
Runtime Assertion Checking with Frama-C

Nikolay Kosmatov and Julien Signoles

Runtime Verification 2013 Tutorial
September 24th, 2013

Motivation

Runtime verification of
rigorous, mathematical semantic properties of a C program

I safety properties:
I no division by zero
I no arithmetic overflow
I validity of memory accesses
I . . .

I functional properties:
I function preconditions must be satisfied by the caller
I function postconditions must be satisfied by the callee
I . . .

I . . .

Our goal

In this tutorial, we will see:

I how to specify a C program with the E-ACSL specification
language

I how to detect errors at runtime with the E-ACSL plug-in of
Frama-C

I how to customize the runtime verification

I how to combine runtime verification with other analyses

Presentation of Frama-C
Context
Frama-C Overview
ACSL and E-ACSL
First Steps

Runtime Verification
Checking Assertions
Function Contract
Integers
Errors in Annotations
Memory-Related Annotations

Customization
Runtime Monitor Behavior
Incomplete Program

Combinations with Other Analyzers
Generating Annotations Automatically
Mixing Static Verification and Runtime Assertion Checking

Presentation of Frama-C
Context
Frama-C Overview
ACSL and E-ACSL
First Steps

Runtime Verification
Checking Assertions
Function Contract
Integers
Errors in Annotations
Memory-Related Annotations

Customization
Runtime Monitor Behavior
Incomplete Program

Combinations with Other Analyzers
Generating Annotations Automatically
Mixing Static Verification and Runtime Assertion Checking

A brief history

I 90’s: CAVEAT, an Hoare logic-based tool for C programs at
CEA

I 2000’s: CAVEAT used by Airbus during certification process
of the A380 (DO-178 level A qualification)

I 2002: Why and its C front-end Caduceus at INRIA
I 2006: Joint project to write a successor to CAVEAT and

Caduceus
I 2008: First public release of Frama-C (Hydrogen)
I today:

I Frama-C Fluorine (v9)
I Multiple projects around the platform
I A growing community of users
I and of plug-ins developers
I Trust-In-Soft, startup based on Frama-C technologies

Frama-C at a glance

I A framework for modular analysis of C code.
I http://frama-c.com

I Developed at CEA LIST (Software Safety labs) and INRIA
Saclay (Toccata team).

I Released under LGPL license (Fluorine v3 in June 2013)
I Kernel based on CIL (Necula et al. at Berkeley).
I ACSL annotation language.
I Extensible platform

I Collaboration of analyses over same code
I Inter plug-in communication through ACSL formulae.
I Adding specialized plug-ins is easy

http://frama-c.com

Main plug-ins

included in main distribution

distributed externally

Frama-C Plug-Ins

Dynamic Analysis

Executable-ACSL

PathCrawler

SANTE

Concurrency

MthreadSpecification Generation

Agen
Aoraï

Formal Methods

Deductive Verification

WPJessie

Abstract Interpretation

Value Analysis

Code Transformation

Semantic constant folding

Slicing

Spare code

Browsing of unfamiliar code

Scope & Data-flow browsing

Variable occurrences

Impact Analysis

Metrics computation

External plugins

I Dassault’s internal plug-ins [Pariente & Ledinot, FoVeOOs
2010]

I Taster: coding rules (Atos/Airbus) [Delmas & al., ERTSS
2010]

I Fan-C: flow dependencies (Atos/Airbus) [Duprat & al.,
ERTSS 2012]

I simple Concurrency plug-in (Adelard) [first release in 2013]
I various academic experiments (mostly security and/or

concurrency related)
I others close private plug-ins (CEA, others companies in

France, US, . . .)

