<> REF : DEB-SSF-DD-001
DEBIE DPU SW ISSUE : 1.4
SPACE SYSTEMS DATE :31.8.1999
FINLAND

DOCUMENT TYPE: Design
TITLE:

DEBIE DPU SOFTWARE

DESIGN DOCUMENT
FUNCTION NAME DATE SIGNATURE

PREPARED BY | SW Engineer Ville Sipinen
CHECKED BY SW Engineer Harri Paloheimo
APPROVED BY | QA Engineer Niklas Holsti

WBS Nr KEYWORDS
DOCUMENT NONE DEBIE, design

IDENTIFICATION

SPAC
Fl

4

SYSTEMS
LAND

DEBIE DPU SW

REF : DEB-SSF-DD-001

ISSUE :1.4
DATE :31.8.1999
PAGE i

DOCUMENT STATUS SHEET

Acquisition task activities and added reading of ris

list

on

ist
se

ulat-

S_

ui-

Issue Date Modifications Reason for change / Comments
1.0 21.11.1997| All First issue, for proposal.
1.1 11.5.1998 Preliminary architectural design

Section 1.1 Scope updated

Section 1.2 Added description for chapters 4 and 5

Section 1.6 Added following acronymes and abbreviations: HW,
SW, SSF

Section 2.1 Deleted sampling of leading edge FIFO from the|
of DEBIE functions and added measurement of rise
time and delays between trigger signals to it

Section 2.1.1 Deleted leading edge FIFO reading from the list|of
high level services of HW/SW interface and added
rise time measurement ot it.

Section 2.1.2 Deleted telecommand possibillity for mode transiti
from Init to Standby from Table 1.

Section 2.1.3 Deleted handling of leasing edge FIFO from the |
of particle hit actions and added measurement of
time and delays between trigger signals to it.

Section 2.16 Replaced 10s dead line by 60s dead line for calg
ing checsum from code memory

Section 2.1.7 Deleted TBC

Section 2.1.9 Updated the list of types of telemetry

Section 2.2.2 Deleted references to leading edge FIFO

Section 2.2.5 Updated text to reflect new 60s dead line for code
memory checksum calculations

Section 2.2.8 Deleted rise time algorithm from possible problems

Section 2.3 Deleted rise time algorithm for leading edge mea
urements from the list of open issues and added the
definition of events to be counted to it

Section 3.1 Added arrow from Housekeeping Memory to Acd
sition Task to Figure 1.

Section 3.1.1 Deleted reading of leading edge FIFO from the list of

e

time and measurement of delayd between trigger sig-

nals to it

DEBIE DPU SW Design Document

SPAC
F

4

SYSTEMS
LAND

DEBIE DPU SW

REF : DEB-SSF-DD-001

ISSUE :1.4
DATE :31.8.1999
PAGE i

DOCUMENT STATUS SHEET

group with Time Window definition commands.
Noted additional timing requirements for some TQ
and multi-word TC.

are

pal

blans

elf

Self

Issue Date Modifications Reason for change / Comments

Section 3.1.3 Updated text to show that TC and TM interrupts
separate.

Section 3.1.4 Splitted TM/TC interrupt service to TM and TC
interrupt services

Section 3.1.5 Housekeeping Memory must be visible also to tk
Acquisition task

Section 3.2 Deleted TBC from the reference to Keil RTX 51 ré¢
time kernel

Chapters 4 and 5 Added new chapters

1.2 17.9.1998 Section 1.1 This issue presents the Prototype design (and

for final SW)

Section 1.2 Added new chapters to overview

Section 1.3 Updated the reference number of [AD1] and add
[AD4]

Section 1.4 Added Reference Documents 3, 4 and 5

Section 2 Added not about differences to the Prototype SW
requirements

Section 2.1 Deleted partition of measurement data to raw a proc-
essed data and DPU temperature measurements

Section 2.1.1 Deleted DPU temperature measurement

Section 2.1.2 Replaced Init mode with DPU Self Test

Table 1 Updated table: transition from Standby to DPU S
Test (fromer Init) is not allowed anymore.

Section 2.1.3 Deleted restarting of FIFO.

Section 2.1.4 Deleted hit rate calculation and updated the eve
classification

Section 2.1.5 Updated the section

Section 2.1.6 Updated the voltage and temperature monitoring

Section 2.1.7 Updated the section to concern only Sensor Unit
Test

Section 2.1.8 Replaced Classification Channels telecommand

DEBIE DPU SW Design Document

SPAC
Fl

SYSTEMS
NLAND

REF : DEB-SSF-DD-001

DEBIE DPU SW ISSUE :1.4

DATE 1 31.8.1999
PAGE :iv

DOCUMENT STATUS SHEET

Issue

Date

Modifications

Reason for change / Comments

Section 2.1.9
Section 2.2.3

Section 2.2
Section 2.2.2
Section 2.2.5 (in previous

issue)

Section 2.2.5 (2.2.6 in previ
ous issue)

Section 2.2.7 (2.2.8 in previ
ous issue)

Section 2.3

Section 3

Section 3.1

Figure 1
Section 3.1.1
Section 3.1.2

Section 3.1.3
Section 3.1.4

Section 3.1.5

Section 3.2

Figure 2

Chapter 4

Clarified the handling of TC during TM.

Deleted calculation of program memory cecksum
from the critical areas.

Changed the lower limit of the delay of the Peak
Detector reading to 100 .. 300 s.

Deleted section concerning program memory check-
sum

Updated section.

Deleted calculation of program memory checksum
from summary of possible problems.

Deleted event counting and classification from open
issues

Replaced DEBIE Test Software with Prototype Spft-
ware. Corrected spelling of Matlab to MATLAB.

Replaced Self Test / Calibration with DPU Self Test.
Noted that ISRs are shown in the figure.

TM and TC interrupts separated
Updated the Acquisition task main activities

Replaced Self Test / Calibration with DPU Self Test
and added note about simplified implementation ip
the Prototype SW. Updated list of actions.

Confirmed that TC format check is done in TC I$R

Deleted Health Monitoring loop timer ISR from the
list of interrupt services (internal to RTX-51). Con-
firmed use of mailboxes.

Deleted distinction of processed and raw measufre-
ment data. Added discussion of Science TM freezing
and buffering.

Updated the list of RTX services to which DHI hag to
provide interface to. Omitted “two layer” structure gf
DHI.

Deleted distinction of Higher Level and Lower Level
of DHI and DTS from the figure

Added new chapter

DEBIE DPU SW Design Document

SPACE
N

F 1

4

SYSTEMS
LAND

DEBIE DPU SW

REF : DEB-SSF-DD-001

ISSUE :1.4
DATE :31.8.1999
PAGE v

DOCUMENT STATUS SHEET

Issue Date Modifications Reason for change / Comments

Chapter 5 Updated the dynamic architecture, added descript

(chapter 4 in issue 1.1) tions of the interrupt services.

Removed description of the UNIX test environment
in favour of the Verification Plan document.
Corrected spelling of Matlab to MATLAB.

Chapter 6 TM and TC interrupts separated in Hood diagrams.

(Chapter 5 in issue 1.1)

Chapter 7 and 8 Added new chapters

1.3 2.2.1999 1.1 This issue presents the design of the first version of
the Flight SW.

1.2 Chapters 7 and 8 are empty in this document versjon,
because the design is not yet completely imple-
mented.

13&14 Added writers of applicable and reference docu-
ments.

14 Added SW User Manual to reference documents

2 Deleted obsolete references to Prototype SW

2.1.1 Low level HW services implemented typically by
macros defined in C-header files.

Deleted non existing HW interface service ‘clock
reading’ (clock is a SW counter).

Table 1 DPU Self Test can be entered also from Standby and
Acquisition modes due to a telecommand.

2.1.7 SU Self Test is performed for each SU independ-
ently.

2.1.8 Calibration TC replaced with SU Self Test TC, added
Error Reset

2.2.6 No separate TC necessary to modify reference
checksum after code patch.

2.3 There are now no major open issues at present.

3.1 Telemetry / Telecommand task is replaced with Tele-
command Execution task.

The Acqusition Task activity in different modes is
described more precisely.

Figure 1 Task interfaces updated to correspond to current
design.

3.1.1 Classification algorithms are defined in [AD1].

DEBIE DPU SW Design Document

SPAC
F

4

SYSTEMS
LAND

DEBIE DPU SW

REF : DEB-SSF-DD-001

ISSUE :1.4
DATE 1 31.8.1999
PAGE :vi

DOCUMENT STATUS SHEET

Issue Date Modifications Reason for change / Comments

3.1.2 Mailboxes and semaphores do not need to be initial-
ized.

Description of wait state of the Health Monitoring
task and processor idle state is updated.

3.1.3 Telecommand Execution task is only partly responsi-
ble for transmission of telemetry.

The state transitions related to telemetry sessions|are
made by TC and TM Interrupt services.

3.1.4 TC interrupt sends TC word, not only TC code.

3.15 Semaphores will probably not be used.

3.2 Deleted sempahore operations from the list of used
services.

Added attach interrupt, wait for interrupt and wait for
time period.

33 Itis TBC if MATLAB and DMI will be used at all.

Table 2 Deleted os_send_token

4.4 Semaphores are not used, but shared resources jare
protected by disabling interrupts.

45.1 Call trees will be generated using the “cflow” tool

Figure 3 Updated the figure

5.2 Housekeeping and operational telemetry is replaged
with TM register telemetry.

Figure 4 Deleted enabling of TC response

5.3 Handling of the mail from TC Interrupt updated.
Handling of “TM_Ready” message updated.

5.4 Health Monitoring Task description updated

5.6 Quality formula is defined in [AD1].

Chapters 7 and 8 Header files not included in this document version,
because the design is not yet completely imple-
mented.

1.4 TBD See below Updated for DEBIE Flight SW delivery

1.2 Chapters 7 and 8 are not empty in this document|ver-
sion

15 There are no definitions

DEBIE DPU SW Design Document

SPAC
F

4

SYSTEMS
LAND

DEBIE DPU SW

REF : DEB-SSF-DD-001

ISSUE :1.4
DATE 1 31.8.1999
PAGE :vii

DOCUMENT STATUS SHEET

Issue

Date

Modifications

1.6

212

225
3

3.1.2
3.1.2

3.3
4.3

54.1

Figure 7

Figure 8

Figure 9

Figure 10

Chapers 7 and 8

Document wide

Reason for change / Comments

Deleted DMI from the list of acronyms and abbrev
tions.

Sensor Units are not necessarily switched Off in
Standby mode.

Hit trigger budget limit is 20 hits / 10s
Deleted remark about DMI
Idle state used (deleted other option and TBD)

Mentioned SU self test as a part of health monitor
action.

Removed DEBIE MATLAB Interface section.

RTX timer interrupt is no longer lower priority inte
rupt

Dynamic architecture figures are not going to be ¢
tended anymore

a_

New section which describes SU self test action as a

part of the health monitoring cycle.

Figure modified to better describe the health mor
toring loop cycles.

Added SelfTest_SU and SelfTestChannel proced
into the health monitoring function hierarchy.

Refined that self test in power-up timing is DPU g
test.
Replaced incorrect 100 ms with 800 us.

Added description of Hit Budgeting
Added current DAS and DHI headers

res

elf

New company logo.

DEBIE DPU SW Design Document

. REF _ : DEB-SSF-DD-001
@ DEBIE DPU SW DATE :31.8.1999

SPACE SYSTEMS PAGE : viii

TABLE OF CONTENTS

1. INtrodUCHioN 1.
1L SCOPE . et 1......
1.2 OVEBIVIEW . . o vttt et et e e e e e 1
1.3 Applicable Documents. 1
1.4 Reference DOCUMENESttt 1
1.5 DefiNitiONS . . . o 2
1.6 Acronyms and Abbreviations 2
2. DEBIE ReqUIrEMENESot e e e e 3
2.1 DEBIE DPU SW Requirement SUMMaAryttt 3
2.1.1 Interface to the DEBIE Hardware 3
2.1.2 Functional modes 4
2.1.3 Particle Hit Detection and Actions i 5
2.1.4 Processing of the MeasurementData 5
2.1.5 Storage of the Measurementdata 5
2.1.6 Health Monitoring. e 5
2.1.7 SU Self Testand Calibration. 6
2.1.8 Reception and Execution of Telecommands. 6
2.0.9 Telemetry. 7
2.2 CritiCal ArBaS . . . o ottt 7
2.2.1WatChdog.o oo 8
2.2.2 Timing of Measurement Data Acquisition 8
2.2.3 Timing of the Telecommand Reception 8
2.2.4 Timing of the Telemetry Data Stream. 8
2.2.5 Interference Between Health Monitoring and Acquisitions 8
2.2.6 Interference Between Memory Write and Checksums 9
2.2.7 Summary of Possible Problems. 9
2.3 OPEN ISSUBS . . .ot e 9
3. DEBIE Architecture OVEIVIEWttt 10
3.1 DEBIE Application Software 10
3. LI ACQUISIION TaSK . . .o e 11
3.1.2 Health Monitoring Task 12
3.1.3 Telecommand Execution Task 12
314 INterrupt SErVICES . . .o oot 13

3.1.5Shared MemMOrYot 13

3.2 DEBIE Hardware Interface 14

4. General System DesSigN 15
4.1 The B0C32 ProCeSSOr. . . v vttt et e e e e e e e e 15
4.1.1 REQISIEIS . . 15

4. 1.2 MBIMOIY . oot e e e 15

DEBIE DPU SW Design Document

REF : DEB-SSF-DD-001

& DEBIEDPUSW DAIE | 318.1999
SPACE SYSTEMS PAGE :ix
FINLAND
TABLE OF CONTENTS
4.1.3INSrUCLIONS . . .o o 16
4.1.4Memory Models 16
4 L S INteITUPIS . . o 16
42 Use of RTXKernel e 17
4.3 Interrupt Management 18
44 Task Management 18
A5 StaCK SIZeS. . . oo 19
45.1 Standard task stacks. 19
452 Fasttask stacks 19
453 Interruptservice stacks 19
454 Re-entrant FUNCLIONS i 19
4.6 Portability of DEBIE Application Software 20
5. Dynamic ArchiteCture. 21
5.1 TC INterrupt SErVICEo e e 21
5.2 TM INterrupt SEerVICEot e e e 23
5.3 Telecommand Execution Task. e 24
5.4 Health Monitoring Task. e 27
5.4.1 SU Self Test. 28
5.5 Hit Trigger INterrupt ServiCe e 32
5.6 ACqUIsition Task i 33
6. Static Architecture 6...3
7TDAS Header Files. oo 59
7.0 class.n. ... 0..... 6
7.2classtab.h ... 62
7.3 health.h. ... 63
7.4 Kernobj.h ... 66
O MEASUI. N . e 68
7.6tC_hand.h 72
T telem.h . 76
7.8 tm data.h 78
O VeISION. N, . 84
8DHIHeaderFiles i do ... 8
8.lad conv.h. 88
8.2dpu_ctrl.h. .. 90
B.3IUSr Ctrl N . .. 97
8.4 keyword.h 100
8.5 mMSg_Ctrl.h .. 102
8.6 SU _Ctrl.h . . 105

DEBIE DPU SW Design Document

REF : DEB-SSF-DD-001

ISSUE : 1.4
@ DEBIE DPU SW DATE :31.8.1999
PAGE :x

TABLE OF CONTENTS

8.7 tasketrl.n. 113
8.8 ttC _Clrlh. .. 116

DEBIE DPU SW Design Document

REF : DEB-SSF-DD-001

SPACE .
SYSTEMS DEBIEDPU SW ot 24 o
FINLAND PAGE] : xi

LIST OF TABLES

Table 1: Functional modes and transitions i e 4
Table 2: Used RTX fUNCLIONSo e s 17
Table 3: Descriptions of the TC states e 26

DEBIE DPU SW Design Document

3 REF : DEB-SSF-DD-001
@ ISSU : 1.4

DEBIE DPU SW DATE| : 31.8.1999

SPACE SYSTEMS PAGE] : xii

LIST OF FIGURES

Figure 1: DEBIE Application Software Tasks 11
Figure 2: Role of DEBIE Hardware Interface. 14
Figure 3: TC INtEITUPL SEIVICE o e 22
Figure 4: TM INterrUPt SEIVICEottt 24
Figure 5: Telecommand and Telemetry task loop. 26
Figure 6: TC State TranSitions 27
Figure 7: Health Monitoring task i e e 30
Figure 8: Health monitoring function hierarchy 31
Figure 9: Health Monitoring timeline e 32
Figure 10: Particle Hit interrupt ServiCe i e 33
Figure 11: Acquisition task l00p. o i 35

DEBIE DPU SW Design Document

8 |RsEsFu . IDEB-SSF-DD-001
@ DEBIE DPU SW DATE :31.8.1999
SPACE SYSTEMS PAGE :1

1. Introduction

1.1 Scope

This document presents the design of an on-board software for the DEBIE instru-
ment. DEBIE is a standard instrument for monitoring space debris and meteoroids
in near Earth orbit.

