals
with the additional information on the way the new values
are computed carried out by 77;. Functional dependencies are
a popular feature of critical code verification systems such
as Caveat [27] (where they are called “From” clauses) and
SPARK [26] (where they are called “derives” clauses). Both
systems have been proven through industrial use.

Although functional dependencies are much less expres-
sive than function contracts as popularized by Eiffel [22],
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they are useful because they match the way engineers think
about their systems. Namely, they express both the expected
insulation between system components, and the data-flow in-
side a component. As such, writing functional dependencies
specifications is easier than writing full function contracts.
In addition, functional dependencies are also easier to verify.
And in practice, accurate dependencies for a function £ con-
stitute a useful lemma to have in the verification of a caller
g of £. That is, the functional dependencies of £ play an im-
portant role at the proof level, to abstract the side-effects of
a call to f inside g. The guarantee, provided by £’s func-
tional dependencies, that all locations outside of T are left
unchanged, can be sufficient to establish a property about g,
without having to provide a complete specification of aux-
iliary function £. When the property to verify for the caller
g does require more information about f, the functional de-
pendencies of £ ensure that the ¢, functions from the above
definition are a correct abstraction of what the function does.
The necessary functional specification for £ can be provided
in terms of axiomatization of the ¢, functions.

In some cases, although ¢, appears in the proof obliga-
tion for a property of g, the property may be provable with-
out any axiomatization of ¢,. An example whose significance
will appear later is if the predicate has the shape C[¢4(t)] =
Cl¢(t)] for some context C'.

Let us now introduce an example with aliasing. As the ap-
proach described in this paper is currently being implemented
in the Frama-C toolset for analysis of C programs [11], we
use a small C function as illustration:

int x, vy, z, *p;
void f (int c) {
if (c) p = &y; else p = &z;
if (!c) »p = x + 1; else x = xp + 1;

In the above code, the globals x, z and p may be written
to during an execution of £. Variable x’s final value depends
on c, y, and x (the latter because x may also keep its initial
value). Variable z’s final value depends on c, x and z.

In presence of aliasing, the manual verification of depen-
dencies is rarely immediate, because they are so synthetic.
For instance, one has to remark that p is written to only
when p contains the address of z, meaning that only z can
be modified by this assignment. Computing or verifying the
optimal dependencies of this simple example requires to be
able to take into account alias relations between locations,
and to reason on the truth value of each test. A naive data-
flow analysis would conclude that since p can point to either
y or z, variable x depends on both, and also that both y and z
may be modified by £ (with their new values depending on x
and c). In larger, real-life examples, dependencies computed
by data-flow analysis are in general over-approximated, re-
quiring manual reviews to decide if the computed additional
dependencies are spurious or indicate an actual failure to sat-
isfy the specification.

Caveat [27], one of Frama-C’s ancestors, limits over-ap-
proximations by using Hoare logic [16]. The precision is only

theoretical if the user does not find the courage to write op-
timal loop invariants and relies instead on the inferred ones;
but at least the possibility is there to refine the results un-
til they are satisfactory—a compromise shared by our ap-
proach. The main difference between Caveat and our pro-
posal is that Caveat only infers functional dependencies from
scratch. It does not verify provided dependencies: differences
between specified dependencies and computed ones have to
be reviewed by the human verifier. The verification of pro-
vided dependencies that have been written in advance is the
use case we are advocating in this article. Our approach uses
Hoare logic to compute a verification condition that corre-
sponds to user-specified dependencies. The verification con-
dition can then be established in an automatic or interactive
prover. Even if there is human intervention in the verifica-
tion of the proof obligation, the process is formal, in contrast
to the reliance on informal reviews of differences between
specified and computed dependencies.

The SPARK [26] system uses a data-flow analysis to in-
fer dependencies that can be compared to the dependencies
that have been written as specifications. Since aliasing is lim-
ited!, and as long as the specifications do not try to be too
subtle, the probability is high that the inferred dependencies
are equal modulo reordering to the specified dependencies,
allowing the verifier to conclude that the function behaves as
specified. However, false negatives can be caused not only by
the imprecision of the data-flow analysis, but by differences
between equivalent ways to specify dependencies caused by
aliasing. In order to expand the usefulness of functional de-
pendencies to wider languages subsets where aliasing is more
common, we think it is necessary to tackle this problem.

2 ACSL

2.1 Presentation

ACSL [2] is a specification language for C, quite similar to
what JML [4] provides for Java. ACSL is a first-order logic
whose basic terms are the pure expressions of C, and has
built-in predicates and logic functions to deal with C pointers.
Examples of built-in predicates are \valid, that expresses
that a pointer is valid, \base_addr, that returns the base ad-
dress of a valid pointer, that is the address at which the mem-
ory block enclosing the pointer starts, or \separated which
expresses that two sets of locations are disjoint. The latter
is comparable in intent to the * operator found in separation
logic [28].