ACSL: ANSI/ISO C Specification Language
Presentation

I like JML or Spec# for C programs
I based on Eiffel-like contracts
I allows the users to specify functional properties of their

programs
I designed for static analyzers
I already used in large-scale industrial projects
I allows communication between various plugins
I independent from a particular analysis
I ACSL manual at http://frama-c.com/acsl

http://frama-c.com/acsl

ACSL
Basic Components

I first-order logic

I pure C expressions (side-effect-free expressions)

I C types + Z (integer) and R (real)

I built-ins predicates and logic functions, particularly over
pointers:

I \valid(p)

I \valid(p+0..2),

I \separated(p+0..2,q+0..5),

I \block_length(p)

I . . .

E-ACSL: Executable-ACSL

E-ACSL, a specification language

I (large) executable subset of ACSL

I annotations may be evaluated at runtime

Differences with ACSL:
I few restrictions

I compatible semantics changes

I manual at
frama-c.com/download/e-acsl/e-acsl.pdf

frama-c.com/download/e-acsl/e-acsl.pdf

E-ACSL: Executable-ACSL
Benefits

Benefits:
I being executable allows to be understandable by dynamic

tools (testing tools, monitors)

I being based on ACSL allows to be supported by existing
Frama-C analyzers

I being translatable into C allows to be supported by other
analysis tools for C

E-ACSL plug-in

E-ACSL, a Frama-C plug-in

I converts an annotated C program p into another one p′

I p′ fails at runtime whenever an annotation is violated

I p′ and p have the same behavior if no annotation is violated

Installation
Frama-C

Linux:
I packages on Debian, Ubuntu, Fedora, ...
I compile from sources using OCaml package managers:

I Godi:
http://godi.camlcity.org/godi/index.html

I Opam: http://opam.ocamlpro.com/

Windows:
I Godi
I Wodi: http://wodi.forge.ocamlcore.org/

Mac OS X:
I Binary package available
I Source compilation through homebrew

http://godi.camlcity.org/godi/index.html
http://opam.ocamlpro.com/
http://wodi.forge.ocamlcore.org/

Installation
E-ACSL

I this tutorial is mainly based on E-ACSL

I E-ACSL is a CEA’s external Frama-C plug-in

I compile sources once Frama-C is installed

I http://frama-c.com/download/e-acsl/
e-acsl-0.3.tar.gz

in this tutorial:
Frama-C Fluorine-20130601 + E-ACSL 0.3

http://frama-c.com/download/e-acsl/e-acsl-0.3.tar.gz
http://frama-c.com/download/e-acsl/e-acsl-0.3.tar.gz

Installed files

Executables
I frama-c: console-based interface
I frama-c-gui: Graphical User Interface

Testing the installation

I frama-c -help: list of available plug-ins
I frama-c -kernel-help: options provided by the kernel
I frama-c -e-acsl-help: E-ACSL specific options

Documentation

Manuals
I http://frama-c.com/support.html

I E-ACSL webpage: http://frama-c.com/eacsl.html
I ‘frama-c -print-share-path‘/manuals

I man frama-c

I inline help
I frama-c -kernel-help
I frama-c -plugin-help

Support

I frama-c-discuss@gforge.inria.fr

I tag frama-c on http://stackoverflow.com

http://frama-c.com/support.html
http://frama-c.com/eacsl.html
mailto:frama-c-discuss@gforge.inria.fr
http://stackoverflow.com

Presentation of Frama-C
Context
Frama-C Overview
ACSL and E-ACSL
First Steps

Runtime Verification
Checking Assertions
Function Contract
Integers
Errors in Annotations
Memory-Related Annotations

Customization
Runtime Monitor Behavior
Incomplete Program

Combinations with Other Analyzers
Generating Annotations Automatically
Mixing Static Verification and Runtime Assertion Checking

Assertions

What and why?