The DEBIE DPU software runs on an 80C32 processor in the DEBIE Data Proces-
sor Unit (the DPU). The software configures the DEBIE detectors, records impact
events and transmits the records to the spacecraft main computer. The software is
controlled by telecommands issued from the spacecraft main computer.

The present issue of this document presents the design of the first version of the
Flight Software.

1.2 Overview

Section 2 summarises the requirements for the DEBIE.
Section 3 describes the architectural overview.

Section 4 describes the general design principles.
Section 5 describes the dynamic architecture.

Section 6 describes the static architecture.

Section 7 describes the DAS header files.

Section 8 describes the DHI header files.
1.3 Applicable Documents

[AD1] DEBIE Requirements Specification, DEB-FIN-RS-001
Patria Finavitec Systems

[AD2] DEBIE TM/TC Interface Control Document, DEB-FIN-IC-001
Patria Finavitec Systems

[AD3] DEBIE HW/SW Interface Control Document, DEB-FIN-IC-002
Patria Finavitec Systems

[ADA4] DEBIE DPU Software Requirements Document, DEB-SSF-RS-001
Space Systems Finland Ltd

1.4 Reference Documents

[RD1] DEBIE Software Development Plan, DEB-SSF-PL-001
Space Systems Finland Ltd

DEBIE DPU SW Design Document

: DEB-SSF-DD-001

REF
ISSUE : 1.4
@ DEBIE DPU SW DATE : 31.8.1999
PAGE :2

[RD2] MHS C51 Programmer’s Guide and Instruction Set
Matra MHS

[RD3] RTX-51, RTX-251 User’'s Guide 05.96
Keil Software

[RD4] C51 Compiler User’s Guide 01.97
Keil Software

[RD5] DEBIE DPU SW Design and Coding Standard, DEB-SSF-ST-001
Space Systems Finland Ltd

[RD6] DEBIE DPU SW User Manual, DEB-SSF-MA-001
Space Systems Finland Ltd

1.5 Definitions
None.
1.6 Acronyms and Abbreviations

ADC Analog to Digital Converter

DAS DEBIE Application Software
DEBIE Debris In Orbit Evaluator
DHI DEBIE Hardware Interface
DPU Data Processing Unit

DTS DEBIE Test Software

EGSE Electrical Ground Support Equipment
FIFO First In First Out
HK_TM HouseKeeping TeleMetry

HW Hardware

ISR Interrupt Service Routine

RAM Random Access Memory

RTX RealTime eXecutive (in this case Keil RTX-51 for 8051)
SSF Space Systems Finland

SuU Sensor Unit

SW Software

TBC To Be Confirmed

TBD To Be Defined

TC/TM TeleCommand / TeleMetry

DEBIE DPU SW Design Document

/s IRSESID < IDEB-SSF-DD-001
@ DEBIE DPU SW DATE :31.8.1999

SPACE SYSTEMS PAGE :3

2. DEBIE Requirements

This chapter summarises the requirements for the DEBIE DPU SW.
2.1 DEBIE DPU SW Requirement Summary

The functions for the DEBIE DPU SW based on the DEBIE Requirement Specifi-
cation [AD1] are:

. Interface to the DEBIE HW

. Functional mode transitions

. Detection and counting of incoming particles

. Sampling of peak detector measurements during particle hits

. Measurement of rise time and delays between trigger signals

. Measurement of the Sensor Unit temperatures

. Classification of the detected particle hits

. Storage of the measurement data

. Health monitoring of SU temperatures and secondary supply voltages
. Self Test / Calibration

. Refreshing of the watchdog

. Calculation of a checksum from the memory

. Error status recording

. Reception and execution of telecommands from the spacecraft

. Transmission of all measurement and status to the spacecraft via telemetry

The following subsections describe each function in more detail.

2.1.1 Interface to the DEBIE Hardware

Interface to the DEBIE hardware will be isolated in a separate software entity as de-
scribed in the Software Development Plan [RD1]. It will be composed from two
layers: one providing higher level DEBIE specific hardware services and the other
low level 80C32 processor control services. The low level services are implemented
typically by macros defined in C-header files.

The higher level services will provide services needed for controlling DEBIE hard-
ware including:

. Sensor Unit power control

. Rise time measurement

. Peak detector reading

. Trigger limit setting

. SU temperature measurement

. Secondary supply voltage measurement
. TM/TC interface

DEBIE DPU SW Design Document

%ESID < ?EB-SSF-DD-OOl
@ DEBIE DPU SW DATE :31.8.1999
PAGE :4

The lower level services used by the higher level services include for example:

. Read processor port

. Write processor port

. Write processor port pin
. Initialize internal timer

. Start internal timer

. Stop internal timer

. Set processor to idle state
. Write processor register
. Read processor register
. Read memory location

. Write memory location

. Soft reset

. Hard reset

2.1.2 Functional modes

There shall be four functional modes in DEBIE: Off, DPU Self Test, Standby and
Acquisition. Permissible transitions between these modes and valid transition caus-
es are described below:

Table 1: Functional modes and transitions

Destination mode
Source mode | Off DPU Self Test | Standby Acquisition
Off NA power on not allowed not allowed
DPU Self Test power off | NA automatic not allowed
Standby power off | telecommand NA telecommand
Acquisition power off | telecommand telecommand NA

In Off mode DEBIE is not operational.

In DPU Self Test mode a short self test sequence is performed and the resulting sta-
tus shall be stored into local memory. In this mode DEBIE shall not perform acqui-
sition functions (particle hit measurements) nor transmit any science data to the
spacecraft. After completion of the initialization sequence the Standby mode shall
be entered automatically.

In Standby mode housekeeping, operational and science data shall be sent to the
spacecraft on request. In this mode no acquisition functions shall be executed.
Health Monitoring Function shall be executed periodically in this mode.

In the Acquisition mode all kinds of telemetry data are sent to the spacecraft on re-
guest and Health Monitoring and acquisition functions shall be active.

DEBIE DPU SW Design Document

/s IRSESID < IDEB-SSF-DD-001
@ DEBIE DPU SW DATE :31.8.1999

SPACE SYSTEMS PAGE :5

Telecommands shall be received and executed when appropriate in all modes ex-
cept in Off mode.

2.1.3 Particle Hit Detection and Actions

The DEBIE hardware triggers the processor when a particle hits a Sensor Unit. The
DEBIE software shall count these triggers. When the particle hit trigger is received
the following actions shall be done:

. Peak detector outputs of each plasma and piezoelectric sensor shall be sam-
pled

. Pulse rise time and delays between trigger signals shall be measured
. A time tag shall be associated to the measurement data

. The Sensor Unit temperatures shall be measured or retrieved from Health
Monitoring Function

The threshold level of each trigger signal and sensor shall be adjustable independ-
ently with specific telecommands.

2.1.4 Processing of the Measurement Data

The measurement data shall be processed as follows:

. Total number of particle hits for each Sensor Unit shall be counted

. The detected particle hits shall be classified into different classes according to
signal amplitude or co-incidence of signals from different sensors.

. Events of different class on each Sensor Unit shall be counted to provide in-
formation of the background noise

2.1.5 Storage of the Measurement data

A quality number shall be calculated for each event and attached to the event record.

If the science data memory is not full the new event record shall be stored in the next
free place.

If the science data memory is full the event record or records with the lowest quality
number is searched and if the quality number of the new event is higher or equal,
the lowest quality event record - or if there are several events with that lowest qual-
ity, the oldest of them - shall be replaced with the new event record.

2.1.6 Health Monitoring

The state of DEBIE shall be continuously monitored. The status of secondary sup-
ply voltages shall be monitored at least once in 10 seconds by reading a binary HW
fault indicator. The SU temperatures shall be measured at least once in 60 seconds.
The secondary supply voltages shall be measured at least once in 180 seconds.

DEBIE DPU SW Design Document

/s IRSESID < IDEB-SSF-DD-001
@ DEBIE DPU SW DATE :31.8.1999

SPACE SYSTEMS PAGE :6

In case any one of the supply voltage outputs to the Sensor Units is detected to be
short circuited, that output shall be switched off at once. If any one of the Sensor
Units is found to be overheated, all supply voltages to that Sensor Unit shall be
switched off at once. In both cases the corresponding error status bit in the error reg-
ister shall be set.

DEBIE includes a watchdog timer to ensure proper software execution. The watch-
dog timer shall be reset regularly by the software.

A checksum from the RAM used as program memory shall be calculated regularly.

DEBIE shall not execute any piece of code whose checksum is older than 60 sec-
onds. To ensure compliance to this requirement all memory containing executable
code shall be checked at least once in less than 60 seconds.

When the checksum does not match, a checksum failure counter shall be increment-
ed and a soft reset function preserving the error status and failure counters shall be
executed.

2.1.7 SU Self Test and Calibration

It shall be possible by specific telecommands to run a self test/calibration for each
Sensor Unit independently.

The self test shall include the checking and the measurement of secondary supply
voltage ouputs for the Sensor Unit being self tested.

The self test shall include a calibration sequence where a calibration pulse is gener-
ated to each detector chain one by one. The measured data will be used on ground
to calibrate each peak detector and pulse edge detector output.

2.1.8 Reception and Execution of Telecommands

Validity of any new telecommand received shall be checked. If a false command or
parity error is detected the false command along with its address and parity shall be
latched to the Command Status Register, the Error Status bit in the Error Status Reg-
ister shall be set and the command shall not be executed. An accepted command
shall be latched to the Command Status Register with the Error Status bit cleared
and the Time Tag for the received command shall be latched to the Command Time
Tag Register.

False telecommands are commands with false telecommand address and/or false
telecommand code. The valid telecommand addresses are described in the TC/TM
Interface Control Document [AD2].

The following types of telecommands exist:

. Functional mode switching commands
. Power control commands

. SU Self Test command

. Soft reset command

DEBIE DPU SW Design Document

/s IRSESID < IDEB-SSF-DD-001
@ DEBIE DPU SW DATE :31.8.1999

SPACE SYSTEMS PAGE :7

. Memory handling commands

. Clock handling commands

. Trigger thresholds setting commands

. Classification levels setting commands
. Time window definition commands

. Telemetry request commands

. Error reset command

Telecommands separated by more than 10 ms shall be accepted, others shall be re-
jected. Some telecommand sequences (eg. Set Time) and some multi-word telecom-
mands (eg. Write Memory) have additional timing requirements.

The response to a telecommand shall be available at most 1 ms after telecommand
reception, except during Science or Memory Dump telemetry, when all telecom-
mands shall be rejected.

2.1.9 Telemetry

The following types of telemetry shall be sent to the spacecraft when requested:

. Science Telemetry (requested by Send Science Data File TC)
. TM Register Telemetry (requested by Send Status Register TC)
. Memory Dump (requested by Read Memory TC)

During Science or Memory Dump telemetry transmission no telecommands shall be
executed. During TM Register Telemetry, reception of a telecommand shall end the
telemetry; the telecommand shall be handled and executed as usual.

2.2 Critical Areas

The following are critical areas in the DEBIE software:

. refreshing watchdog

. timing of measurement data acquisition

. timing of telecommand reception

. timing of telemetry data stream

. interference between Health Monitoring and Acquisitions

. interference between program Memory Write telecommands and checksums

These aspects of the software and possible problems related to them are described
in more detail in following subsections.

DEBIE DPU SW Design Document

SPACE SYSTEMS PAGE

/s IRSESID < IDEB-SSF-DD-001
@ DEBIE DPU SW DATE 531.8.1999

2.2.1 Watchdog

There should not be any problems in refreshing the watchdog itself, but there must
be enough margin to the deadline of the watchdog refreshing that any non-fatal
overruns cannot block the software so much that the deadline is missed.

2.2.2 Timing of Measurement Data Acquisition

The peak detector output must be read at least 100 u80@epending on the chan-
nel) and at most 2 ms after the trigger signal.

DEBIE must be able to detect and measure patrticle hits coming once in a second.
This means that measurement data shall be read and processed in less than a second
from the trigger signal.

2.2.3 Timing of the Telecommand Reception

The Command Status Register and Error Status Register shall be updated at most 1
ms after the reception of a telecommand.

DEBIE must be able to accept telecommands separated by more than 10 ms, unless
the first telecommand is Science or Memory DumpTM request, when the next tel-
ecommand shall be accepted only after the requested telemetry data is transmitted.

This means that all telecommands, except TM requests, shall be executed in less
than 10 ms.

2.2.4 Timing of the Telemetry Data Stream

DEBIE must allow chaining TM accesses with 1 ms interval, one access triggering
the read action for the next. This means that the software must be able to write the
next word of the requested telemetry in less than 1 ms after the previous one is trans-
mitted to the spacecratft.

2.2.5 Interference Between Health Monitoring and Acquisitions

When a particle hit occurs during Health Monitoring measurements, the Hit Trigger
task pre-empts the Health Monitoring task and measures the Peak Detector outputs
using the same ADC as the Health Monitoring. This disturbs the Health Monitoring
measurements, making its ADC results invalid. A global “hit occurred” flag detects
this situation, and the Health Monitoring measurement has to be repeated.

If the particle hits come too often, the Health Monitoring measurements cannot be
peformed. Therefore the DEBIE DPU Software has to set a limit on the number of
hit triggers that will be handled during one Health Monitoring cycle. This limit is
currently 20 hits per Health Monitoring period, which is 10s.