Functional specifications in ACSL are based on the notion
of function contract. A contract expresses the pre-conditions
the function requires from its callers together with the post-
conditions it ensures when it returns. In an ensures clause,
it is possible to use the \old(...) operator to refer to the
value of an expression as evaluated in the pre-state of the
function. For instance, a swap function which exchange the

! SPARK does not have pointers, but has call-by-reference
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content of the two (valid) pointers given as argument could
be specified like this:

/*Q@ requires \valid(p) && \valid(q);

ensures *p == \old(*q) && g == \old(*p);
*/
void swap (intx p, intx q);

2.2 Functional dependencies in ACSL

ACSL allows to describe, in a contract, the set of locations
that might be modified by a function and, for each such loca-
tion, to give its functional dependencies. This is done through
.; clauses. assigns clauses can
be conservative: the presence of x in an assigns clause does
not imply that x is necessarily modified. Conversely, the fact
that x does not appear in any assigns clause does not neces-
sarily mean that x stays unchanged during function execution,
because of possible aliases. More precisely, for a contract of
the following form:

assigns \from ..

/*Q@ assigns loci;
assigns loc,; */
and a location loc, the following implication holds:

\separated (loc, \union (&loci, . . ., &loc,))

==> xloc == \old (xloc) ;

Similarly, a clause of the form

assigns loc \from loci, ...,loc,;

implies that the final value of loc does not depend on any
location which is \separated from locy,...,loc,,.

Looking back at the previous examples, admissible func-
tional dependencies for £ and swap would be:

int x,vy,z,*p;

/+@ assigns x \from c, y, x ;
assigns z \from c, x, z ;
assigns p \from c ; */

void f (int c);

/+«@ assigns *p \from *gq ;
assigns x*g \from *p ; x/
void swap (intx p, intx qg);

Note the clause concerning £’s modifications of p. Vari-
able p receives the address of either x or y. Addresses of vari-
ables are not themselves locations and are fixed for the whole
execution of the program. In other words, p is assigned some

abstract constant, and its final value depends only on c?.

2 In order to make functional dependencies better suited to exploitation by
forward-propagation analyzers, a format for specifying that p may receive
the address of globals x and y is an addition we are considering to ACSL
contracts, but the fact remains that p does not depend on &x in the same
sense that it depends on c.

2.3 Specifying Effects of Loops

Loops play a special role in deductive verification. They are
annotated with loop invariants, properties which inductively
stay valid from one loop step to the next one. More specifi-
cally, a loop invariant must hold when execution reaches the
loop and be preserved by the execution of each loop step.
This allows to abstract the effects of the loop: the only fact
known about the program state at the exit of the loop is that
the invariant holds (and that the condition is false). ACSL
provides loop invariant annotations for invariant proper-
ties, but also loop assigns for the functional dependencies
of a loop. This clause is a summary of all the assignments
performed since entering the loop. Hence, if we consider the
following function which stores partial sums of the elements
of array a into s:

while (i < length) {
s[i] = alil;
if (i>0) s[i]+=s[i-1];
i++;

A corresponding loop assigns clause can be:

/%@

loop assigns s[0..i] \from s[0..i],a[0..1];
loop assigns i \from i;

*/

Even though s[1i] appears to only depends from a[i] and
s[1i-11 in the current loop step, the \ from clause must take
into account all of the first n iterations.

2.4 Aliasing

As alast example demonstrating how tricky aliases make for-
mal specifications in general (and functional dependencies
are no exception), consider the function:

void h (void) {
G = A;
*p = B;

}

This function does not satisfy the dependencies

/*@ assigns G \from A ;
assigns *p \from B ; «/

because if p points to G, the value of G after calling h can-
not be said to depend only on A. The dependencies in each
assigns clause in a contract such as the above has to be sat-
isfied on its own, even when the destination locations in some
of them are aliased. The function h satisfies either of the fol-
lowing contracts:

/*@ requires \separated (G, =*p) ;
assigns G \from 2 ;
assigns *p \from B ; x/
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or

/*@ assigns G \from A, p, B ;
assigns xp \from B ; */

3 Frama-C

3.1 Abstract Interpretation

Frama-C provides several analysis tools for C programs in the
form of plug-ins. ACSL is used as annotation language and
for inter-plug-in communication. One plug-in, called Value
Analysis, computes among other things functional dependen-
cies via abstract interpretation, but as previously emphasized,
they may be overapproximated, and, even when they are ex-
act, may be expressed in a different form than expected. For
instance, the plug-in computes functional dependencies of
function £ in section 1 as follows:

$ frama-c -deps -main f -lib-entry test.c
[from] Function f:
x FROM y; z; c; (and default:true)
y FROM x; c; (and default:true)
z FROM x; c; (and default:true)
p FROM c; (and default:false)

default:true expresses the fact that the correspond-
ing variable might stay unchanged during execution, while
default:false means that p is always overwritten. As the
results show, the plugin fails to detect that y never can be
assigned and that x can only depend on y.