I ensure properties at some program points

I defensive programming

How?
I C macro assert provided by assert.h

I takes a C expression of type int as argument

I E-ACSL clause assert
I takes an E-ACSL predicate as argument
I much more expressive than C "boolean" expressions

Example 1: max

goal: check each value of m in function main.

int max(int x, int y) { return x<y ? x : y; }

int main(void) {
int m = max(0, 0);
m = max(-4, 3);
return 0;

}

Example 1: max
Solution 1: use C assertions

#include <assert.h>

int max(int x, int y) { return x<y ? x : y; }

int main(void) {
int m = max(0, 0);
assert(m == 0);
m = max(-4, 3);
assert(m == 3);
return 0;

}

Example 1: max
Solution 2: use E-ACSL assertions

int max(int x, int y) { return x<y ? x : y; }

int main(void) {
int m = max(0, 0);
/*@ assert m == 0; */
m = max(-4, 3);
/*@ assert m == 3; */
return 0;

}

I generate the C code in file a.c with:

frama-c -e-acsl max_e_acsl_assert.c \
-then-on e-acsl -print -ocode a.c

Function Contract
Principle

I goal: specification of imperative functions

I approach: give assertions (i.e. properties) about the
functions

I precondition is supposed to be true on entry (ensured by
callers of the function)

I postcondition must be true on exit (ensured by the function if
it terminates)

I nothing is guaranteed when the precondition is not satisfied

I termination may or may not be guaranteed (total or partial
correctness)

Function Contract
E-ACSL Plug-in

I the precondition is verified when entering the function

I the postcondition is verified when exiting the function

I the contract is thus verified for each function call

Example 2: absval

goal:
specify function absval which computes the absolute value of

its argument.

int absval(int x) { return x>0 ? x : -x; }

Example 2: absval
Solution

/*@ ensures (x >= 0 ==> \result == x)
@ && (x < 0 ==> \result == -x); */

int absval(int x) { return x>0 ? x : -x; }

I that is actually wrong when the argument is INT_MIN.

Example 2: absval
Solution, fixed

#include <limits.h>

/*@ requires x > INT_MIN;
@ ensures (x >= 0 ==> \result == x)
@ && (x < 0 ==> \result == -x); */

int absval(int x) { return x>0 ? x : -x; }

I preprocessing annotations requires to use the option
-pp-annot

Behaviors

I Global precondition (requires) and postcondition
(ensures) apply to all cases

I Behaviors refine global contract in particular cases

I For each behavior (case):
I the subdomain is defined by assumes clause
I additional constraints are given with local requires clauses
I the behavior’s postcondition is defined by ensures clauses,

ensured whenever assumes condition is true

I complete behaviors states that given behaviors cover
all cases

I disjoint behaviors states that given behaviors do not
overlap

Example 2: absval
Solution, improved

#include <limits.h>

/*@ requires x > INT_MIN;
@ behavior pos:
@ assumes x >= 0;
@ ensures \result == x;
@ behavior neg:
@ assumes x < 0;
@ ensures \result == -x;
@ complete behaviors;
@ disjoint behaviors; */

int absval(int x) { return x>0 ? x : -x; }

Integers
Specification language

I ACSL and E-ACSL use mathematical integers

I many advantages compared to bounded integers
I automatic theorem provers work much better with such

integers than with bounded integers arithmetics
I specify without implementation details in mind
I still possible to use bounded integers when required
I much easier to specify overflows

I yet runtime computations may be more difficult

Integers
E-ACSL plug-in

I E-ACSL uses GMP to represent mathematical integers

I try to avoid them as much as possible (interval-based type
system)

I no GMP in the previous examples

I indeed few GMP’s in practice

I only used when the annotations talk about (potentially) very
big integers

I in such a case, the generated code must be linked against
GMP

Integers
Example

/*@ ensures \result > 0; */
unsigned long long my_pow
(unsigned int x, unsigned int n)

{
unsigned long long res = 1;
while (n) {
if (n & 1) res *= x;
n >>= 1;
x *= x;

}
return res;

}

I the generated program does not require GMP

Integers
Example, follow-up

/*@ ensures \result > 0;
@ behavior two:
@ assumes n == 2;
@ ensures \result % n == 0;
@ ensures (\result + 1) % n == 1; */

unsigned long long my_pow
(unsigned int x, unsigned int n);

I the generated program requires GMP

Errors in annotations?