DEBIE DPU SW Design Document

IRSESID < IDEB-SSF-DD-001
@ DEBIE DPU SW DATE :31.8.1999

SPACE SYSTEMS PAGE :9

2.2.6 Interference Between Memory Write and Checksums

The memory write telecommands sent during checksum calculations must not cause
a false checksum error. A false checksum error could be signalled if a checksum of
modified code is compared against the old reference value, or if the new reference
value is compared against a checksum of the unmodified code. Either could result
from an interleaving of the checksumming and memory update functions.

The simplest way to prevent the false checksum errors is to ignore the possible dif-
ferences between calculated checksum and reference value at the first check follow-
ing the code update and update the reference checksum value during memory patch
telecommand execution.

2.2.7 Summary of Possible Problems

Although there seem to be no very complex actions, some of the requirements may
lead to considerable performance problems.

The 2 ms limit for reading the peak detector output together with the 1 ms limit for
the response for a telecommand reception or telemetry word reading may prove to
be too hard a requirement for the 80C32 processor. Much of the related actions can
be forced into the interrupt services, since task switches may take too long time.
However the execution time of interrupt services themselves should not be too long
as it increases the response time of the software to other interrupts.

2.3 Open Issues

There are no major open issues at present.

DEBIE DPU SW Design Document

/s IRSESID < IDEB-SSF-DD-001
@ DEBIE DPU SW DATE :31.8.1999

SPACE SYSTEMS PAGE :10

3. DEBIE Architecture Overview

The DEBIE software will include two main parts:

. DEBIE Application Software (DAS)
. DEBIE Hardware Interface (DHI)

A subset of the Application Software, intended for testing the DEBIE prototype, is
called the Prototype Software.

The connections between these parts and EGSE and the hardware are described in
the Software Development Plan [RD1].

3.1 DEBIE Application Software

This part of the software is responsible for the main part of the activities. It will im-
plement all DEBIE functions: acquisition function, health monitoring function and
telemetry/telecommand function. It uses services of the DEBIE Hardware Interface
to achieve this.

There will be three tasks in the DEBIE Application Software (DAS):

. Acquisition task
. Health Monitoring task
. Telecommand Execution task

The Telecommand Execution task shall be active in every mode in which the DE-
BIE is active. This means all other modes than the Off mode.

The Health Monitoring task shall be the first task activated after starting the DEBIE
software. It shall first execute the necessary software initialization and execute DPU
Self Test function and after that transition to Standby mode. In the Standby and Ac-
quisition modes it will execute the Health Monitoring functions.

The Acquisition task shall be active only in the Acquisition mode - or to be more
precise, it will process and store Event Data only in the Acquisition mode, except
when the Self Test sequence is performed to some Sensor Unit.

The following figure shows the tasks, the triggering interrupts and their Interrupt
Service Routines (ISRs).

DEBIE DPU SW Design Document

%ESID < ?EB-SSF-DD-OOl
@ DEBIE DPU SW DATE :31.8.1999

SPACE SYSTEMS PAGE :11

Figure 1: DEBIE Application Software Tasks

Particle Hit IT TCIT T™IT Timer IT
Particle Hit ISR TCISR TMISR Timer ISR
Acquisition trigger TM/TC triggers
Monitoring trigger
Y
isi - TC Execution Task & Health Monitoring
Acquisition Task | gy state indicators Init Task
(Mode switches, (Initialization)
A A \ Self Test) / \ /
Science Data Memory House Keeping Memory
Init (Initialization)

3.1.1 Acquisition Task

This task is responsible for the acquisition functions of the DEBIE software. It will
be triggered by the Particle Hit interrupt service.

There will be the following main activities for this ISR and task:

. reading of peak detector output and rise time
. reading of delays between trigger signals

. classification of the measurement data

. storing the measurement data

The rise time and peak detector output are read by using the services of the DEBIE
Hardware Interface.

The algorithms for the classification of the measurement data are defined in the
[AD1].

The measurement data are stored in the memory as described in the section 2.1.5 on
page 5.

DEBIE DPU SW Design Document

/s IRSESID < IDEB-SSF-DD-001
@ DEBIE DPU SW DATE :31.8.1999
PAGE :12

After the measurement activities are done the task will be set in the waiting state
until the next Particle Hit awakens it again.

3.1.2 Health Monitoring Task

This task is responsible for initialization of the DEBIE and the Health Monitoring
Functions described in the section 2.1.6 on page 5.

This task contain initialization code, run only once after power up or soft reset, and
a monitoring loop run periodically as long as the DEBIE is active.

The initialization code shall execute the following actions:

. Initialize necessary global variables depending on hard or soft reset
. Initialize other tasks
. Initialize interrupt service routines

. Call DPU Self Test function

The Health Monitoring loop shall be triggered by an interrupt service of one of the
processor’s internal timers and executes the following actions:

. Refresh the watchdog
. Measure Sensor Unit temperatures and secondary supply voltages

. Check for interference from the acquisition function, repeat measurements
when needed

. Switch off short circuited voltages or voltages to overheated Sensor Units
. Store housekeeping data in the memory

. Calculate checksum from the memory holding executable code.

. SU self test execution, when corresponding TC is received.

In the Prototype Software only Sensor Unit temperatures are measured.

After these actions the Health Monitoring task shall wait until the timer awakens it.
If there are no other task running, the RTX will put processor in idle state until some
interrupt occurs.

3.1.3 Telecommand Execution Task

This task is responsible for reception and execution of the telecommands and partly
for transmission of telemetry. After a telecommand is received its validity is
checked. The software shall check at least the address and code of the telecommand.
This is done in the TC interrupt service.

When a valid telecommand is received and response given to the spacecratft, the cor-
responding action is done in less than 10 ms unless the received telecommand is a
telemetry request. Possible types of telecommands are listed in section 2.1.8 on
page 6.

DEBIE DPU SW Design Document

/s IRSESID < IDEB-SSF-DD-001
@ DEBIE DPU SW DATE :31.8.1999

SPACE SYSTEMS PAGE :13

When a telemetry request is received, the Telecommand Interrupt Service changes
the state of this task to the telemetry transmission state where TM interrupts are in-
terpreted as requests to send the next word of telemetry. This state lasts until all re-
guested telemetry is sent to the spacecraft or the telemetry session started with Send
Status Register TC is stopped with a new telecommand. The state of the task is
changed back to the telecommand handling state by Telecommand or Telemetry In-
terrupt service.

After the received telecommand is rejected or executed (including transmission of
one word of requested telemetry for TM request telecommands) this task is set to
the waiting state until the next TM (after last telemetry word) or TC interrupt awak-
ens it.

3.1.4 Interrupt Services

The DAS will implement the following interrupt services:

. Particle Hit interrupt service
. TM interrupt service
. TC interrupt service

These interrupt services shall trigger the corresponding tasks (see above sections)
by sending messages to designated mailboxes. Mailboxes carry information from
the interrupt service to the corresponding task, for example the TC word from the
TC interrupt service to the TM/TC task.

3.1.5 Shared Memory

Because of limitations of the kernel messaging services and the processor and mem-
ory resources, shared memory must be used to communicate some data between
tasks.

At least the science data memory holding measurement data and housekeeping data
memory need to be in shared memory. The science data must be visible to the Ac-
quisition task and to the TM/TC task. The housekeeping data must be visible to the
Health Monitoring task, Acquisition task and to the TM/TC task.

Accesses to the shared memory areas shall be protected. Mutual exclusion can be
ensured by preventing task switches. Task switches must not be prevented for long-
er periods, because then all activity of the other tasks would be blocked.

A particular problem is posed by the Science Telemetry, during which the Science
File in memory must be frozen to preserve the integrity of the checksums and event
counters. If a particle hit occurs during Science Telemetry, the new data must be
buffered and not placed in the Science File until the telemetry is done.

DEBIE DPU SW Design Document

IRSESID < IDEB-SSF-DD-001
@ DEBIE DPU SW DATE :31.8.1999
PAGE :14

3.2 DEBIE Hardware Interface

This part of the software is reponsible for providing hardware interface services list-
ed in the section 2.1.1 on page 3. It shall also provide an interface to the Keil RTX
51 Real Time Kernel including at least the following services:

. Create task

. Send message to mailbox

. Read message from mailbox
. Attach interrupt

. Wait for interrupt

. Wait for time period

There shall be no tasks in this software entity, but only re-entrant service routines
called by operations in either the DEBIE Application Software or DEBIE Test Soft-
ware.

The following figure illustrates the role of the DEBIE Hardware Interface.

Figure 2: Role of DEBIE Hardware Interface

DAS —— DHI RTX 51 Kernel

80C32 Processor

¢

DEBIE Hardware

DEBIE DPU SW Design Document

/s IRSESID < IDEB-SSF-DD-001
@ DEBIE DPU SW DATE :31.8.1999

SPACE SYSTEMS PAGE :15

4. General System Design

This chapter describes general design principles used for development of DEBIE
DPU SW in Keil PK51 environment.

4.1 The 80C32 Processor

In this section, we briefly describe the main features of the DEBIE DPU processor,
the 80C32, to give some background information for the design choices.

4.1.1 Registers

The 80C32 instruction set uses eight 8-bit general registers, one 8-bit Accumulator
register, an 8-bit Stack Pointer register, a 16-bit Data Pointer register, a 16-bit Pro-
gram Counter register, and a Program Status Word containing various condition
flags etc.

The eight general registers are duplicated in fegjister banksA background task
and an interrupt service can use different banks to reduce the time needed to save
and restore registers. A field in the Program Status Word selects the current bank.

4.1.2 Memory

The memory space is divided into several regions as follows:

. code program memory (up to 64 K Bytes; cannot be written to)

. data directly accessible (128 bytes) internal data memory; the first 32 bytes
overlay the four general register banks

. idata: indirectly accessible (256 bytes) internal data memory; the first 128
bytes overlay the “data” area; contains the hardware stack pointed to by the
Stack Pointer register

. bdata bit-addressable (16 bytes) internal data memory; overlays a part of the
“‘data” area

. xdata external data memory (64 KBytes); accessed through the Data Pointer
register

. pdata paged external data memory (256 bytes); usually overlays the first 256
bytes of the “xdata” area.

The “data” area can be accessed with immediate (absolute) addressing instructions.
The “idata” area can be accessed only indirectly through any general register. The
“xdata” area can be accessed only indirectly through the Data Pointer register.

The addresses 128 .. 255, when used as immediate addresses, refer to Special Func-
tion Registers such as interrupt controls, memory-mapped I/O registers and the like.

DEBIE DPU SW Design Document

/s IRSESID < IDEB-SSF-DD-001
@ DEBIE DPU SW DATE :31.8.1999

SPACE SYSTEMS PAGE :16

4.1.3 Instructions

Only the Accumulator register is capable of all arithmetic operations. The instruc-
tion set contains mainly 8-bit instructions. All immediate operands are 8 bits except
for the branching and calling instructions (operand = code address) and the instruc-
tion that loads the Data Pointer (operand = xdata address).

The only instructions using 16-bit arithmetic are the Data Pointer increment instruc-
tion and the multiply operation, which yields a 16-bit product of two 8-bit numbers.

No floating point data types or operations are defined by the processor, but software
libraries exist for this.

4.1.4 Memory Models

The Keil C51 compiler supports the following memory models [RD4]:

. SMALL: all variables, by default, reside in the internal data memory (idata)
of the processor.

. COMPACT: all variables, by default, reside in one page (pdata) of external
RAM. This memory model can accommodate a maximum of 256 bytes of
variables.

. LARGE: all variables, by default, reside in external data memory (xdata).
With this memory model all of the external memory (up to 64 KBytes) can be
used to store variables, but memory access is inefficient and generates more
code than SMALL and COMPACT.

In spite of selected default memory model each variable can be explicitly assigned
to specific memory space with the corresponding keywords [RD4], eg. “idata” or
“xdata”.

RTX-51 requires that reentrant functions are compiled in the COMPACT memory
model and non-reentrant functions in SMALL or LARGE models. Because the
SMALL model is not sufficient for DEBIE, the non-reentrant functions have to be

compiled in the LARGE model.

If possible all local variables used by non-reentrant functions should be placed in
internal memory with “data” or “idata” keyword. Priority for data or idata place-
ment should be given to variables accessed frequently in performance-critical rou-
tines.

4.1.5 Interrupts

Six interrupts are available: External Interrupts 0 and 1; Timer O and Timer 1 Over-
flow Interrupts; Timer 2 Overflow-or-capture Interrupt, and the Serial Port Receive-
or-Transmit Interrupt. Each interrupt source can be individually enabled (un-
masked) or disabled (masked). There is also a common enable/disable control that
affects all interrupt sources.

DEBIE DPU SW Design Document

%ESID < ?EB-SSF-DD-OOl
@ DEBIE DPU SW DATE :31.8.1999

SPACE SYSTEMS PAGE :17

Interrupt service order is defined by interrupt priority level (high or low) and inter-
rupt priority within level (fixed ordering).

The interrupt priority level controls the nesting of interrupt services: a high-level in-
terrupt can interrupt the service of a low-level interrupt. The application program
can assign any interrupt source to the high level or the low level.

Interrupt priority within level decides which of several simultaneous interrupts on
the same level is serviced first; there is a fixed order of the six sources.

4.2 Use of RTX Kernel

A full version of the Keil RTX 51 real time kernel is used in the DEBIE DPU soft-
ware. This kernel takes care of task management and communication, protection of
shared resources and other responsibilities of a real time kernel relevant for the DE-
BIE software.

The following table lists the RTX functions which are to be used and their purpose.
See [RD3] for detailed description of the functions.

Table 2: Used RTX functions

Name Purpose

0s_start_system Initialize RTX-51 and start first task

0s_create_task Create new task and place it in list of
ready tasks

0s_enable_isr Enable an interrupt source

os_disable_isr Disable an interrupt source

oi_set_int_masks Set interrupt mask bits

oi_reset_int_masks| Reset interrupt mask bits

os_attach_interrupt| Attach interrupt to the current task.

0s_wait Wait for event
0s_send_message Send a message to a mailbox from a
task

isr_send_message Send a message to a mailbox from an
interrupt service

0s_set_slice Set the system time interval

DEBIE DPU SW Design Document

‘- |RsEsFu . IDEB-SSF-DD-001
@ DEBIE DPU SW DATE :318.1999
SPACE SYSTEMS PAGE : 18

4.3 Interrupt Management

TM and TC interrupts are handled by C-functions declared with “interrupt” key
word or if necessary by assembler routines. Below is an example declaration of a C-
function used for interrupt service (see [RD4] for details):

void ExamplelSR (void) interrupt 1 using 3
/* Handles interrupt number 1 (Timer 0 Overflow) */
/* Uses register bank 3 */

The interrupt service routines use a dedicated register bank, different from the banks
used by the tasks.

Interrupt service routines send messages to the tasks with the RTX function
“isr_send_message”.

The hit trigger interrupt service is handled by a RTX51 “fast task”. This task is at-
tached to the hit trigger interrupt with “os_attach_interrupt” function. The priority

of this task is 3 and it uses a dedicated register bank, different from the banks used
by other tasks and interrupt service routines. Messages to the Acquisition task are
sent with the RTX function “0os_send_message”.

The TM, TC and RTX timer interrupts are HW-connected (via programmable inter-
rupt vectors) ISRs and cannot be preempted. Because the hit trigger interrupt is
serviced by a “fast task” and not a HW-connected ISR, the TM, TC and RTX timer
interrupts can preempt the hit trigger interrupt service. Thus, the preemption hierar-
chy is the following:

. ordinary tasks can be preempted by
. the Hit trigger interrupt, which can be preempted by
. the TM, TC and RTX timer interrupts, which are mutually non-preempting.