The value analysis can take advantage of hints [10]. For
this example, allowing several states to be propagated sepa-
rately (without joins) in a fashion comparable to trace parti-
tioning [21] almost suffices, because the conditions that need
separate study are exactly the conditions of the ifs in func-
tion £. Unfortunately, the value analysis cannot represent the
set of values ¢ such that ¢ !=0, so it is unable to take advan-
tage of the information in the if (c) statement.

If we add the following annotation

//Q@ assert ¢ < 0 || c==0 || c>0;

the assertion is proved by the value analysis (it is easy to see
that the disjunction always hold), and then used as a hint that
the three cases benefit from being propagated separately. The
result becomes:

$ frama-c -deps -main f -lib-entry \
test.c —-slevel 10
Function f:
x FROM y; c¢; (and default:true)
z FROM x; c; (and default:true)
p FROM c¢; (and default:false)

[from]

This is equivalent to the ACSL specification of section 2.2,
modulo the order in which the locations appear on the right-
hand side of the FrROM and the distinction made by this anal-
ysis between a variable that keeps its value or is recomputed
using its old value. For more complicated functions, it may be

impractical to force the value analysis to compute the func-
tional dependencies one expects. We only succeeded in this
case because the code was a toy example. Slightly more com-
plex expressions such as conditionals or array indices are al-
ready enough to make dependencies inferred this way hope-
lessly over-approximated.

3.2 Deductive Verification

Other Frama-C plug-ins are based on weakest pre-condition
computations and generate verification conditions. The Jessie
Frama-C plug-in is currently incorporated in the distribution
of the Why tool [31], while the another verification conditions
generator, Wp, is currently under development and should be
released in the next version of Frama-C. One of the main dif-
ferences between these plug-ins lies in their memory model.
In its original formulation, Hoare logic [14, 16] uses program-
ming languages that do not explicitly manipulate memory.
Thus, in order to use deductive verification for the C lan-
guage, one has to encode all pointers operations into the logic.
A very low-level memory model would consider pointers as
offset in one big array of bytes. However, this leads to in-
tractable proof obligations, as any write operation might have
an impact on all allocated cells. More abstract memory mod-
els guarantee that a given assignment can only impact a cer-
tain class of cells. A well-known example of such models is
Burstall-Bornat [3]. This model use static type information to
separate cells that cannot be aliases of each other: writing in
a pointer to char won’t modify the content of a pointer to
int, and writing to x—>f1 preserves the content of y—>f£2.
These abstractions allow for more manageable proof obliga-
tions, but they prevent use of some C constructions. For in-
stance, the Burstall-Bornat model can not handle programs
containing heterogeneous pointer casts. It is therefore impor-
tant to be able to use various memory models depending on
the program under verification.

Jessie [24] uses a refined version of the Burstall-Bornat
model allowing for more C constructions than the original
presentation, while Wp allows several memory models to be
used with a generic precondition engine. Since we want all
weakest precondition plug-ins to be usable for the verifica-
tion of functional dependencies, we design a method that is
independent from a particular memory model and builds on
basic operations that any such plug-in must have. Section 4
presents these operations, while section 5 explains how they
can be used to generate verification conditions for functional
dependencies.

4 Weakest Pre-Conditions

4.1 Hoare Logic

Hoare logic manipulates triples of the form { P}s{Q}, where
P and @ are first-order formulas and s is a program. Intu-
itively, if execution of s starts in a state where P holds and the
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execution terminates normally, then () holds in the end-state.
The weakest pre-condition for a formula ) and a program
s is the formula P such that for any P verifying P = P,
{P}s{Q} holds. Provided loops are annotated with invariants
(see sections 2.3 and 4.4), it is possible to compute weakest
pre-condition of a whole function. The wp function takes as
input a formula and a program and computes their weakest
pre-condition.

Hoare’s original work [16] did not include the convenience
\old construct. This construct, on which our presentation re-
lies, can be implemented by treating any \old(e) logic ex-
pression as an atom during the computations (in particular,
substitutions during the weakest precondition computations
do not descend inside \old). The \old(e) is transformed into
e at the very end of the computations, when the predicate is
at the level of the entry of the function.