I ACSL logic is total and 1/0 is logically significant
I help the user to write simple specification like u/v == 2
I 1/0 is defined but not executable

I E-ACSL logic is 3-valued
I the semantics of 1/0 is “undefined”
I lazy operators &&, ||, _?_:_, ==>

I correspond to Chalin’s Runtime Assertion Checking semantics
I consistent with ACSL: valid (resp. invalid) E-ACSL predicates

remain valid (resp. invalid) in ACSL

Example 3: dividable

goal: specify the following function

int is_dividable(int x, int y) {
return x % y == 0;

}

Example 3: dividable
Solution

/*@ behavior yes:
@ assumes x % y == 0;
@ ensures \result == 1;
@ behavior no:
@ assumes x % y != 0;
@ ensures \result == 0; */

int is_dividable(int x, int y) {
return x % y == 0;

}

I x % y may be undefined

I if undefined, E-ACSL prevents its execution by reporting an
error

Example 3: dividable
Solution, improved

/*@ requires y != 0;
@ behavior yes:
@ assumes x % y == 0;
@ ensures \result == 1;
@ behavior no:
@ assumes x % y != 0;
@ ensures \result == 0; */

int is_dividable(int x, int y) {
return x % y == 0;

}

I adding an extra annotation is usually better

I make the requirement explicit

Pointers

I E-ACSL provides several built-in predicates to talk about
pointers

I \valid(p): is p valid?

I \initialized(p): is ∗p initialized?

I \base_addr(p): base address of the block containing p

I \block_length(p): length of the block containing p

I \offset(p): offset of p from base_addr(p)

Refering to another state

I specification may require values at different program points

I \at(e,L) refers to the value of expression e at label L

I some predefined labels:
I \at(e,Here) refers to the current state
I \at(e,Old) refers to the pre-state
I \at(e,Post) refers to the post-state

I \old(e) is equivalent to \at(e,Old)

Example 4: swap

goal: specify the following function which swaps its arguments

void swap(int *p, int *q) {
int tmp = *q;

*q = *p;

*p = tmp;
}

Example 4: swap
Solution

/*@ requires \valid(p);
@ requires \valid(q);
@ ensures *p == \old(*q);
@ ensures *q == \old(*p); */

void swap(int *p, int *q) {
int tmp = *q;

*q = *p;

*p = tmp;
}

I the generated code is machine-dependent: add
-machdep x86_64 on an x86-64 architecture

I the generated program must be linked against the E-ACSL
memory library

I E-ACSL tries to minimize the instrumentation (dataflow
analysis)

Quantification

I E-ACSL is based on a first order logic

I it provides finite existential and universal quantifications over
terms

I quantifications must be guarded

\forall τ x1,. . .,xn;
a1 <= x1 <= b1 && . . . && an <= xn <= bn
==> p

\exists τ x1,. . .,xn;
a1 <= x1 <= b1 && . . . && an <= xn <= bn
&& p

Example 5: sum of matrices
A more advanced example about pointers and quantification

goal: specify the following function which sums two square
matrices

typedef int* matrix;
matrix sum(matrix a, matrix b, int size);

Example 5: sum of matrices
Solution

typedef int* matrix;

/*@ requires size >= 1;
@ requires \forall integer i, j;
@ 0 <= i < size && 0 <= j < size ==>
@ \valid(a+i*size+j) && \valid(b+i*size+j);
@ ensures \forall integer i, j;
@ 0 <= i < size && 0 <= j < size ==>
@ \valid(\result+i*size+j) &&
@ \result[i*size+j] ==
@ a[i*size+j]+b[i*size+j];
@ */

matrix sum(matrix a, matrix b, int size);

Example 5: sum of matrices
Error detection

Which kind of error are we able to detect here?

I spatial error: invalid memory access due to out-of-bounds
offset or array index

I temporal error: invalid memory access to a deallocated
memory object

I memory leak: use more memory at the end of the execution
than at the beginning.