4.4 Task Management

All “real” tasks in the DEBIE software are “standard” RTX tasks. RTX “fast tasks”
are used only for the hit trigger interrupt service (see [RD3] for definitions of stand-
ard and fast tasks). All RTX standard tasks use the register bank 0.

Tasks wait for messages to their mailboxes with RTX function “os_wait” and send
messages to other tasks with “os_send_message” if needed.

Accesses to shared resources are protected by disabling interrupts. When access to
a shared resource is needed the interrupts are disabled by clearing processor’s inter-
rupt master enable/disable bit and when a shared resource is not needed anymore,
that interrupt master bit is set (see [RD2]).

DEBIE DPU SW Design Document

/s IRSESID < IDEB-SSF-DD-001
@ DEBIE DPU SW DATE :31.8.1999

SPACE SYSTEMS PAGE :19

4 .5 Stack Sizes

4.5.1 Standard task stacks

All standard tasks share a common stack area in the internal RAM of the processor.
During task switches the contents of this area are copied to the task context area of
the previous task in external RAM and the new stack contents are copied from the

task context area of the next task from the external RAM [RD3].

The size of the standard task stack area can be configured in the RTX configuration.
The required stack size is the maximum stack size used by any standard task plus
stack space required by C51 interrupt service routines (see section 4.5.3).

Because of limited size of internal RAM available for stack areas normal functions
compiled with Keil C51 compiler do not use stack for storing parameters and local
variables. The stack is used only for storing return addresses. Therefore the required
size of a stack can be determined from the call tree. The call trees will be generated
using the Unix “cflow” tool.

4 5.2 Fast task stacks

The “fast tasks” have their own stack area. There is only one fast task in the DEBIE
DPU Software: the hit trigger interrupt service task. The size of this stack can also
be determined from the call tree (see above).

The size of the fast task stack can be configured in the RTX configuration.

4.5.3 Interrupt service stacks

The interrupt service routines (defined as C51 functions) use the stack of the inter-
rupted task. At least ACC, B, DPH, DPL and PSW registers are stored if they are
used in the service routines. Because only one C51 ISR can be running at a time, 7
bytes (5 for registers, 2 for return address) of additional space must be reserved for
task stacks. If some other registers are stored in stack, the space required for them
must be added also [RD3].

Space required from the longest call tree from any ISR must be added also. Only the
“isr_send_message” function should be called from any ISR.

4.5.4 Re-entrant Functions

Normal C51 functions must not be used simultaneously by several tasks or interrupt
functions. Any function that should be able to be called from several task simulta-

neously must be declared as “reentrant”. Below is an example of declaration of
reentrant function (see [RD4] for details):

void ExampleReentrant (void) reentrant

RTX-51 supports reentrant fuctions only in the COMPACT memory model (see
section 4.1.4). Each task contains a separate reentrant stack configurable in size.
Reentrant functions may be used in combination with non-reentrant functions of the
SMALL and LARGE models. Simultaneous use of reentrant and non-reentrant
functions in COMPACT model is not allowed [RD3].

DEBIE DPU SW Design Document

ISSUE : 1.4
DEBIE DPU SW DATE :31.8.1999

SPACE SYSTEMS PAGE : 20

;_ REF _: DEB-SSF-DD-001

To minimize, or eliminate if possible, the required reentrant stack all parameters
should be passed in processor registers and no local variables should be used in
reentrant functions if possible.

Because the amount of parameters that can be passed in registers is quite limited, a
pointer to a structure holding the parameters should be passed when many parame-
ter values have to be passed to a reentrant function.

The need for local variables in reentrant functions can be avoided if the calling non-
reentrant function reserves a work-area for the reentrant function and passes a point-
er to it as a parameter. The declaration of a reentrant function in DEBIE software
could look like following:

#define WORK_REENTRANT_SERVICE 10

void ReentrantService (
struct ServiceParams_t *Params,
int WorkAreaWORK_REENTRANT_SERVICE]
) reentrant

4.6 Portability of DEBIE Application Software

In order to maintain portability of the DEBIE Application Software the RTX func-
tions must not be called directly from the DAS and the keywords of the language
extensions of the Keil C51 compiler must not be written directly in the source code
of DAS.

The RTX functions are called via the DEBIE Hardware Interface, which contains

also the interface to the RTX, except in the C51 interrupt service routines the RTX
functions are called via specific macros defined depending on the target enviro-
ment.

The keywords specific to the Keil compiler are used via macros that are defined de-
pending on the target environment. For the version suitable for native workstation
environment these macros can be empty.

For example a task function declared with these macros could look like following:
#define TASK_DEFINITION _task_ 0 _priority_ 1

void TaskMain (void) TASK_DEFINITION
{

}

/* some code here */

Note that the definitions of the macros should be in different files that can be select-
ed depending on the environment.

See coding standard in [RD5] for actual rules to define these macros.

DEBIE DPU SW Design Document

REF : DEB-SSF-DD-001

o0 ISSUE : 1.4
@ DEBIE DPU SW DATE : 31.8.1999
PAGE :21

5. Dynamic Architecture

In the following figures the interrupt services and tasks of the DEBIE Application
Software are described in outline.

5.1 TC Interrupt Service

In the Keil PK51 environment the interrupt service is implemented as a C51 inter-
rupt service routine (see chapter 4 for details).

The validity of the received telecommand is checked. The parity bit, telecommand
address and telecommand code are checked. When an error is detected, The re-
sponse is stored in the TM registers. In the Keil environment this is done by writing
values to registers in the DEBIE TM hardware via specific macros.

The TC interrupt service sends the received telecommand to the Telecommand Ex-
ecution Task. In the Keil environment the “isr_send_message” function is called via
a specific macro.

DEBIE DPU SW Design Document

REF : DEB-SSF-DD-001

o0 ISSUE : 1.4
@ DEBIE DPU SW DATE : 31.8.1999
PAGE :22

Figure 3: TC interrupt service

TCIT

* Send Memory Word
(from the TC word)

« Calculate parity

Execution task mail-
box

'

« If TC recording is enabled
and TC is not Send Status

Register, update “Commang TC trigger
Status Register" and_“Com- with Memory
mand Time Tag Register” Writ q
« If TC state is Register TM, rie wor
set TC state to TC Handling
TC trigger
v » Send TC to the Teler with valid TC
TC es command Executio I
Ok task mailbox
TCTM
Mailbox
No
 Write the first two bytes from
the telemetry data
Yes | ¢ Set“telemetry_pointer”to the
third byte of the telemetry
data
* Set “telemetry_end_pointer”
| to the end of the telemetry
data
. ggtng r'%?éi%jnse i No » Set TC state to either Register
TC state is TC Han- . EM g{ STCMT'Mt i
dling + Send TC response, if napie tivinterrup
* Disable TC record- TC state is TC Han-
ing dling

to the Telecommand—-

y
End of ISR

DEBIE DPU SW Design Document

/s IRSESID < IDEB-SSF-DD-001
@ DEBIE DPU SW DATE :31.8.1999

SPACE SYSTEMS PAGE : 23

5.2 TM Interrupt Service

The TM interrupt service is implemented in the same way as the TC interrupt serv-
ice. However, the TM interrupt is enabled only during the transmission of TM reg-
ister telemetry, Science telemetry, or Memory Dump telemetry; it is disabled for the
transmission of the TM response to normal TCs.

When the TM interrupt occurs (and is enabled), the next two bytes from the speci-
fied buffer are written to the TM hardware registers. This is handled in the same way
as the response to the TC interrupts in the TC interrupt service.

If the requested telemetry was Science Telemetry or the contents of a memory block
and the last bytes of that telemetry were sent, a “TM_Ready” message is sent to the
Telecommand Execution Task in the way described above in the section 5.1.

DEBIE DPU SW Design Document

REF : DEB-SSF-DD-001

o0 ISSUE : 1.4
@ DEBIE DPU SW DATE : 31.8.1999
PAGE :24

Figure 4: TM interrupt service

T™MIT

 Clear TM interrupt flag

 Write next two bytes start-
ing from

Yes “telemetry_pointer”

— * Increment

“telemetry_pointer” by two

“telemetry_pointer”
<

“telemetry_end_pointer”

* Write first two TM Status
registers to TM registers

* Move “telemetry_pointer”to
the third byte of the TM Sta
tus register set

TC State =
RegisterTM

TM ready
» Send “TM_Ready” trigger
mail to the Telecom- >
mand Execution Task
TCTM
l Mailbox
End of ISR

5.3 Telecommand Execution Task

In the Keil environment this task is defined in the way described in the section 4.4
and with the RTX function “os_create_task”, which is called via a specific function
in the DEBIE Hardware Interface.

The Telecommand Execution task loop is described in the figure 5.

DEBIE DPU SW Design Document

/s IRSESID < IDEB-SSF-DD-001
@ DEBIE DPU SW DATE :31.8.1999

SPACE SYSTEMS PAGE : 25

The execution of Telecommand Execution task operations starts when some mail
comes from either the TC Interrupt or TM Interrupt handler. The next actions de-
pend on the source of the received mail as follows.

If the mail is caused by a TC Interrupt, the TC State defines whether a new Tele-
command is to be executed, a new TC word belongs to the memory patch sequence,
the LSB of Read or Write Memory block is to be received, or sending of TM Reg-
ister is to be stopped. For clarity and lack of space these actions are not described in
detail in the figure 5.

If the mail is caused by a TM Interrupt (“TM_Ready” message), the TC State is set
to TC_Handling, the TM interrupt is disabled. If the TC state was Science TM, the
Science Data File is made empty, the Event Counters are cleared, and any buffered
events received during the Science TM are entered in the Science Data File.

Table 3 describes the meaning of each TC state and figure 6 describes the transitions
between TC states.

All telecommands except telemetry requests must be executed in less than 10 ms.
The immedate response to the telecommands are sent by the TC interrupt handler in
less than 1 ms.

DEBIE DPU SW Design Document

REF : DEB-SSF-DD-001

ISSUE : 1.4
DEBIE DPU SW DATE :31.8.1999
PAGE : 26

Figure 5: Telecommand and Telemetry task loop

TC Interrupt
handler

TC trigger\
with valid TC

« Disable TM interrupt
* Reset Science Data
File, if TC state is

SC T™M
e Set TC State to
TC_Handling

TM Ready

Mail Type ?

TM Interrupt
handler

/ M ready trigger

TCTM
Mailbox

TCTM Task Loop

* Handle telecommand
according to TC state.
See descriptions of TG
states and state transi-
tions.

Telecommand

Table 3: Descriptions of the TC states

TC State Description

TC Handling In this state most of the telecommands are executed. This is the
default TC state.

Science TM In this state the Science Data File is sent to the telemetry.

Register TM In this state the TM status registers are sent to the telemetry.

Memory Dump

In this state 32 bytes of data memory are sent to the telemetry.

Memory Patch

In this state 32 bytes of data or code memory are patched, and

last TC word of the “Program Memory Patch Command Sequencé
performed (action is “continue normally” for the Write Data Memo
sequence).

then

for the Write Program Memory sequence, the action defined by the

h'? iS
[y

Read Memory &
Write Memory

These are auxiliary states for Memory Dump and Memory Patch
where the MSB of the memory block concerned is defined and tf
LSB is expected to be defined by the next telecommand.

ne

DEBIE DPU SW Design Document

%ESID < IDEB-SSF-DD-001
@ DEBIE DPU SW DATE :31.8.1999
PAGE :27

Figure 6: TC State Transitions

/>TC IT
Memory Patch

Write Memory LSB TC

Write Memory

Memory Block Patched

Write Memory MSB TC

Send Science Data File TC

TC Handling

Other than Write Memory LSB TC

Send Status Register TC

Register TM

Science Data sent

/—\
_/

|

T™IT

Any TC
T™MIT

Other than Read Memory LSB TC

Read Memory

Read Memory LSB TC

(/Memory Dump

T™MIT

Read Memory MSB TC!

Memory Block Dumped

5.4 Health Monitoring Task

This is the first task to be started. This is done in the Keil environment with the
“os_start_system” function, which is called via a specific function in the DEBIE
Hardware Interface.

The Health Monitoring task is described in the figures 7 and 8. Note that the figures
apply to the final software and in the Prototype Software only Sensor Unit temper-
atures are measured.

Initialization is done before entering the task loop. InitSystem() function creates
necessary RTX tasks and sets the system clock interval. Also the Self Test sequence
is executed before the loop.

DEBIE DPU SW Design Document

/s IRSESID < IDEB-SSF-DD-001
@ DEBIE DPU SW DATE :31.8.1999

SPACE SYSTEMS PAGE : 28

In the loop the DPU time in the Housekeeping Telemetry buffers (TM registers) is
advanced and the Monitor() function is called. After that the task waits for a time-
out. In the Keil environment the time-out is implemented with the RTX-51 time in-
terval event. When the time interval elapses the loop is continued from the begin-
ning.

The secondary power supply voltages are measured once in 180 seconds and the
sensor unit temperatures are measured once in 60 seconds. If a particle hit occurs
during health monitoring measurements the measurement is repeated. The amount
of repetitions is limited depending on the measurement to prevent the program from
getting stuck in aloop. Once a valid result is obtained, it is stored in the Housekeep-
ing Telemetry buffer (TM registers). If a valid result is not obtained for a tempera-
ture measurement, the corresponding sensor unit is switched off.

Low (+/- 5V) and high (+/- 50V) supply voltages are monitored against short
circuiting once in 10 seconds. If a low voltage output is suffering from a short cir-
cuit, all sensor units are switched off. If a high voltage output is suffering from a
short circuit, only the corresponding sensor unit is switched off. If a temperature
measurement indicates that a Sensor Unit is overheated, all power supply lines to it
are switched off.

Checksum from the next part of the code memory is calculated. The size of the part
of memory whose checksum is to be calculated in one cycle of the task execution is
set so that the checking of the whole of the code memory takes 60 seconds. If an
anomaly is detected in the code memory soft reset is performed i.e the program code
is copied from PROM to RAM but the Failure Status and counters are preserved,

and DPU Self Test mode is entered.

If an anomaly is enountered during the health monitoring, the Error, Mode and SU
status registers, related to a given case, are updated in the Housekeeping Telemetry
buffers (see [AD2] and [RD6] for details).

The task is triggered every second, and internal counters indicate the 10, 60 and 180
second periods; this counter manipulation is omitted from the figure for clarity.

5.4.1 SU Self Test

SU Self test execution [AD3] is a part of health monitoring cycle. The SU self test
action is initiated with specific TC. SU self test start up duration depends on health
monitoring cycle phase, and takes no more than 10 seconds after received TC to
start. SU self test takes two health monitoring cycles, i.e. 2 seconds.

In the first cycle, the SU self test action reads V_DOWN and HV status registers,
measures +/-5V and +/-50V power supplies and measures temperature 1 and 2 val-
ues. If V_DOWN is active, the sensor unit is switched off and corresponding SU
error is set into the error register and the LV supply error bit is set in status register
of the tested SU. SU self test is aborted . If the HV status register bit is active, the
corresponding SU error is set into the error status register and the HV supply error
bitis setin the SU status register. In power supply measuring if any of the measured
voltages is out of limit, the corresponding supply error bit is set. Temperature values
are compared against high limit values. If the temperature exceeds the limit the SU
is switched off and the corresponding temperature error bit is set. The SU self test
is aborted.