4.2 An API for Generating Verification Conditions of
Functional Dependencies

wp is not the only function that we need for generating our
verification conditions. Since we aim at being independent of
the memory model, we only assume that there is a function [.]
that translates an lvalue in C [30] syntax (x, t [1], *p, s—>£,
...) into the appropriate logic term. The way this translation
work is dependent on the memory model. In Hoare’s origi-
nal presentation [16], variables were translated as themselves
(variable x in the program was translated as logic variable x in
program predicates) and neither arrays nor pointers were sup-
ported. A memory model supporting arrays and pointers may
introduce an explicit map from addresses to values, typically
called a store. In this latter case, the translation from C lvalue
to logic term is less immediate, but an existing verification
condition generator must have such a translation internally: it
uses it each time it handles an assignment 1value = expr;.
This is typically done by using on the logical side functional
arrays. Functional arrays are objects that can be applied to
two functions: select(a, ) to retrieve the i-th element of ar-
ray a and update(a, i,v) which returns a copy of array a ex-
cept that the value at index ¢ is v. More formally, update and
select are defined by the following axioms:

select(update(a,i,v),i) = v
select(update(a,i,v),j) = select(a,j) ifi # j

Typical memory models separates the store in one or more ar-
rays, and pointers are seen as indices to these arrays. Two dis-
tinct arrays represent separated region of the memory. Thus,
in order for the model to be correct, two pointers must be
translated as indices to two distinct arrays only if they are
known to be pointing to separated locations. A safe repre-
sentation would use only one array of char, but this means
that any assignment (translated as an update) potentially in-
validates all the previous values present the array, leading to
proof obligations that become quickly intractable. More ab-
stract memory models uses several arrays, for instance ac-
cording to the static type of the pointers. This basic informa-

tion can be further refined to separate more pointers in dis-
tinct arrays, for instance using a region analysis [17], which
separates the memory in region known to be separated, or on
the contrary to accommodate for C constructions that break
static type safety (union and casts) [23], but the general idea
is the same. In a basic model, the translation of Ivalues men-
tioned above would look like this (assuming all of them have
type int):

[x] = z if the address of x is not taken
[x] = select(int_array, )
[#p] = select(int_array, p)
[t[i]] = select(int_array,t + i)
[s—>f] = select(int_array, select(f_array, s))

A scalar variable x can only be represented in the logic by a
scalar variable if its address is not taken. Otherwise, it must
be treated like » (&x) to account for possible aliasing with a
pointer p. Dereferencing a pointer of a certain type amounts
to select its index on the corresponding array, possibly with a
shift for the bracket notation t [i]. In the end, accesses to the
field of a structure are translated in two operations. Each field
has its own array (as distinct fields are always separated from
each other, this is known as the “component as array trick”
in [3]), which can be used to retrieve an index to the array
corresponding to the appropriate type.

In addition, the formulas produced by wp can have free
variables. In [16], the free variables correspond to variables
of the program; in memory models with an explicit store, the
array(s) representing the store typically appear(s) as free vari-
able(s). We assume a function close which, given a formula,
performs universal quantification over its free variables.

We also require of the verification condition generator
a function « for converting a formula describing a memory
state to a formula describing a different, fresh memory state.
In [16], @ would simply rename all free variables of the for-
mula to fresh variables. In more sophisticated memory mod-
els, the precise behavior of function o would very much de-
pend on modelization details. For instance, offsets inside C
arrays must be the same in P and «(P) since they are inde-
pendent from the program state itself.

4.3 Function Calls in Hoare Logic

A function call in Hoare logic acts like a cut in natural de-
duction. If £ has pre-condition Pre, post-condition Post, and
frame condition Assign then it must proved at the call point
that Pre holds, and the only thing known about the locations
that have been written by £ is what Post says. More specifi-
cally, with 2’ being the formal arguments of £, we have

wp(£(7), Q) = Pre[@ + 7]

A Vstore'. havoc(store, store’, Assign)
APost[T < ; store « store']
= Qlstore < store’]

This is known as the adaptation rule [15]. Section 5.3 will
show how this rule applies when £’s specification itself takes
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the form of functional dependencies. In presence of alias-
ing, specifying the effects of the call can be complicated and
is highly dependent on the memory model chosen. At our
level, we just assume the existence of a predicate havoc where
havoc(storey, stores, loc) says that store; and storey are
equal except for the locations contained in the set loc, which
are mapped to arbitrary values in stores. This predicate is
equivalent to the havoc command of Boogie [1] and every
verification condition generator for C should have it in one
form or another.

As in section 4.2, depending on the memory model, quan-
tification over store’ may in fact involve quantification over
several arrays, and similarly the havoc predicate may be a
conjunction of havoc over these arrays. For instance, in our
basic model, the axiomatic definition of havoc would be:

Yay,as,1,S. havoc(ay,az, S) Ni ¢ S
= select(ag,i) = select(az, i)

and given a function f specified like this (assuming that struct S

has an int field f):

/*Q@ assigns *p, s—>f; */
void f (int *p, struct Sx s);

we would have:

wp(f(g,1),Q) =
Vint_arr’.
havoc(int_arr,int_arr’, {q} U {select(f_arr,t)})
= Qlint_arr < int_arr’]

Since the havoc predicate on f_arr (which maps pointers to
S to pointers to int) would be over an empty set of location
(we modify the content of t->£, not its address), we can use
the same array before and after the call. On the contrary, two
indices of int_arr might have been modified, and we have
to use a new array, related to the old one through the havoc
predicate.