I use the special variable __memory_size

Loop Invariant
Definition

I clause loop invariant before a loop body

I indicates invariant properties in a loop

I a loop invariant is valid if and only if:
I it holds before entering the loop
I it holds at the end of the loop body, after each iteration

I necessary annotations for proof of programs with loops

Loop Invariant
Example

goals:
I specify the following function which searches an element elt

in a sorted global array A
I provide loop invariants

int A[10];

int search(int elt) {
int k;
for(k = 0; k < 10; k++)

if(A[k] == elt) return 1;
else if(A[k] > elt) return 0;

return 0;
}

Loop Invariant
Solution, part 1

int A[10];

/*@ requires \forall integer i;
@ 0 <= i < 9 ==> A[i] <= A[i+1];
@ behavior exists:
@ assumes \exists integer j;
@ 0 <= j < 10 && A[j] == elt;
@ ensures \result == 1;
@ behavior not_exists:
@ assumes \forall integer j;
@ 0 <= j < 10 ==> A[j] != elt;
@ ensures \result == 0; */

int search(int elt);

Loop Invariant
Solution, part 2

#include " l inear_search_spec . c "

int search(int elt) {
int k;
/*@ loop invariant 0 <= k <= 10;
@ loop invariant \forall integer i;
@ 0 <= i < k ==> A[i] < elt; */

for(k = 0; k < 10; k++)
if(A[k] == elt) return 1;
else if(A[k] > elt) return 0;

return 0;
}

Presentation of Frama-C
Context
Frama-C Overview
ACSL and E-ACSL
First Steps

Runtime Verification
Checking Assertions
Function Contract
Integers
Errors in Annotations
Memory-Related Annotations

Customization
Runtime Monitor Behavior
Incomplete Program

Combinations with Other Analyzers
Generating Annotations Automatically
Mixing Static Verification and Runtime Assertion Checking

Runtime Monitor Behavior

I E-ACSL calls the function e_acsl_assert for each
annotation

I by default, this function fails iff the input boolean expression
corresponding to the annotation is false (i.e. 0)

I a failure generates an error message and aborts the execution

I possible to customize the behavior of the generated code by
providing its own definition of e_acsl_assert

Default Monitor Behavior

#include <stdlib.h>
#include <stdio.h>

void e_acsl_assert
(int predicate, char *kind, char *fct,
char *pred_txt, int line)

{
if (! predicate) {
printf(

"%s f a i l e d at l i n e %d in func t i on %s .\n\
The f a i l i n g p r ed i c a t e i s :\n%s .\n ",

kind, line, fct, pred_txt);
exit(1);

}
}

Custom Monitor Behavior
Invalid Predicate Tracker

#include <stdio.h>
void e_acsl_assert

(int predicate, char *kind, char *fct,
char *pred_txt, int line)

{
if (! predicate) {
FILE *f = fopen(" l o g f i l e . l og ", " a ");
fprintf(
f,
"%s f a i l e d at l i n e %d in func t i on %s .\n\

The f a i l i n g p r ed i c a t e i s :\n%s .\n ",
kind, line, fct, pred_txt);

fclose(f);
}

}

Incomplete Program

I possible to run E-ACSL on code without a main (e.g.
library) or containing undefined functions

I correct only if there is no memory-related annotations

I BE CAREFUL with memory-related annotations:
I may need the option -e-acsl-full-mmodel for

correctness
I less efficient generated code
I if no main is provided, may need to call
__e_acsl_memory_init (resp.
__e_acsl_memory_clean) at the beginning (resp. at the
end) of the main before linking

Presentation of Frama-C
Context
Frama-C Overview
ACSL and E-ACSL
First Steps

Runtime Verification
Checking Assertions
Function Contract
Integers
Errors in Annotations
Memory-Related Annotations

Customization
Runtime Monitor Behavior
Incomplete Program

Combinations with Other Analyzers
Generating Annotations Automatically
Mixing Static Verification and Runtime Assertion Checking