DEBIE DPU SW Design Document

: DEB-SSF-DD-001

REF
ISSUE : 1.4
@ DEBIE DPU SW DATE : 31.8.1999
PAGE : 29

In the second cycle all the sensor channels, plasma le/2e/li and piezo 1/2, are test-
ed. Channels are tested one at the time. The threshold levels for the channels not un-
der the test are set to maximum value, and the test threshold level is set for the
channel to be tested. The test pulse trigger interrupt is caused by changing the DAC
channel register value from 0 level to test pulse level and back to 0 level. The test
pulse level is channel specific. For the plasma 2e channel this test pulse trigger in-
terrupt is done explicitly by setting the processor’s interrupt pending bit, because
this channel is not able to generate a hit trigger interrupt.

DEBIE DPU SW Design Document

@ DEBIE DPU SW

REF : DEB-SSF-DD-001

ISSUE : 1.4
DATE :31.8.1999
PAGE :30

Figure 7: Health Monitoring task

RTX Timer
» Enter Standby mode
ISR
Health Monitoring Task Loop RTX Timeout
Event
e A
| + Update time in HK_TM ‘Wait
I - Timeout
| 1
I
I
| « Calculate checksum from
I next part of the memory
I
I
| » Store results from each of-a—
| the measurements in
| HK_TM
I « Reset WatchDog
I
! 7
I « SU Self Test voltage/tem)
| perature 0,1,2,3 (high) and 4(low)
| 6 * Monitor high and low
voltage currents
| |][~ SU Self Test channel tesj *
I
I 5 (voltage), 9 (temperature) « If monitoring reveals
| * Measure temperatures and anomalies, Switch off
R X —

| supply voltages faulty power lines and Sen-
| sor Units.

Boot

* Enter DPU Self Test mode
and execute Self Test se-
guence |

Y

e Update DPU time in HK_TM

« Initialize tasks and RTX sys-
tem clock interval

DEBIE DPU SW Design Document

IFEQ’ESID < ?EB-SSF-DD-OOl
@ DEBIE DPU SW DATE :31.8.1999

SPACE SYSTEMS PAGE :31

Figure 8: Health monitoring function hierarchy
| * HealthMonitoringTask() |

[+ DPU_SelfTes() |

—» * UpDateTime() |

—»| * INitSystem() |

— * Monitor() |

——p| * SelfTest_SU |
——p-| * SelfTestChannel |
——» * HighVoltageCurrent() |

—— | * LowVoltageCurrent() | |

—— | * MeasureTemperature() |

——»| * MeasureVoltage() |

- »-[+ DAC_SelfTesK) ;

——»| * CalculateChecksum() |

—— * Read_AD_Channel()

« UpDatePeriod-
Counter()

* VoltageFailure() |l————

» TemperatureFailure() |-

p-[+ SetSensorUnitOf() |-

p| * Convert_AD() |

p * Reboot() |

DEBIE DPU SW Design Document

IRSESFU . ?EB-SSF-DD-OOl
@ DEBIE DPU SW DATE :31.8.1999
SPACE SYSTEMS PAGE 32
FINLAND
Figure 9: Health Monitoring timeline
Power-Up Timing
RTX Health
Power up DPU Self tes initialized Monitoring
0ms 100 ms 550 ms
| | |
time
HW register
accessing
prohibited
Monitoring Loops Timing
temperature
measurement
complete
Health current memory voltage
Monitoring measuremerntichecksum measurement
complete | complete complete
Os 10s 60s 180 s
| | | | | |
12.1s time
watchdog
timeout
Monitoring ADC Timing
measurement
results
- are monitored
measuremenmnt channel conversion readout after and stored into
begins selected started conversion telemetyy_data
Ous
|] | |
' | | time

800 us

24 us

5.5 Hit Trigger Interrupt Service

In the Keil environment this interrupt service is implemented by a RTX-51 fast task
(see chapter 4 for details).

DEBIE DPU SW Design Document

REF : DEB-SSF-DD-001

o0 ISSUE : 1.4
@ DEBIE DPU SW DATE : 31.8.1999
PAGE : 33

The five analog outputs of Peak Detectors from the triggering Sensor Unit are meas-
ured and stored in a temporary buffer. Then a message holding the number of the
triggering Sensor Unit is sent to the Acquisition Task. In the Keil enviroment the
“os_send_message” function is called via a specific function in the DEBIE Hard-
ware Interface.

Figure 10: Particle Hit interrupt service

Hit IT

« Disable further Hit trig- Yes

gers - Hit Budget

Full

| | * Set hit occurrence indicator

» Set ADC to unipolar mode and per
form dummy measurement cycle

 Determine the triggering Sensor
Unit

» Measure Peak Detector outputs

| from the triggering Sensor Unit

< Send mail containing the number of

the triggering Sensor Unit to the >
Acquisition task mailbox

Acquisition
Mailbox

™ End of ISR

5.6 Acquisition Task

The Acquisition task loop is described in the figure 11.

DEBIE DPU SW Design Document

/s IRSESID < IDEB-SSF-DD-001
@ DEBIE DPU SW DATE :31.8.1999

SPACE SYSTEMS PAGE : 34

When some mail comes to the Acquisition task mailbox, the Peak Detector outputs
sampled by the interrupt service are fetched. Then the Pulse Rise Time and the de-
lays between trigger signals are measured, the measurement time is read and the
Sensor Unit temperatures fetched from the Housekeeping Telemetry registers.

The time difference between the Plasmali and Plasmale trigger signals are calcu-
lated.

From the measurement data the class number of the event is determined by compar-
ing the amplitude of each measured sensor signal to classification threshold levels
and comparing the relative timing of the sensor signals to timing windows. This
class number and the number of the triggering Sensor Unit defines an index for the
event counter which is incremented.

If the event was triggered by Sensor Unit being self tested, a quality number is set
to its maximum value. Otherwise the quality number of the trigger event is calcu-
lated with the formula defined in [AD1].

When the Event data is gathered the Event record holding it is stored - or at least
attempted to be stored - in the Science Data File in the way described in section
2.15.

DEBIE DPU SW Design Document

IFEQ’ESID < ?EB-SSF-DD-OOl
@ DEBIE DPU SW DATE :31.8.1999

SPACE SYSTEMS PAGE : 35

Figure 11: Acquisition task loop

Particle Hit Interrupt
h p
Hit handler

Acquisition trigger

Mailbox

» GetPeak Detector Outputs sampled
by the interrupt service

v

* Read Pulse Rise Time

* Read delays between trigger sig-
nals

* Get measurement time

¢ Get Sensor Unit Temperatures
from Housekeeping Telemetry reg
isters |

Y

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
| « Calculate time difference betweer]
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Plasmali and Plasmale trigger sig-
nals
» Calculate class number
 Increment counter defined by the
Sensor Unit number and the clasq
number

'

 Calculate quality number

« If empty space exists, store meas}
urement data there

« If Science memory full find lowest
quality event

« If the lowest quality is less or equal
to new event quality, store meas-
urement data there

* Reset Peak Detectors and Delay
Counters

DEBIE DPU SW Design Document

/s IRSESID < IDEB-SSF-DD-001
@ DEBIE DPU SW DATE :31.8.1999

SPACE SYSTEMS PAGE : 36

6. Static Architecture

The following chapters are extracted from the HoodNICE database used for the ar-
chitectural design of the DEBIE DPU Software. There are two top level objects DE-
BIE Application Software (DAS) and DEBIE HW/SW Interface (DHI) and their
child objects, and one environmental object RTX_51 (real time kernel) described in
these chapters.

The descriptions are concentrated to the graphical descriptions of the objects and
the interfaces between them. Also the operations provided by each object are out-
lined by describing operation sets provided by different objects. Individual opera-
tions are not defined in the HoodNICE database in order to avoid need for additional
maintenance work during the detailed design phase. The HoodNICE is going to be
used only during the architectural design.

The static architecture described here presents the final software. The Prototype SW
is slightly different. For example the Science Data and the operations meant for han-
dling it (presented by operation set AcquisitionData) are moved to Telemetry object
in the Prototype Software, because the Classification object is a null object in the
Prototype Software.

DEBIE DPU SW Design Document

REF : DEB-SSF-DD-001

o0 ISSUE : 1.4
@ DEBIE DPU SW DATE : 31.8.1999
PAGE :37

6.1 Environment Object : RTX 51

6.1.1 Problem definition
6.1.2 Formalization of the solution

6.1.2.1 Object Description Skeleton

object RTX_51 is environment passive
description
implementation_constraints
provided_interface
none

end_objectRTX_51

6.1.2.2 Generated spec code

6.1.2.3 Generated body code

DEBIE DPU SW Design Document

@ DEBIE DPU SW

REF
ISSUE :
DATE
PAGE

: DEB-SSF-DD-001

1.4

1 31.8.1999
: 38

6.2 Object : DEBIE

6.2.1 Problem definition
6.2.2 Formalization of the strategy
6.2.2.1 Identification of objects

DAS

Kind ACTIVE
DHI

Kind PASSIVE

6.2.2.2 ldentification of operations

Operation Dictionary

HANDLE_TRIGGER_IT

Provided by DAS
HANDLE_TM_IT

Provided by DAS
HANDLE_TC_IT

Provided by DAS
MAIN_TASK

Provided by DAS

Operation Set Dictionary

DPU_Control

Provided by DHI
TmTcControl

Provided by DHI
TaskControl

Provided by DHI
InterruptControl

Provided by DHI
MessageControl

Provided by DHI
AD_Conversion

Provided by DHI
SU_Control

Provided by DHI

6.2.2.3 Grouping operations and objects

DAS

HANDLE_TC_IT
HANDLE_TM_IT
HANDLE_TRIGGER_IT
MAIN_TASK

DHI

AD_Conversion
InterruptControl
MessageControl
DPU_Control
SU_Control
TaskControl
TmTcControl

DEBIE DPU SW Design Document

@ DEBIE DPU SW

REF
ISSUE :
DATE
PAGE

: DEB-SSF-DD-001

1.4

1 31.8.1999
: 39

6.2.2.4 Graphical description

DEBIE
(A \ DAS
\
e — e

T] HANDLE_TM_IT
SER_BY_ITHITrgeenT —) HANDLE_TRIGGER_|

MAIN_TASK

(DHI

{ADﬁConversion}
{InterruptControl}
{MessageControl}
{DPU_Control}
{SU_Control}
{TaskControl}

{TmTcControl}

(

6.2.3 Formalization of the solution

6.2.3.1 Generated spec code

procedure DEBIE is
begin

null;
end;

E | RTX_51

DEBIE DPU SW Design Document

@ DEBIE DPU SW

REF
ISSUE
DATE
PAGE

: IDEB-SSF-DD-001
- 31.8.1999
140

6.3 Object : DAS

6.3.1 Problem definition
6.3.2 Formalization of the strategy
6.3.2.1 Identification of objects

Acquisitions

Kind ACTIVE
TmTclnterface

Kind ACTIVE
HealthMonitoring

Kind ACTIVE

6.3.2.2 Identification of operations

Operation Dictionary
HANDLE_TRIGGER_IT

Provided by Acquisitions
HANDLE_TM_IT

Provided by TmTclInterface
HANDLE_TC_IT

Provided by TmTclInterface
HealthMonitoringTask

Provided by HealthMonitoring
TelecommandExecutionTask

__ Provided by TmTclInterface
AcquisitionTask
Provided by Acquisitions

Operation Set Dictionary

TM_Data

Provided by TmTclInterface
ScienceData

Provided by TmTclInterface

6.3.2.3 Grouping operations and objects

Acquisitions
HANDLE_TRIGGER_IT
AcquisitionTask

TmTclnterface
HANDLE_TC_IT
HANDLE_TM_IT
TelecommandExecutionTask
TM_Data
ScienceData

HealthMonitoring
HealthMonitoringTask

DEBIE DPU SW Design Document

, REF :DEB-SSF-DD-001
ISSUE : 1.4
@ DEBIE DPUSW DATE : 3181999
PAGE :41
SPACE SYSTEMS
FINLAND
6.3.2.4 Graphical description
Al DAS
ASER_BY_IT TC_IT —[HANDLE TC IT f/.\ ‘ TmTcinterface
ASER_BY_ITTMIT = HANDLE:TM:IT m I-lANDLE_TC_IT
ASER_BY_IT HitTrigger!T —=-| HANDLE_TRIGGER_IT F/ﬁSERfBUTTMJT HANDLE TM_IT
MAIN_TASK TelecommandExecutionTask
{TM_Data}
{ScienceData}
N
(A ‘ HealthMonitoring
}—‘iealthMonitoringTask
N
fA ‘ Acquisitions
ASER_BY_IT HitTrigger! T I—lANDLE TRIGGER 1T
Acquisitio?\Task N

6.3.3 Formalization of the solution

6.3.3.1 Object Description Skeleton DAS

object DAS is active
description
implementation_constraints
provided_interface
operations
HANDLE_TC_IT ;
HANDLE_TM_IT ;
HANDLE_TRIGGER_IT ;
MAIN_TASK ;
object_control_structure

description
pragma generate_obcs_task

DEBIE DPU SW Design Document

PSESfJE : ?EB-SSF-DD-OOl
@ DEBIE DPU SW DATE :318.1999
SPACE SYSTEMS PAGE : 42

constrained_operations
HANDLE_TM_IT constrained_by aser_by_iffTM_IT;
HANDLE_TRIGGER_IT constrained_by aser_by_iHitTriggerIT;
HANDLE_TC_IT constrained_by aser_by iffC_IT;
required_interface
object DHI ;
operation_sets
TmTcControl ;
TaskControl ;
SU_Control;
DPU_Control ;
MessageControl;
InterruptControl ;
AD_Conversion;

internals
objects
Acquisitions
TmTclinterface ;
HealthMonitoring
operations
HANDLE_TC_IT implemented_byTmTclInterface. HANDLE_TC_IT;
HANDLE_TM_IT implemented_byTmTcInterface. HANDLE_TM_IT;
HANDLE_TRIGGER_IT implemented_byAcquisitions. HANDLE_TRIGGER_IT;
MAIN_TASK implemented_byHealthMonitoring.HealthMonitoringTask;
end_objectDAS