4.4 Loops in Hoare Logic

Weakest pre-condition computation of loops bears some sim-
ilarities with a call to some function whose pre- and post-
conditions would be the invariant of the loop, with the addi-
tional proof obligation that the invariant must be preserved at
each step. Again, we suppose that the Assign of the loop are
present. Given a loop of the form while (c) { b; } where
c is a side-effect free expression, and an associated invariant
1, its weakest pre-condition is the following formula:

wp(while(c) { b; },Q) =
I
A Vstore' .havoc(store, store’, Assign) AN 1I' A =’ = Q'
A Vstore' .havoc(store, store’, Assign) NI' A ¢
= wp(b, I)[store < store']

where I’ = I[store < store’] and ¢’ = ¢[store < store’].

5 A Formula for Verifying Functional Dependencies

5.1 Presentation

We seek verification conditions for functional dependencies.
This task is twofold: on the one hand, we have to establish
that only the locations (locy, ..., loc,,) mentioned on the left
of a \from might be modified, and on the other hand that
each of these locations depends only on the locations present
in the right-hand side of the corresponding clause. As said
above, the first part amounts to verifying the following post-
condition:

\forall char xloc.
\separated (loc, \union (&locy, . .
==> xloc == \old (*loc)

., &locn) )

Computing the weakest pre-condition of this clause in the
Jessie memory model has been studied in [24], based on simi-
lar work for JML-annotated Java programs [20]. In this paper,
we focus on the second part. For that, we start from clause
assigns e \from deps, program s, and precondition Pre.
A first idea would be to compute the following weakest pre-
condition:

Definition 1.

deszlo(e,(Fp;, s, Pre) =
3¢,
close (Pre = wp (s, [oldloc(e)] = ¢([[\old(deps;]]))>

assigns clauses are evaluated in the pre-state, but since we
perform a weakest pre-condition computation over it

[oldioc(e)] = o([\old(deps)])

represents a property which is supposed to hold in the post-
state. oldloc is derived from \old and indicates that if e is
an access to a memory location, such as xp, the memory lo-
cation itself is evaluated in the pre-state, while the access is
evaluated in the post-state.

5.2 Proof Obligation for Functional Dependencies

A major issue is that the formula above is higher-order (there
is a quantification over a function), making it unsuitable for
first order automated provers that are usually used by Frama-
C. Higher-order theorem proving is much more difficult than
first order, and there exist only very few and experimental
automated tools for this task. In addition, proving the formula
above amounts in many cases to provide a witness for ¢, that
is to give the exact functional expression of x in terms of the
inputs of the function. This is a stronger demand than simply
collecting functional dependencies.

We now devise a semantically equivalent first-order for-
mula. Informally, we simulate two distinct executions of s,
for which we only assume that they share the same values for
Je?s and e. First, we introduce fresh logic function symbols
7 and define the predicate Pre deps 3 [deps] = m Second,



Cuoq, Monate, Pacalet, and Prevosto: Functional Dependencies and WP 7

we use a fresh predicate symbol A standing as a predicate ob-
server of e in A([oldloc(e)]). It is used as an argument of the
wp to extract the semantics of the computation of e. The first-
order verification condition we propose is:

Definition 2.

deps_fo(e, deps, s, Pre) =
(Pre A Pregeps A a(Pre) A O‘(Predeps))

close wp(s, A([oldloc(e)]))
= (<:> a(wp(s, A([[oldloc(e)]]))))

The only way to prove the above equivalence is to show that
both expressions (which represent the value of e at the end
of two distinct executions) are equal. On the other hand, the
Predeps assumption provides the hypothesis that the loca-
tions cﬁ share the same values. Note that « is a variable-
renaming function (extended to terms): it always returns the
same image for a given variable.

If we close the term defined as deps_fo(e, chg, s, Pre)

in definition 2 by quantifying (universally) over A and ?,
we can prove that both formulations are equivalent:

Theorem 1.
deps_ho(e, deps, s, Pre) < deps_fo(e,deps, s, Pre)

Proof. We give only a sketch of the proof here. One of the
key ingredients is the following property:

(A= B) = wp(s,A) = wp(s, B)

which is easily derived by induction on s and the rules for
computing wp.
Suppose that 1 holds. Since we have both Predeps and

a(Pre dep ) we know that [deps] = a([deps]). Then, we can

substitute [oldloc(e)] by ¢([deps]) in 2, and the equivalence
follows from the equality above.

