
Postdoctoral Position

Function Synthesis for C Programs

from Formal Speci�cations

Keywords: function synthesis, code generation, formal speci�cation, Frama-C ,
C , ACSL, OCaml.

Context: CEA LIST, Software Security Labs

The Software Security Laboratory (LSL) has an ambitious goal: help designers,
developers and validation experts ship high-con�dence systems and software.
Objects in our surroundings are getting more and more complex, and we have
built a reputation for e�ciently using formal reasoning to demonstrate their
trustworthiness. Within the CEA LIST Institute, LSL is dedicated to inventing
the best possible means to conduct formal veri�cation. We design methods and
tools that leverage innovative approaches to ensure that real-world systems can
comply with the highest safety and security standards. And in doing so, we get
to interact with the most creative people in academia and the industry.

Our organizational structure is simple: those who pioneer new concepts are
the ones who get to implement them. We are a fast-growing thirty-person
team, and your work will have a direct and visible impact on the state of formal
veri�cation.

CEA LIST's new o�ces are located at the heart of Campus Paris Saclay, in
the largest European cluster of public and private research.

Work Description

LSL is the main developer of Frama-C [4] (http://frama-c.com), a code anal-
ysis platform for C programs which provides several collaborative analyzers as
plug-ins. Frama-C itself is developed in OCaml. Frama-C allows the user to
annotate C programs with formal speci�cations written in the ACSL speci�-
cation language [1]. Frama-C can then ensure that a C program satis�es its
formal speci�cation by relying on weakest preconditions calculus or abstract
interpretation.

The above-mentionned static analysis techniques may be used on a partial
program, that is a program containing external library functions, as soon as
they are speci�ed enough. However dynamic analysis techniques like monitoring
or testing cannot be used on such partial programs because they cannot be
executed. For instance, code generated from E-ACSL [3], a Frama-C plug-in
for checking ACSL annotations at runtime, cannot be executed in such a case.

The aim of this postdoc is to address this limitation by designing a way to
automatically generate a C function body b from an ACSL function contract c
in a way that b satis�es c. Such a code generation is named function synthesis [5]
in the litterature. Like any interesting research problem in formal methods, it
is undecidable in the general case.

A �rst step will be to survey the existing litterature to study what already
exists, how to adapt existing works to C programs annotated with ACSL an-
notations and how to improve state-of-the-art techniques to handle new kinds
of annotations. Then a full compilation scheme will be designed and proved
correct. Finally it will be implemented in OCaml as a new Frama-C plug-in
and experimented on a realistic case study.



References

[1] Patrick Baudin, Jean-Christophe Filliâtre, Claude Marché, Benjamin
Monate, Yannick Moy, and Virgile Prevosto. ACSL: ANSI/ISO C Speci-
�cation Language. Version 1.8, March 2014.

[2] Pascal Cuoq, Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien
Signoles, and Boris Yakobowski. Frama-C, A software Analysis Perspective.
In Software Engineering and Formal Methods (SEFM), October 2012.

[3] Mickaël Delahaye, Nikolai Kosmatov, and Julien Signoles. Common speci�-
cation language for static and dynamic analysis of C programs. In the 28th
Annual ACM Symposium on Applied Computing (SAC), pages 1230�1235.
ACM, March 2013.

[4] Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles, and
Boris Yakobowski. Frama-c: A software analysis perspective. Formal Aspects
of Computing, pages 1�37, 2015. Extended version of [2].

[5] Viktor Kuncak, Mikaël Mayer, Ruzica Piskac, and Philippe Suter. Complete
functional synthesis. In Proceedings of the 2010 ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI '10, pages
316�329, New York, NY, USA, 2010. ACM.

Applications

Knowledge in several of the following �elds is required:

• (�rst order) logic

• semantics of programming languages (in particular, the ISO C 99 pro-
gramming language)

• compilation techniques

• formal speci�cation

• functionnal programming (in particular, OCaml programming)

Contact: Julien Signoles (julien.signoles@cea.fr)