6.3.3.2 Generated spec code

6.3.3.3 Generated body code

DEBIE DPU SW Design Document

: DEB-SSF-DD-001

REF
o0 ISSUE : 1.4
@ DEBIE DPU SW DATE : 31.8.1999
PAGE : 43

6.4 Object : Acquisitions

6.4.1 Problem definition
6.4.2 Formalization of the strategy
6.4.2.1 Identification of objects

Measurements

Kind ACTIVE
Classification

Kind PASSIVE

6.4.2.2 Identification of operations

Operation Dictionary
HANDLE_TRIGGER_IT
Provided by Measurements
AcquisitionTask

Provided by Measurements) o
Operation Set Dictionary

ClassificationControl
Provided by Classification

6.4.2.3 Grouping operations and objects

Measurements

HANDLE_TRIGGER_IT
AcquisitionTask

Classification
ClassificationControl

DEBIE DPU SW Design Document

REF : DEB-SSF-DD-001

o0 ISSUE : 1.4
@ DEBIE DPU SW DATE : 31.8.1999
PAGE :44

6.4.2.4 Graphical description

A ‘ Acquisitions

ASER_BY_IT HitTriggerIT

2> HANDLE_TRIGGER_IT (A ‘ Measurements
[

AcquisitionTask
HANDLE_TRIGGER_IT
AcquisitionTask

(Classification

[
{ClassificationControl}

A |TmTclinterfa

6.4.3 Formalization of the solution

6.4.3.1 Object Description Skeleton Acquisitions

object Acquisitions is active
description
implementation_constraints
provided_interface
operations
HANDLE_TRIGGER_IT ;
AcquisitionTask ;
object_control_structure
description
pragma generate_obcs_task
constrained_operations
HANDLE_TRIGGER_IT constrained_by aser_by_iHitTriggerIT;
required_interface

DEBIE DPU SW Design Document

%ESID < ?EB-SSF-DD-OOl
@ DEBIE DPU SW DATE :31.8.1999
PAGE :45

object DHI ;
operation_sets
AD_Conversion;
MessageControl;
TaskControl ;
InterruptControl ;
SU_Control;
object TmTcInterface ;
operation_sets
ScienceDatg
TM_Data ;

internals

objects
Measurements ;
Classification

operations
HANDLE_TRIGGER_IT implemented_byMeasurements.HANDLE_TRIGGER_IT;
AcquisitionTaskimplemented_byMeasurements.AcquisitionTask;

end_objectAcquisitions

6.4.3.2 Generated spec code

6.4.3.3 Generated body code

DEBIE DPU SW Design Document

REF

@ DEBIEDPUSW bab
PAGE

: IDEB-SSF-DD-001
- 31.8.1999
146

6.5 Object : Measurements

6.5.1 Problem definition
6.5.2 Formalization of the solution

6.5.2.1 Object Description Skeleton Measurements

object Measurementss active
description
implementation_constraints
provided_interface
operations
HANDLE_TRIGGER_IT ;
AcquisitionTask ;
object_control_structure
description
pragma generate_obcs_task
required_interface
object Classification;
operation_sets
ClassificationControl ;
object DHI ;
operation_sets
AD_Conversion;
MessageControl;
SU_Control ;
TaskControl ;
InterruptControl ;
object TmTclnterface ;
operation_sets
TM_Data ;

internals

object_control_structure
description

operation_control_structures

operation HANDLE_TRIGGER_IT
description
end_operationHANDLE_TRIGGER_IT
operation AcquisitionTask
description
end_operationAcquisitionTask

end_objectMeasurements

6.5.2.2 Generated spec code

6.5.2.3 Generated body code

DEBIE DPU SW Design Document

REF : DEB-SSF-DD-001

o0 ISSUE : 1.4
@ DEBIE DPU SW DATE : 31.8.1999
PAGE : 47

6.6 Object : Classification

6.6.1 Problem definition
6.6.2 Formalization of the solution

6.6.2.1 Object Description Skeleton Classification

object Classificationis passive
description
implementation_constraints
provided_interface
operation_sets
ClassificationControl ;
required_interface
object TmTclInterface ;
operation_sets
ScienceDatg

internals

end_objectClassification

6.6.2.2 Generated spec code

6.6.2.3 Generated body code

DEBIE DPU SW Design Document

: DEB-SSF-DD-001

REF
o0 ISSUE : 1.4
@ DEBIE DPU SW DATE : 31.8.1999
PAGE : 48

6.7 Object : TmTclnterface

6.7.1 Problem definition
6.7.2 Formalization of the strategy
6.7.2.1 Identification of objects

TmTcHandler

Kind ACTIVE
Telemetry

Kind ACTIVE

6.7.2.2 Identification of operations

Operation Dictionary
HANDLE_TC_IT
Provided by TmTcHandler
HANDLE_TM_IT
Provided by Telemetry
TelecommandExecutionTask

Provided by TmTcHandler) o
Operation Set Dictionary
TM_Data

) Provided by Telemetry
ScienceData

Provided by Telemetry
6.7.2.3 Grouping operations and objects

TmTcHandler
HANDLE_TC_IT
TelecommandExecutionTask
Telemetry
HANDLE_TM_IT

TM_Data
ScienceData

DEBIE DPU SW Design Document

IRSESID < IDEB-SSF-DD-001
@ DEBIE DPU SW DATE :31.8.1999

SPACE SYSTEMS PAGE :49
FINLAND
6.7.2.4 Graphical description
A ‘ TmTclnterface
(A ‘ TmTcHandler
[
ASER_BY_ITTC_IT HANDLE TC_IT ASER_BY_IT TC_IT HANDLE TC_IT
ASER_BY_IT TM_IT .
- - 2> HANDLE_TM_IT I TelecommandExecutionTask
TelecommandExecutionTask
{TM_Data} -] DHI
{ScienceData} E
A Telemetry
[
ASER_BY_IT TM_IT HANDLE TM_IT
{TM_Data}
{ScienceData}

6.7.3 Formalization of the solution

6.7.3.1 Object Description Skeleton TmTclInterface

object TmTclnterfaceis active
description
implementation_constraints
provided_interface
operations
HANDLE_TC_IT ;
HANDLE_TM_IT ;
TelecommandExecutionTask ;
operation_sets
TM_Data ;
ScienceData ;
object_control_structure

DEBIE DPU SW Design Document

%ESID < ?EB-SSF-DD-OOl
@ DEBIE DPU SW DATE :31.8.1999

SPACE SYSTEMS PAGE : 50

description
pragma generate_obcs_task
constrained_operations
HANDLE_TM_IT constrained_by aser_by_iffTM_IT;
HANDLE_TC_IT constrained_by aser_by iffC_IT;
required_interface
object DHI ;
operation_sets
MessageControl;
SU_Control;
TmTcControl ;
DPU_Control ;
InterruptControl ;
TaskControl ;

internals

objects
TmTcHandler ;
Telemetry ;

operations
HANDLE_TC_IT implemented_byTmTcHandler.HANDLE_TC_IT;
HANDLE_TM_IT implemented_byTelemetry. HANDLE_TM_IT;
TelecommandExecutionTasknplemented_byTmTcHandler.TelecommandExecutionTask;

operation_sets
TM_Data implemented_byTelemetry.TM_Data;
ScienceDatamplemented_byTelemetry.ScienceData;

end_objectTmTclInterface

6.7.3.2 Generated spec code

6.7.3.3 Generated body code

DEBIE DPU SW Design Document

& ISSUE
DEBIE DPU SW DAL
PAGE

: IDEB-SSF-DD-001
- 31.8.1999
151

6.8 Object : TmTcHandler

6.8.1 Problem definition

6.8.2 Formalization of the solution

6.8.2.1 Object Description Skeleton TmTcHandler

object TmTcHandleris active
description
implementation_constraints
provided_interface
operations
HANDLE_TC_IT ;
TelecommandExecutionTask ;

object_control_structure
description
pragma generate_obcs_task
constrained_operations
HANDLE_TC_IT constrained_by aser_by iffC_IT;
required_interface
object Telemetry;
operation_sets
TM_Data ;
ScienceDatg
object DHI ;
operation_sets
TmTcControl ;
InterruptControl ;
MessageControl;
DPU_Control ;
SU_Control ;
TaskControl ;

internals

object_control_structure
description

operation_control_structures

operation HANDLE_TC _IT
description
end_operationHANDLE_TC_IT
operation TelecommandExecutionTask
description
end_operationTelecommandExecutionTask

end_objectTmTcHandler

6.8.2.2 Generated spec code

6.8.2.3 Generated body code

DEBIE DPU SW Design Document

%ESID < IDEB-SSF-DD-001
@ DEBIE DPU SW DATE :31.8.1999
PAGE :52

6.9 Object : Telemetry

6.9.1 Problem definition
6.9.2 Formalization of the solution

6.9.2.1 Object Description Skeleton Telemetry

object Telemetryis active
description
implementation_constraints
provided_interface
operations
HANDLE_TM_IT ;
operation_sets
TM_Data ;
ScienceData ;

object_control_structure
description
pragma generate_obcs_task
constrained_operations
HANDLE_TM_IT constrained_by aser_by_iffM_IT;
required_interface
object DHI ;
operation_sets
TmTcControl ;
MessageControl;

internals
object_control_structure
description
operation_control_structures
operation HANDLE_TM_IT
description
end_operationHANDLE_TM_IT

end_objectTelemetry

6.9.2.2 Generated spec code

6.9.2.3 Generated body code

DEBIE DPU SW Design Document

REF : DEB-SSF-DD-001

o0 ISSUE : 1.4
@ DEBIE DPU SW DATE : 31.8.1999
PAGE :53

6.10 Object : HealthMonitoring

6.10.1 Problem definition
6.10.2 Formalization of the solution

6.10.2.1 Object Description Skeleton HealthMonitoring

object HealthMonitoring is active
description
implementation_constraints
provided_interface
operations
HealthMonitoringTask ;

object_control_structure
description
pragma generate_obcs_task
required_interface
object DHI ;
operation_sets
AD_Conversion;
InterruptControl ;
DPU_Control ;
SU_Control ;
TaskControl ;
object TmTclInterface ;
operation_sets
TM_Data ;
ScienceDatg
operations
TelecommandExecutionTask
object Acquisitions;
operations
AcquisitionTask ;

internals
object_control_structure
description
operation_control_structures
operation HealthMonitoringTask
description
end_operationHealthMonitoringTask

end_objectHealthMonitoring

6.10.2.2 Generated spec code

6.10.2.3 Generated body code

DEBIE DPU SW Design Document

@ DEBIE DPU SW

REF
ISSUE
DATE
PAGE

: IDEB-SSF-DD-001
- 31.8.1999
: 54

6.11 Object : DHI

6.11.1 Problem definition
6.11.2 Formalization of the strategy

6.11.2.1 Identification of objects

HW_Interface

Kind PASSIVE
RTX_Interface
Kind PASSIVE

6.11.2.2 Identification of operations

Operation Set Dictionary

TmTcControl

Provided by HW_ Interface
SU_Control

Provided by HW _Interface
DPU_Control

Provided by HW_Interface
AD_Conversion

Provided by HW_ Interface
TaskControl

Provided by RTX_Interface
MessageControl

Provided by RTX_Interface
InterruptControl
Provided by RTX_Interface

6.11.2.3 Grouping operations and objects

HW_Interface
AD_Conversion
DPU_Control
SU_Control
TmTcControl

RTX_Interface
InterruptControl
MessageControl
TaskControl

DEBIE DPU SW Design Document

@ DEBIE DPU SW

REF
ISSUE :
DATE
PAGE

: DEB-SSF-DD-001

1.4

1 31.8.1999
: 55

6.11.2.4 Graphical description

DHI

{AD_Conversion}
{InterruptControl}
{MessageControl}
{DPU_Control}
{SU_Control}
{TaskControl}
{TmTcControl}

(HW_Interface
[
{AD_Conversion}

{DPU_Control}
{SU_Control}
— {TmTcControl}

C

RTX_Interface

{InterruptControl}
{M yeControl}
{TaskControl}

N

6.11.3 Formalization of the solution

6.11.3.1 Object Description Skeleton DHI

object DHI is passive
description
implementation_constraints
provided_interface
operation_sets
AD_Conversion ;
InterruptControl ;
MessageControl ;
DPU_Control ;
SU_Control ;
TaskControl ;
TmTcControl ;

E | RTX51

DEBIE DPU SW Design Document

REF : DEB-SSF-DD-001

o0 ISSUE : 1.4
@ DEBIE DPU SW DATE : 31.8.1999
PAGE : 56

required_interface
object RTX_51;

none

internals

objects
HW_Interface ;
RTX_Interface ;

operation_sets
AD_Conversionimplemented_byHW_Interface.AD_Conversion;
InterruptControlimplemented_byRTX_Interface.InterruptControl;
MessageControimplemented_byRTX_Interface.MessageControl;
DPU_Control implemented_byHW _Interface.DPU_Control;
SU_Control implemented_byHW _Interface.SU_Control;
TaskControlimplemented_byRTX_Interface.TaskControl;
TmTcControl implemented_byHW _Interface.TmTcControl;

end_objectDHI

6.11.3.2 Generated spec code

6.11.3.3 Generated body code

DEBIE DPU SW Design Document

REF

@ DEBIEDPU SW bBab !
PAGE

: DEB-SSF-DD-001

14
31.8.1999

. 57

6.12 Object : HW _Interface

6.12.1 Problem definition
6.12.2 Formalization of the solution

6.12.2.1 Object Description Skeleton HW_Interface

object HW_Interfaceis passive
description
implementation_constraints
provided_interface
operation_sets
AD_Conversion ;
DPU_Control ;
SU_Control ;
TmTcControl ;
required_interface
none

internals

end_objectHW_Interface

6.12.2.2 Generated spec code

6.12.2.3 Generated body code

DEBIE DPU SW Design Document

REF : DEB-SSF-DD-001

o0 ISSUE : 1.4
@ DEBIE DPU SW DATE : 31.8.1999
PAGE : 58

6.13 Object : RTX Interface

6.13.1 Problem definition
6.13.2 Formalization of the solution

6.13.2.1 Object Description Skeleton RTX_ Interface

object RTX_Interfaceis passive
description
implementation_constraints
provided_interface
operation_sets
InterruptControl ;
MessageControl ;
TaskControl ;
required_interface
object RTX_51;

none
internals

end_objectRTX_Interface

6.13.2.2 Generated spec code

6.13.2.3 Generated body code

DEBIE DPU SW Design Document

REF : DEB-SSF-DD-001

SPACE .
SYSTEMS DEBIEDPU SW pae . 5161069
FINLAND PAGE : 59

7 DAS Header Files

This chapter contains the header source files for the DEBIE Application Software
module.

These listings are taken from the reference directory of the PVCS archive of
DAS. The PVCS tool is used as a configuration management tool.

REF : DEB-SSF-DD-001

SPACE ISSUE: 14
SYSTEMS DEBIEDPUSW Sae 3181999
FINLAND PAGE : 60
7.1 class.h

/*

I* -

I* Copyright (C) 1998 : Space Systems Finland Ltd. -

I* -

/*

/*

I* System Name: DEBIE DPU SW

/*

I* $Workfile: class.h $

I* $Author: paloheim $

I* $Date: Fri Jun 04 14:47:38 1999 $

I* $Revision: 1.6 $

* $Log: /home/share/fileserver/projects/debie/design/code/DAS/PVCS/

class.hp $

*

* Rev 1.6 Fri Jun 04 14:47:38 1999 paloheim
* SMR_214: Code memory patch execution command check
* SNCR_186:

* Rev 1.5 Thu Apr 08 22:49:24 1999 holsti
* SMR_184: Correct Init_SU_Settings and simplify Boot
* SNCR_203:

* Rev 1.4 Thu Apr 08 18:42:38 1999 paloheim
* SMR_183: Initialised classification parameters after power-up
* SNCR_201:

* Rev 1.3 Fri Mar 26 11:26:26 1999 ville
* SMR_170: Correct classification bits associated to Piezo channels
* SNCR_177

* Rev 1.2 Mon Jan 18 11:50:48 1999 paloheim
* SMR_114: Problems due to multiple inclusion prevented
* SNCR_118

* Rev 1.1 Wed Dec 02 11:26:54 1998 ville
* SMR_097: Classification index calculation ficed
* SNCR_106

* Rev 1.0 Thu Oct 22 16:31:18 1998 ville

* |nitial revision.