Conversely, let us suppose now that (the universal closure
of) 2 holds. There exists a function v such that [oldloc(e)] =
W ([reads]), where reads is the set of locations (expressed in
the pre-state) which may be read during the execution of £.
We split [reads] in two parts: [deps] and others. Take arbi-
trary values o(others) of appropriate type® and define

o([depst) = v([depst, a(others))

We must now prove that

V(deps], Yothers, wp(s, ¥ ([deps], others) = ¢([deps]))

For that, we introduce two sets of fresh variables §([deps])
and [(others) in place of the quantifiers, and instantiate A
in 2 by the following predicate:

e = (B([deps]), B(other))

we suppose that all types used by the model to represent C values are
inhabited

3

We obtain thus
V[depsﬂ ,Vothers,Va([deps]), Va(others),
[deps] = ([deps]) = o([deps]) =
wp(s. [oldloc()] = (5 ([deps]). flothert))
& alwp(s, [oldioc(e)] = ¥ (B([depsl). 3(others)))

With the equality hypotheses and by instantiating others with
B(others), the left-hand side of the equivalence is true, so that
the right-hand side holds. Hence, we obtain

wp(s, (o [deps]), a(others)) = 1 (B([deps]), B(others))

Then, with the equalities 3([deps]) = a([deps]) and the def-
inition of ¢, the following equality holds:

wp(s, 6(B([deps])) = v(B([deps]), B(others)))

O

As an example, the verification condition generated for
the dependencies of variable z in the specification of sec-
tion 2.2 using a classical representation of the memory as an
array of int is the following. Since we have a pointer to int
and take the address of y and z, we have in the formula an ar-
ray of int with two distinct offsets y and z. Note that o will
preserve these offsets (on the other hand, we find of course
two versions of the array mem itself).

VYmem, ¢, x,y, Z, memaq, 1, T1.
(y£zNe=C() Ax=X()Aaccess(mem,z) = Z()
ANep = C() Axy = X() A access(memy, z) = Z())
=
(c#0=
((c = 0 = A(access(store(mem,y,x + 1), 2)))
A (c # 0= A(access(mem, z)))))
Ale=0=
((c = 0 = A(access(store(mem, z,x + 1),2)))A
(c # 0= A(access(mem, z))))))

<~
((Cl 7é O =
((c1 = 0 = A(access(store(memy,y,x1 +1),2)))
A (e1 # 0 = A(access(memy, 2)))))
A (61 =0=
((c1 = 0 = A(access(store(memq, z,x1 + 1), 2)))A
(c1 # 0 = A(access(memyq, 2)))))))

Automatic prover Alt-Ergo easily proves this formula.

In the remainder of this section, we deal with functional
dependencies in presence of function calls and loops. For a
call to £, the adaptation rule of section 4.3 puts the post-
conditions of £, which include functional dependencies, as
hypotheses of the current goal. Similarly, in the case of a loop,
the invariant, and by extension the 1loop assigns clauses,
appear both as goals and hypotheses of proof obligations.
When functional dependencies occur as goals that have to be
proved, we use the slightly contrived, but first-order, formu-
lation. When functional dependencies occur as hypotheses,
we use a skolemized version of the higher-order initial for-
mulation (definition 1). As long as care is taken always to use
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the same function symbols ¢, for the same output variable of
a same C function, this version is both powerful and easily
digested by first-order automatic provers.

5.3 Call to a Function with Provided Dependencies

Adding treatment for functional dependencies to a verifica-
tion conditions generator that does not already have it re-
quires one modification that cannot be expressed in terms of
the building blocks the generator can be expected already to
have. The generator must have a primitive to compute the
weakest precondition for a block of code for which only func-
tional dependencies are provided.

The simplest dependencies can be translated in term of
assignment. For instance, if we take the following dependen-
cies:

assigns x \from y, z ; assigns z \from t ;

we could handle them roughly the same way the following
assignments would have been:

old_x = x;

old_z = z;

x = Phi_x(y, old_z);
z = Phi_z(t);

The sequence of assignments o1d_x = x; at the begin-
ning are useful because each of the dependencies in a function
contract expresses dependencies with respect to the values of
the variables before the call, even if some of these variables
are also modified by the call. Indeed, in the case of the depen-
dencies of a function that swaps the contents of two locations,
like the earlier example swap, these preliminary assignments
cannot be done without .

Some care must be taken, if someone has for some reason
specified redundant functional dependencies. The dependen-
cies component of each of the clauses must be true separately,
so that a contract that contains the redundant clauses

assigns x \from y, z ;
assigns x \from z, t ;

is effectively equivalent to the contract:
assigns x \from z ;

Variable x’s new value cannot depend on y because the sec-
ond clause says it doesn’t, and it cannot depend on t because
the first clause says it doesn’t.

In presence of pointers and aliasing, the main difficulty
is that sometimes, the latter case of redundant clauses occurs
in less obvious ways. For instance, if p is not prevented to
point to x by a precondition, the dependencies below mean
that when it does, x’s contents depend only from z after the
call.

assigns *p \from y, z ;
assigns x \from z, t ;

The above dependencies can easily wrongly be proposed
for a function that modifies x and =p, but at least attention

will be drawn to the aliasing corner cases when this function
fails verification.