Generating Annotations Automatically

I Frama-C plug-ins may generate annotations

I the RTE plug-in generates an annotation for each potential
runtime error

I possible to run RTE, then to run E-ACSL

I automatic detection of each runtime error

I option -e-acsl-prepare must be used in case of running
an analysis before E-ACSL

Generating Annotations Automatically
Example

again the example of sum of matrices:
no need of writing assertions since RTE generates them

int main(void) {
int a[] = { 1, 1, 1, 1 };
int b[] = { 2, 2, 2, 2 };
matrix c = sum(a, b, 2);
free(c);
// /*@ assert \valid(&c[0]); */
// /*@ assert \valid(&c[2]); */
int trace = c[0] + c[2];
return 0;

}

Verifying Annotations Statically

I Frama-C comes with various static analyzers

I some aim at statically verifying a program
I may guarantee the absence of runtime error
I may ensure that a program satisfies its ACSL specification

I usually require extra work by the user
I adding extra annotations
I parameterizing the tool
I writing stubs

I what to do when all the code is not statically verified?

may also use E-ACSL on such cases

Proof of Programs

Plug-in Wp

I based on Dijkstra’s weakest preconditon calculus

I generates theorems (proof obligations) to ensure that a code
satisfies its ACSL specification

I uses automatic/interactive theorem provers to verify these
theorems

I is able to verify complex specifications

I requires to manually add extra annotations (e.g. loop
invariants)

Mixing E-ACSL and Wp
Main ideas

I idea 1: dynamically check with E-ACSL the properties which
are not statically proved with Wp.

I idea 2: use E-ACSL to test your specification before trying to
prove it with Wp

I use pre-existing test suites
I write test cases manually
I generate test cases with an automatic test generation tool

like the PathCrawler plug-in of Frama-C

I the annotations proved by Wp are not converted by E-ACSL
and so not checked at runtime (except if the option
-e-acsl-valid is set)

I must use -e-acsl-prepare when running Wp

Mixing E-ACSL and WP
Example

goal: formally specify binary_search according to its informal
specification

/* Takes as input a sorted array, its length,
and an int to search for.
Returns the index of a cell which contains
the searched value.
Returns -1 if the key is not present in the
array. */

int binary_search(int *a, int length, int key);

Value Analysis

Plugin Value

I based on Cousot’s abstract interpretation

I computes over-approximations of possible values of variables
at each program point

I evaluates simple E-ACSL annotations

I is able to statically ensure the absence of RTE

I generates extra E-ACSL annotations when it cannot
guarantee the absence of RTE

Mixing altogether

I possible to combine Value, WP + E-ACSL

I even possible to send E-ACSL results back into Frama-C

Time for the final demo!

Conclusion

We have seen:

I how to specify a C program with the E-ACSL specification
language

I how to detect errors at runtime with the E-ACSL plug-in of
Frama-C

I how to customize E-ACSL

I how to combine E-ACSL with other analyses
I RTE
I WP
I Value
I PathCrawler

Bibliography

I user manuals: http://frama-c.com/download.html

I M. Delahaye, N. Kosmatov, and J. Signoles.
Common specification language for static and dynamic
analysis of C programs.
Symposium on Applied Computing 2013 (SAC’13).

I N. Kosmatov, G. Petiot, and J. Signoles.
An optimized memory monitoring for runtime assertion
checking of C programs.
Runtime Verification 2013 (RV’13).

I P. Cuoq, F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles,
and B. Yakobowski.
Frama-c: a software analysis perspective.
Software Engineering and Formal Methods 2012 (SEFM’12).

http://frama-c.com/download.html

	Presentation of Frama-C
	Context
	Frama-C Overview
	ACSL and E-ACSL
	First Steps

	Runtime Verification
	Checking Assertions
	Function Contract
	Integers
	Errors in Annotations
	Memory-Related Annotations

	Customization
	Runtime Monitor Behavior
	Incomplete Program

	Combinations with Other Analyzers
	Generating Annotations Automatically
	Mixing Static Verification and Runtime Assertion Checking