/*

/*_ * */

/* Part of : DAS */

#ifndef CLASS_H
#define CLASS H

#include "tm_data.h"

REF : DEB-SSF-DD-001

SPACE .
SYSTEMS DEBIEDPU SW pae . 5161069
FINLAND PAGE : 61

#define MAX_AMPLITUDE_TERM 5
/* Maximum value for an amplitude term in the quality formula. */
/* Valid range : 1 - 255. %/

#define DEFAULT_COEFF 5

/* Default value for classification coefficient *

/* adjustable with telecommands. Gives maximum allowed */

/* (5) amplitude term with maximum amplitude with this */

/* formula. If amplitudes are going to be smaller, the */

/* amplitude can be amplified by setting greater value */

/* to the quality coefficient. Minimum amplification is */

/* 1/5 and maximum 50. */
/* Valid rang e 1 - 255. */

#define AMPLITUDE_DIVIDER ((DEFAULT_COEFF * 16.0) / MAX_AMPLITUDE_TERM)

/* Divider for an amplitude term in the quality formula. */
/* 16 = maxumum value for the rough 2 based logarithm of the */
I* signal amplitude in the quality formula. */

#define PLASMA_1_PLUS_CLASS 0x80

#define PLASMA_1_MINUS_CLASS 0x40

#define PLASMA_2 PLUS_CLASS 0x08

#define PIEZO_1_CLASS 0x20

#define PIEZO_2_CLASS 0x10

/* Classification index mask values for signal amplitudes */

/* above the classification levels. */

#define PLASMA_1_PLUS_TO_PIEZO_CLASS 0x02

#define PLASMA_1_MINUS_TO_PIEZO _CLASS 0x01

#define PLASMA_1 PLUS_TO_MINUS_CLASS 0x04

/* Classification index mask values for delays inside the */

/* time windows. */

extern void InitClassification(void);
/* Inits classification thresholds and coefficients. */

extern void ClassifyEvent(event_record_t EXTERNAL *new_event);
/* Classifies event and calculates the quality number. */

extern void Init_SU_Settings (SU_settings_t EXTERNAL *set);
/* Sets the default values for classification parameters. */

#endif

REF : DEB-SSF-DD-001

SPACE :
SYSTEMS DEBIEDPU SW pae . 5161069
FINLAND PAGE : 62

7.2 classtab.h

/*
I* -
I* Copyright (C) 1998 : Space Systems Finland Ltd. -

I* -
/*
/*
I* System Name: DEBIE DPU SW
/*

/* $Workfile: classtab.h $

I* $Author: paloheim $

I* $Date: Mon Jan 18 11:53:20 1999 $
/* $Revision: 1.1 $

{:Iasstab.h,p SB$Log: /home/share/fileserver/projects/debie/design/code/DAS/PVCS/

* Rev 1.1 Mon Jan 18 11:53:20 1999 paloheim
* SMR_114: Problems due to multiple inclusion prevented
* SNCR_118

* Rev 1.0 Thu Oct 22 16:31:46 1998 \ville

* Initial revision.

/*

/*_ * */

/* Part of : DAS */

#ifndef CLASSTAB_H
#define CLASSTAB_H

extern unsigned char EXTERNAL event_class[256];

#endif

REF : DEB-SSF-DD-001

SPACE 1
SYSTEMS DEBIEDPU SW pae . 5161069
FINLAND PAGE : 63

7.3 health.h

/*
/*
/*
/*
/*

Copyright (C) 1998 : Space Systems Finland Ltd. -

/*
/*
/*
/*
/*
/*
/*

ﬁealth.h,p $

*

*

*

*

System Name: DEBIE DPU SW

$Workfile: health.h $
$Author: ville $
$Date: Tue Aug 24 09:43:10 1999 $
$Revision: 1.10 $
$Log: /home/share/fileserver/projects/debie/design/code/DAS/PVCS/

Rev 1.10 Tue Aug 24 09:43:10 1999 ville
SMR_238: Corrected TEMP 2 high limit value
SNCR_262

Rev 1.9 Tue Aug 17 15:04:10 1999 paloheim
SMR_232: Corrected errors in voltage measurement and error clearing
SNCR_219:
SNCR_221:

Rev 1.8 Fri Aug 06 11:58:04 1999 ville
SMR_222: Time to be sent to telemetry frozen
SNCR_251

Rev 1.7 Tue Jun 01 12:37:20 1999 paloheim
SMR_213: Commented reentrancy, edited comments and updated SW
SNCR_198:
SNCR_171:
SNCR_186:
SNCR_238: no scp
SNCR_154: no scp

Rev 1.6 Thu May 13 13:20:18 1999 paloheim
SMR_202: DPU and SU self test sequences implemented
SNCR: none

Rev 1.5 Wed May 12 14:09:08 1999 holsti
SMR_201: Fast memory test and other reset updates.
SNCR_215:

Rev 1.4 Thu Feb 11 15:33:16 1999 paloheim
SMR_136: Use of error and mode status bits corrected
SNCR_134:

SNCR_136:
SNCR_137:

Rev 1.3 Mon Jan 25 14:25:32 1999 paloheim
SMR_128: CalculateChecksum edited
SNCR_115

REF

DEB-SSF-DD-001

SPACE f
SYSTEMS DEBIEDPU SW pae . 5161069
FINLAND PAGE : 64

* SNCR_117

* Rev 1.2 Mon Jan 18 11:51:08 1999 paloheim
* SMR_114: Problems due to multiple inclusion prevented
* SNCR_118

* Rev 1.1 Tue Jan 05 16:09:20 1999 paloheim
* SMR_110: Health monitoring updated

* Rev 1.0 Fri Aug 14 11:03:04 1998 Vville

* Initial revision.

/*

/*_ * */

/* Part of : DAS */

#ifndef HEALTH_H
#define HEALTH_H

#include "keyword.h"
#include "dpu_ctrl.h"

#include "su_ctrl.h"

#define CH_SELECTED 1
#define CH_NOT_SELECTED 0

#define RESULT_OK 1

#define CONVERSION_ACTIVE 0
#define HIT_OCCURRED 2

#define CONVERSION_STARTED 1
#define TEST_OK 1

/* Health monitoring round identification numbering. */

#define HEALTH_COUNT 9
/* Health Monitoring loop count. */

#define VOLTAGE_COUNT 17
/* Voltage Measurement loop count. */

#define TEMP_COUNT 5

/* Temperature measurement loop count. lts value must equal or greater than
/* NUM_SU, because its value defines the SU whos temperatures are to be

/* measured.

#define CHECK_COUNT 59
/* Checksum loop count. */

#define MAX_TEMP_1 OXFA
#define MAX_TEMP_2 OxF7

/* Maximum temperature (OxFA = 90 C and OxF7 = 85C) for a Sensor Unit. */

*
*/
*/

SPACE REF

SYSTEMS DEBIE DPUSW pare
FINLAND PAGE

ISSUE :
: 31.8.1999
. 65

DEB-SSF-DD-001
1.4

#define CHECK_SIZE 547
/* Checksum is counted for code memory 547 bytes per check round. */

#define CODE_MEMORY_END OX7FFF

/* The last code memory address to be checked in function */

/* 'CalculateChecksum’. */
/* 'CODE_MEMORY_END’ should have a value smaller */
/* than 2716 - 1. Otherwise it will affect a 'for’ */

/* loop in 'CalculateChecksum’ function in a way */

/* that makes this loop infinite. */

#define MAX_CHECKSUM_COUNT 59
#define MIN_CHECKSUM_COUNT 0
/* Limiting values used in function 'CalculateChecksum’. */

typedef unsigned char channel_t;
typedef unsigned int adc_unsigned_t;
typedef signed int adc_sign_t;

extern EXTERNAL unsigned char confirm_hit_result;
extern EXTERNAL dpu_time_t internal_time;

extern void SetSoftwareError(unsigned char error) compact reentrant;
extern void ClearSoftwareError(void);

extern void SetModeStatusError(unsigned char mode_status_error) compact reentrant;

extern void ClearModeStatusError(void);

extern void SetMode(DEBIE_mode_t mode) compact reentrant;

extern DEBIE_mode_t GetMode(void);

extern void Clear_SU_Error(void);

extern void Set_SU_Error(sensor_index_t SU_index, unsigned char SU_error);
extern void SetErrorStatus(unsigned char error_source);

extern void ClearErrorStatus(void);

extern void Clear_RTX_Errors(void);

extern void Boot (void);

#endif

REF : DEB-SSF-DD-001

SPACE :
SYSTEMS DEBIEDPU SW pae . 5161069
FINLAND PAGE : 66

7.4 kernobj.h

/*
I* -
I* Copyright (C) 1998 : Space Systems Finland Ltd. -

I* -
/*
/*
I* System Name: DEBIE DPU SW
/*

I* $Workfile: kernobj.h $

I* $Author: paloheim $

I* $Date: Mon Jan 18 11:48:32 1999 $
/* $Revision: 1.2 $

((* . $Log: /home/share/fileserver/projects/debie/design/code/DAS/PVCS/
ernobj.h,p $

*

* Rev 1.2 Mon Jan 18 11:48:32 1999 paloheim
* SMR_114: Problems due to multiple inclusion prevented
* SNCR_118

* Rev 1.1 Tue Aug 04 11:32:36 1998 ville

* SMR_005: Overlapping definitions removed

* SNCR_005

* Rev 1.0 Tue Aug 04 09:56:32 1998 Vville

* Initial revision.

/*

[* */

/* Definitions of kernel objects (eg. task and mailbox numbers) */

/* Part of : DAS */

/* Task numbers */

#ifndef KERNOBJ_H
#define KERNOBJ_H

#define HEALTH_MONITORING_TASK 0
#define TC_TM_INTERFACE_TASK 1
#define ACQUISITION_TASK 2
#define HIT_TRIGGER_ISR_TASK 3

/* Task priorities */

#define HEALTH_MONITORING_PR 0
#define TC_TM_INTERFACE_PR 1
#define ACQUISITION_PR 2
#define HIT_TRIGGER_PR 3

/* Mailbox numbers */

REF : DEB-SSF-DD-001

SPACE :
SYSTEMS DEBIEDPUSW pae . 3181999
FINLAND e 67

#define TCTM_MAILBOX 0

#define ACQUISITION_MAILBOX 1

/* ISR source numbers */

#define TC_ISR_SOURCE 0
#define TM_ISR_SOURCE 2
#define HIT_TRIGGER_ISR_SOURCE 5

#endif

REF : DEB-SSF-DD-001

SPACE :
SYSTEMS DEBIEDPU SW pae . 5161069
FINLAND PAGE : 68

7.5 measure.h

/*
/*
/*
/*
/*

Copyright (C) 1998 : Space Systems Finland Ltd. -

/*
/*
/*
/*
/*
/*
/*

{neasure.h,p $

*

*

*

*

System Name: DEBIE DPU SW

$Workfile: measure.h $
$Author: paloheim $
$Date: Mon Aug 16 17:29:40 1999 $
$Revision: 1.14 $
$Log: /home/shareffileserver/projects/debie/design/code/DAS/PVCS/

Rev 1.14 Mon Aug 16 17:29:40 1999 paloheim
SMR_227: New SU Self Test sequence
SNCR_249:
SNCR_256:

Rev 1.13 Tue May 18 23:41:54 1999 holsti
SMR_206: SetSensorUnitOff defines its data.
SNCR_233:

Rev 1.12 Thu May 13 13:19:50 1999 paloheim
SMR_202: DPU and SU self test sequences implemented
SNCR: none

Rev 1.11 Thu Mar 25 09:31:20 1999 paloheim
SMR_169: Corrected Peak Detector and Delay counter resets
SNCR_174:

Rev 1.10 Thu Feb 18 15:15:22 1999 paloheim
SMR_138: Edited reentrant function declarations and line lengths
SNCR_139:

Rev 1.9 Mon Feb 15 14:09:56 1999 paloheim
SMR_137: SU Self Test Implemented
SNCR: none

Rev 1.8 Mon Feb 08 15:43:06 1999 paloheim
SMR_132: Hits during one Monitoring period limited
SNCR_109:

Rev 1.7 Mon Jan 18 11:54:10 1999 paloheim
SMR_114: Problems due to multiple inclusion prevented
SNCR_118

Rev 1.6 Mon Jan 11 16:45:52 1999 paloheim
SMR_111: Update SU state transitions
SNCR_107

Rev 1.5 Tue Jan 05 16:11:10 1999 paloheim

SPACE |
SYSTEMS DEBIEDPUSW paoe .
FINLAND PAGE

DEB-SSF-DD-001
1.4

: 31.8.1999
: 69

* SMR_110: Health monitoring updated

* Rev 1.4 Tue Aug 25 15:18:00 1998 ville
* SMR_040: Task function prototypes replaced etc.
* SNCR_041

* Rev 1.3 Mon Aug 24 10:26:36 1998 ville
* SMR_036: Pointer to new task passed to CreateTask
* SNCR_037

* Rev 1.2 Thu Aug 20 14:04:22 1998 ville
* SMR_032: 'reentrant keyword replaced
* SNCR_033

* Rev 1.1 Mon Aug 17 12:43:18 1998 Vville
* SMR_025: Macro renamed
* SNCR_027

* Rev 1.0 Mon Aug 17 10:30:36 1998 Vville

* |nitial revision.