Because different verification conditions generators may
use different memory models, there is no universal formula
for handling a function call with dependencies. We assume
that the generator provides a predicate transformer F,, 4 that
transforms a predicate that has to hold after some unknown
code C into the predicate that has to hold before C, with
only the information that C' has functional dependencies d,
using the skolemized version of the high-order expression of
d. The name n should be used as a prefix for the names of the
skolemized functions, in a way that two calls to the same C
function use identical skolem functions, but two calls to dif-
ferent C functions that happen to have the same dependencies
don’t. The function F,, 4 is an additional requirement for the
API of section 4.2.

Often, verifying the functional dependencies of a caller
g is possible with only functional dependencies as specifica-
tions for the callee £. This gives rise to proof obligations of
the form C[¢,(2)] < Cl¢,(z)] alluded to earlier, where it is
vital that two calls to the same function introduce the same
logic symbols.

5.4 Functional Dependencies and Loops

The functional dependencies d of a loop while (c) b; are
verified in two steps, establishment and invariance. Verify-
ing the establishment means verifying that O iterations of the
loop body satisfy the dependencies. Assuming that an invari-
ant [ has already been established for the loop, one clause
loop assigns e \from c@ among those of d is trans-
lated as proof obligation depsjo(e,de—n>v, skip,I). In gen-
eral, it simply means that e should always occur in its cor-
responding deps, because loop functional dependencies are
supposed to hold for any number of iterations, including zero.

Loop dependencies are part of the loop invariant. Thus,
they are proved in the same induction. We assume that an ar-
bitrary number of iterations have modified the variables, ac-
cording to the provided loop dependencies and to I (induc-
tion hypothesis). We reduce the establishment of one of the
clauses of d, loop assigns e \from de_>ps, to the formula
below, expressed just before the loop:

—
Finduction,d(deps_fo(e,deps, 1 £ (c) b;,I)))

In this formula, deps,fo(e,c?pzv, if (¢) b;,I) is the goal,
the first-order formula that expresses the proper dependen-
cies, expressed at the point at the beginning of the n+1-th
iteration. Applying Finduction,d to that term means applying
the induction hypothesis to the first n loop iterations to obtain
a formula to be verified before the loop.

Note that in practice, the loop dependencies often consti-

tute an inductive loop invariant, so that frue can be used for
I.
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6 Related Work and Conclusion

6.1 Adaptation Rule

Various proof rules have been proposed for function or proce-
dure calls since Hoare’s foundational paper [15], with differ-
ent restrictions on the kind of calls which are supported (ref-
erence passing, aliasing between out parameters and global
variables,. . . ). In particular, issues raised by aliasing (see sec-
tion 5.3) have been tackled by the notion of simultaneous
assignment of Cartwright and Oppen [6] or the multiple as-
signments of Gries and Levin [12]. These rules are however
meant for traditional post-conditions, not functional depen-
dencies as they are described here.

6.2 Secure Information Flow

Establishing that a program has the secure information flow
property is a classical problem in security analysis. Infor-
mally speaking, the variables of the program are split in “low-
security” and “high-security”, and the desired property is that
knowing the value of the low-security variables does not give
any information on the values of the high-security ones (while
of course high-security variables can depend on both low and
high security variables). This property bears some similarity
with functional dependencies. Roughly speaking, saying that
function f has secure information flow property amounts to
give £ the following specification:

assigns low_security \from low_security;
assigns high_security
\from high_security, low_security;

Joshi and Leino have presented in [18] a characterization
of secure information flow property of program S in terms of
semantical equivalence of the two programs S; HH and HH;
S; HH, where HH is a program that puts arbitrary values in
high-security variables. Informally, the first program executes
S and discards the values of high-security variables, while the
second does the same thing but starts in a state where high-
security variable have arbitrary values. For both to be equiv-
alent the low-security variables must not depend on the high-
security ones or in other words, S has secure information
flow. The context set up by Joshi and Leino is a bit different to
the one of this paper, as they consider non-deterministic pro-
grams, and do not appear to deal with aliases, but it appears
that most of their work could be adapted to functional de-
pendencies, by splitting HH in two: HNF, which puts arbitrary
values in all locations that are \separated from the \from
and HNA which puts arbitrary values in locations that are
\separated from the assigns of the program. The char-
acterization of functional dependencies would then become
the equivalence between HNF; S; HNA and S; HNA. In
the case of deterministic programs, Joshi and Leino show
that secure information flow amounts to prove that there ex-
ists a function f mapping the initial values of low security
variables to their final values. This result is analogous to the

higher-order presentation of definition 1. However, they do
not provide a first-order counterpart similar to definition 2.

6.3 Comparison to JML assignable and accessible
clauses

JML has two kind of clauses related to functional depen-
dencies. First, assignable clauses specifies locations that
may be modified by a method. Second, accessible clauses
(which the JML reference manual [19] calls “a seldom-used
feature”) for specifies the locations that the method may read
from. In the process of converting a C ACSL-annotated pro-
gram into a JML-annotated equivalent Java program, it would
therefore be possible, with some loss of information, to con-
vert

/+*@ assigns locl \from depla, deplb ;
assigns loc2 \from dep2a, dep2b ;

x/
into:
/*Q@ assignable locl, loc2
accessible
depla, deplb, dep2a, dep2b

*/

Some information is lost in this translation: the individ-
ual dependencies of each output variable do not appear in
the JML contract. Our contribution is not only to suggest the
finer-grained dependencies, though, which are an obvious re-
finement once one is convinced of the utility of these depen-
dencies.

We argue that the dependencies are as useful as the list
of modified locations, because they can be used for a more
precise treatment of a function call. To quote again from the
JML reference manual, “an assignable clause gives a frame
axiom for a specification. It says that, from the client’s point
of view, only the locations named, and locations in the data
groups associated with these locations, can be assigned to
during the execution of the method”. The intent of the ACSL
assigns clause is similar, but when the specifier goes to the
length of providing dependencies, the call rule becomes even
more precise. Some properties may be proved without need
for further specification of the called function. Like the prop-
erties that become provable when introducing assignable
clauses, they are not the properties that are strongly related
to what the function does, but the properties that are indepen-
dent from what the function does, and for which an under-
specified function call only seems to interfere when it does in
fact not.

6.4 SAL lightweight annotations

Functional dependencies have similarities with the SAL an-
notation language [13]. There are, however, differences in in-
tent and in detail. A common idea of both approaches is that
weaker formal properties that describe only a well-identified
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aspect of a computation, while less interesting than complete
formal specifications, are also easier to obtain from specifiers
and to verify automatically.

SAL annotations have been used for finding bugs in ex-
isting code. Annotations were inferred from the code of pre-
existing functions. In the SAL context the annotations do not
need to be in a specific concrete representation among the set
of all correct representations stemming from pointer aliasing
relations. In our context the development process is a strict V
development cycle and specifications are written before the
code, during the descending phase of the V cycle. In the as-
cending verification phase, neither the code nor the specifica-
tion are supposed to be adapted to suit the verification tool.
For one exceptional case, this development process may al-
low to document that some inferred dependencies for a func-
tion are different from the pre-existing dependencies that had
been specified because the inferred and the pre-existing de-
pendencies are both correct characterization of the function,
differing only because of aliasing. However, a method that
would require this argumentation too often would simply not
be suitable to this development process. To be suitable for
these development process constraints, the proposed method
has to allow verifying pre-existing specifications against pre-
existing code without requiring to adapt either.

In detail, SAL annotations are syntactically lightweight
because they are written near the formal argument they apply
to: annotations reviews are therefore more straightforward.
The drawback of this approach is that global variables ac-
cessed by the function are not annotated. This compromise
makes special sense for library functions that are not sup-
posed to have an internal state. The elementary annotations
characterize pointer arguments as pointing to input or/and
output buffers, specify if each of them can be NULL, and
distinguish pointers to fixed-length buffers from pointers to
zero-terminated strings.

The information contained in SAL annotations is also typ-
ically part of the description written in advance for a function
near the end of the conception of critical systems. There is
some overlap with the information in functional dependen-
cies: inputs buffers can be recognized in that they appear on
the right-hand side of a dependency, and output buffers on the
left-hand side. With functional dependencies, nullable point-
ers cannot be expressed. Dependencies of functions manipu-
lating zero-terminated strings can be specified following the
work of [25]. On the other hand, SAL annotations do not con-
tain dependency information. Besides, contrary to SAL an-
notations, functional dependencies allow and require to list
all memory locations modified by the function. This prop-
erty is useful for embedded systems where functions modify
a global state, and the knowledge that inputs and outputs are
listed exhaustively is important for reasoning about the func-
tion in the context of a call. Therefore SAL annotations do
not apply on embedded systems requiring such a property.

7 Conclusion

Our contribution is a first-order method for verifying that
a function satisfies provided functional dependencies (or at
least the part of functional dependencies that was not already
addressed within Frama-C). We have shown that in a lan-
guage with widespread aliasing, the problem was not simply
one of computing dependencies by a data-flow analysis and
comparing the computed dependencies to the provided ones.
We think that the verification of functional dependencies in
presence of significant aliasing requires weakest precondi-
tion techniques. We gave a first-order formulation of a post-
condition that, if verified, guarantees that the function satis-
fies the functional dependencies. Being first-order, existing
automatic provers specialized in program verification (Sim-
plify, Z3, Alt-Ergo,. ..) can handle this formulation. Because
it corresponds to an abstract, approximative view of what the
function does, it can often be proved automatically. Func-
tional dependencies are a compact and very accessible way to
express high-level formal specifications. Providing tools for
helping their verification is therefore a key path for widening
the use of formal methods.
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