/*

/*_ * */

/* Part of : DAS */
#ifndef MEASURE_H
#define MEASURE_H

#include "kernobj.h"
#include "su_ctrl.h"

/*Maximum number of conversion start tries allowed in the HitTriggerTask*/
#define ADC_MAX_TRIES 25

#define HIT_BUDGET_DEFAULT 20
/* Default limit for the events handled during one Health Monitoring */
/* period. Valid values 1 .. 255. */

#define PEAK_RESET_MIN_DELAY 1
/* Peak detector reset min delay 1 * 10ms. */

#define COUNTER_RESET_MIN_DELAY 1

/* Delay counter reset min delay 1 *10 ms. ¥
/* NOTE that specifications would allow delay */

/* of 1ms, but minimum delay that is possible */

/* to be generated with RTX is one tick = 10ms */

#define SELF_TEST_DELAY 4
/* This delay equals the length of 4 system cycles. */

/*Sensor Unit numbers*/
#define SU1 1
#define SU2 2
#define SU3 3

SPACE REF : DEB-SSF-DD-001

SYSTEMS DEBIEDPUSW pae . 3181999

FINLAND PAGE : 70

#define SU4 4

[*type definitions*/
typedef enum {

off_e, [* SU off state - power is Off. */
start_switching_e, /* Transition to On state is starting. */
switching_e, [* Transition to On state is started. */
on_e, /* SU on state - power is On. */
self_test_mon_e, /* Selt Test, Voltage and Temperature monitoring */
self_test_e, [* Selt Test, test pulse setup. */
self_test_trigger_e, /* Self test, test pulse handling */
acquisition_e /* Power is On and Hit Events are accepted. */
} SU_state _t;
/* From these only off_e, on_e and self test_e are actual SU states */
/* defined in the User Requirements. Those and ’acquisition_e’ are */

/* the main states between which the SU state transitions are made. */

typedef struct {

sensor_number_t SU_number; /* Sensor Unit number */
SU_state_t SU_state; /* Sensor unit states can be either On */

/* or Off. */
SU_state_t expected_source_state; /* Excpected source state of the SU */

[* state transition. */
unsigned char execution_result; /* This variable is used to indicate */

/* execution results. */

} sensor_unit_t;

extern SU_state t EXTERNAL SU_state[4];

extern sensor_number_t EXTERNAL self_test_ SU_number;
typedef enum ¢{high_e, low_e} SU_test level_t;

extern unsigned char EXTERNAL hit_budget;
extern unsigned char EXTERNAL hit_budget_left;

/*function prototypes*/
extern void Switch_SU_State(sensor_unit_t EXTERNAL *SU_setting)
COMPACT_DATA REENTRANT_FUNC;

extern void Start_SU_SwitchingOn(
sensor_index_t SU,
unsigned char EXTERNAL *exec_result)
COMPACT_DATA REENTRANT_FUNC;

extern void SetSensorUnitOff(
sensor_index_t SU,
unsigned char EXTERNAL *exec_result)
COMPACT_DATA REENTRANT_FUNC;

extern SU_state_t ReadSensorUnit(unsigned char SU_number)

REF : DEB-SSF-DD-001

SPACE .
SYSTEMS DEBIEDPU SW pae . 5161069
FINLAND PAGE : 71

COMPACT_DATA REENTRANT_FUNC;

extern void Update_SU_State(sensor_index_t SU_index)
COMPACT_DATA REENTRANT_FUNC;

[*pointers to tasks*/

extern void (PROGRAM *hit_task)(void);
extern void (PROGRAM *acq_task)(void);

#endif

REF : DEB-SSF-DD-001

SPACE 1
SYSTEMS DEBIEDPU SW pae . 5161069
FINLAND PAGE . 72

7.6 tc_hand.h

/*

/*
/*
/*
/*

Copyright (C) 1998 : Space Systems Finland Ltd. -

/*
/*
/*
/*
/*
/*
/*

{ handhp $

*

*

*

*

System Name: DEBIE DPU SW

$Workfile: tc_hand.h $
$Author: ville $
$Date: Mon Mar 22 11:39:54 1999 $
$Revision: 1.11 $
$Log: /home/share/fileserver/projects/debie/design/code/DAS/PVCS/

Rev 1.11 Mon Mar 22 11:39:54 1999 ville
SMR_165: Set Quality Coefficient TCs implemented

Rev 1.9 Mon Jan 18 11:50:02 1999 paloheim
SMR_114: Problems due to multiple inclusion prevented
SNCR_118

Rev 1.8 Mon Jan 11 16:51:56 1999 paloheim
SMR_111: Update SU state transitions
SNCR_107

Rev 1.7 Mon Jan 04 10:26:14 1999 paloheim
SMR_107: New time setting telecommands implemented
SNCR_100

Rev 1.6 Wed Dec 30 14:25:44 1998 ville
SMR_103: Write Memory telecommands implemented.

Rev 1.5 Wed Dec 02 10:03:36 1998 ville
SMR_096: TC timeout, Set Class Level TC, etc.
SNCR_101

Rev 1.4 Thu Nov 12 13:05:18 1998 ville
SMR_088: Send Status Register TC prevented from aborting Science TM
SNCR_093

Rev 1.3 Tue Aug 25 15:16:44 1998 ville
SMR_040: Task function prototypes replaced etc.
SNCR_041

Rev 1.2 Mon Aug 24 10:27:42 1998 ville
SMR_036: Pointer to new task passed to CreateTask
SNCR_037

Rev 1.1 Wed Aug 12 13:20:16 1998 ville
SMR_020: Added newline at the end of file
SNCR_025

SPACE

SYSTEMS DEBIE DPU SW

FINLAND

REF

ISSUE :
: 31.8.1999
: 73

DATE
PAGE

DEB-SSF-DD-001
1.4

* Rev 1.0 Fri Jul 31 10:34:28 1998
* |nitial revision
/*

[*

*/

/* Part of : DAS */

#ifndef TC_HAND_H
#define TC_HAND_H

~

* Valid telecommand address codes

~ ~

* Prototype SW.

#define UNUSED_TC_ADDRESS

#define START_ACQUISITION
#define STOP_ACQUISITION

#define ERROR_STATUS_CLEAR

#define SEND_STATUS_REGISTER
#define SEND_SCIENCE_DATA_FILE

#define SET_TIME_BYTE_O
#define SET_TIME_BYTE_1
#define SET_TIME_BYTE_2
#define SET_TIME_BYTE_3

#define SOFT_RESET

#define CLEAR_WATCHDOG_FAILURES
#define CLEAR_CHECKSUM_FAILURES

#define WRITE_CODE_MEMORY_MSB
#define WRITE_CODE_MEMORY_LSB
#define WRITE_DATA_MEMORY_MSB
#define WRITE_DATA_MEMORY_LSB
#define READ_DATA_MEMORY_MSB
#define READ_DATA_MEMORY_LSB

#define SWITCH_SU_1
#define SWITCH_SU_2
#define SWITCH_SU_3
#define SWITCH_SU 4

#define SET_SU_1_PLASMA_1P_THRESHOLD
#define SET_SU_2_PLASMA_1P_THRESHOLD
#define SET_SU_3_PLASMA_1P_THRESHOLD
#define SET_SU_4_PLASMA_1P_THRESHOLD

#define SET_SU_1_PLASMA_1M_THRESHOLD
#define SET_SU_2_PLASMA_1M_THRESHOLD

* all telecommands are not implemented in the

*

* NOTE that all codes are not yet defined, because */

*
*

0x00

0x01
0x02

0x03

0x05
0x06

0x0C
0x0D
Ox0E
OxOF

0x09

Ox0A
0x0B

0x10
Ox6F
0x15
Ox6A

Ox1F
0x60

0x20
0x30
0x40
0x50

0x21
0x31
0x41
0x51

0x22
0x32

REF

DEB-SSF-DD-001

g?s\?g/ws DEBIE DPU SW ooUE: 14
DATE : 31.8.1999
FINLAND PAGE : 74

#define SET_SU_3_PLASMA_1M_THRESHOLD 0x42
#define SET_SU_4 PLASMA_1M_THRESHOLD 0x52
#define SET_SU_1_PIEZO_THRESHOLD 0x23
#define SET_SU_2 PIEZO_THRESHOLD 0x33
#define SET_SU_3_PIEZO_THRESHOLD 0x43
#define SET_SU_4_PIEZO_THRESHOLD 0x53
#define SET_SU_1 _PLASMA 1P_CLASS_LEVEL 0x24
#define SET_SU_2 PLASMA 1P CLASS_LEVEL 0x34
#define SET_SU_3_PLASMA_1P_CLASS_LEVEL Ox44
#define SET_SU_4 PLASMA_1P_CLASS_LEVEL 0x54
#define SET_SU_1 PLASMA_1M_CLASS_LEVEL 0x25
#define SET_SU_2 PLASMA_1M_CLASS_LEVEL 0x35
#define SET_SU_3 PLASMA_1M_CLASS_LEVEL 0x45
#define SET_SU_4 PLASMA_1M_CLASS_LEVEL 0x55
#define SET_SU_1_PLASMA 2P_CLASS_LEVEL 0x28
#define SET_SU_2 PLASMA 2P_CLASS_LEVEL 0x38
#define SET_SU_3_PLASMA 2P_CLASS_LEVEL 0x48
#define SET_SU_4 PLASMA 2P_CLASS_LEVEL 0x58
#define SET_SU_1_PIEZO 1 CLASS_LEVEL 0x26
#define SET_SU_2 PIEZO 1 CLASS_LEVEL 0x36
#define SET_SU_3_PIEZO_1 CLASS_LEVEL 0x46
#define SET_SU_4_PIEZO_1 CLASS_LEVEL 0x56
#define SET_SU_1_PIEZO 2 CLASS_LEVEL ox27
#define SET_SU_2 PIEZO 2 CLASS_LEVEL 0x37
#define SET_SU_3_PIEZO_2 CLASS_LEVEL 0x47
#define SET_SU_4_PIEZO 2 CLASS_LEVEL 0x57
#define SET_SU_1_PLASMA_1E_1I_MAX_TIME 0x29
#define SET_SU_2 PLASMA_1E_1I_MAX_TIME 0x39
#define SET_SU_3_PLASMA_1E_1I_MAX_TIME 0x49
#define SET_SU_4_PLASMA_1E_1I_MAX_TIME 0x59
#define SET_SU_1_PLASMA_1E_PZT MIN_TIME 0x2A
#define SET_SU_2 PLASMA_1E_PZT MIN_TIME O0x3A
#define SET_SU_3_PLASMA_1E_PZT MIN_TIME OX4A
#define SET_SU_4 PLASMA_1E_PZT MIN_TIME OX5A
#define SET_SU_1_PLASMA_1E_PZT MAX_TIME 0x2B
#define SET_SU_2 PLASMA_1E_PZT MAX_TIME 0x3B
#define SET_SU_3_PLASMA_1E_PZT MAX_TIME 0x4B
#define SET_SU_4_PLASMA_1E_PZT MAX_TIME 0x5B
#define SET_SU_1_PLASMA_1I_PZT_MIN_TIME 0x2C
#define SET_SU_2 _PLASMA_1I_PZT MIN_TIME 0x3C
#define SET_SU_3_PLASMA_1I_PZT_MIN_TIME OX4C
#define SET_SU_4_PLASMA_1I_PZT_MIN_TIME 0X5C
#define SET_SU_1_PLASMA_1I_PZT MAX_TIME 0x2D

SPACE
SYSTEMS
FINLAND

DEBIE DPU SW

REF

DATE
PAGE

. DEB-SSF-DD-001
ISSUE :
: 31.8.1999
. 75

1.4

#define
#define
#define

#define
#define
#define
#define
#define

SET_SU_2_PLASMA_1I_PZT_MAX_TIME
SET_SU_3_PLASMA_1I_PZT_MAX_TIME
SET_SU_4_PLASMA_1I_PZT_MAX_TIME

SET_COEFFICIENT 1
SET_COEFFICIENT_2
SET_COEFFICIENT_3
SET_COEFFICIENT_4
SET_COEFFICIENT 5

/* State of Telecommand Execution task */

typedef

enum {

TC_handling_e

rea
me

d_memory_e,
mory_dump_e,

write_memory_e,

me
reg

mory_patch_e,
ister_TM_e,

SC_TM_e
} TC_state_t;

extern

TC_state_t TC_state;

[*pointer to a task*/

extern

void (PROGRAM *TC_task)(void);

/* Functions prototype */

extern

#endif

void Set_TC_Error(void);

0x3D
0x4D
0x5D

0x70
0x71
0x72
0x73
0x74

REF : DEB-SSF-DD-001

SPACE 1
SYSTEMS DEBIEDPU SW pae . 5161069
FINLAND PAGE . 76

7.7 telem.h

/*
/*
/*
/*
/*

Copyright (C) 1998 : Space Systems Finland Ltd. -

/*
/*
/*
/*
/*
/*
/*

{;Iem.h,p $

*

*

*

*

System Name: DEBIE DPU SW

$Workfile: telem.h $
$Author: paloheim $
$Date: Wed May 12 13:08:26 1999 $
$Revision: 111 $
$Log: /home/share/fileserver/projects/debie/design/code/DAS/PVCS/

Rev 1.11 Wed May 12 13:08:26 1999 paloheim
SMR_201: Fast memory test and other reset updates
SNCR_181:

SNCR_214:
SNCR_215:

Rev 1.10 Mon Jan 18 11:52:42 1999 paloheim
SMR_114: Problems due to multiple inclusion prevented
SNCR_118

Rev 1.9 Thu Dec 31 10:15:28 1998 ville
SMR_104: Read Data memory implemented.

Rev 1.8 Wed Dec 30 14:23:44 1998 ville
SMR_103: Write Memory telecommands implented.

Rev 1.7 Tue Dec 29 13:39:42 1998 ville
SMR_102: Science Data protected.

Rev 1.6 Tue Nov 17 12:51:08 1998 ville
SMR_095: New SW version

Rev 1.5 Mon Nov 16 10:16:40 1998 ville
SMR_092: New SW version

Rev 1.4 Fri Oct 09 14:39:58 1998 ville
SMR_085: New SW version

Rev 1.3 Mon Oct 05 13:59:16 1998 ville
SMR_079: New software version

Rev 1.2 Wed Sep 30 13:40:54 1998 ville
SMR_071: New Software Version

Rev 1.1 Tue Sep 08 09:17:42 1998 Vville
SMR_057: SW version defined
SNCR_059

REF

SPACE ISSUE -
SYSTEMS DEBIEDPUSW pare .
FINLAND PAGE

DEB-SSF-DD-001
1.4

: 31.8.1999
a4

* Rev 1.0 Tue Aug 04 15:21:42 1998 ville

* |nitial revision.

/*

/*_ * */

/* Part of : DAS */

#ifndef TELEM_H
#define TELEM_H

#ifndef EXTERNAL
#include "keyword.h"

#endif

/* Special value for TC/TM mail to be used only */

/* telemetry is ready */
#define TM_READY OXFFFF

extern unsigned char EXTERNAL *telemetry_pointer;
extern unsigned char EXTERNAL *telemetry_end_pointer;
extern unsigned int EXTERNAL free_slot_index;

extern unsigned char EXTERNAL read_memory_checksum;

/* Checksum to be sent at the end of Read Memory sequence. */

extern event_record_t EXTERNAL *GetFreeRecord(void);
/* Returns pointer to next free event record from the */
/* event record queue, or pointer to the last record */
/* od the queue, if the queue is full. */

extern void ResetEventQueuelength(void);

#endif

REF : DEB-SSF-DD-001

SPACE 1
SYSTEMS DEBIEDPU SW pae . 5161069
FINLAND PAGE . 78

7.8 tm_data.h

/*
/*
/*
/*
/*

Copyright (C) 1998 : Space Systems Finland Ltd. -

/*
/*
/*
/*
/*
/*
/*

{:n_data.h,p $

*

*

*

*

System Name: DEBIE DPU SW

$Workfile: tm_data.h $
$Author: paloheim $
$Date: Mon May 31 10:10:12 1999 $
$Revision: 1.22 $
$Log: /home/share/fileserver/projects/debie/design/code/DAS/PVCS/

Rev 1.22 Mon May 31 10:10:12 1999 paloheim
SMR_212: Adjusted implementation of Send Status Register
SNCR_213:

Rev 1.21 Thu May 13 16:07:58 1999 paloheim
SMR_203: RTX-error indication implemented
SNCR_227:
SNCR_225:
SNCR_186:

Rev 1.20 Thu May 13 13:21:34 1999 paloheim
SMR_202: DPU and SU self test sequences implemented
SNCR: none

Rev 1.19 Thu Apr 08 13:35:22 1999 paloheim
SMR_182: Implemented new error indicationg bits
SNCR_167:

SNCR_196: [no scp]

Rev 1.18 Tue Apr 06 11:14:32 1999 paloheim
SMR_174: Removed variable science_tm_time
SNCR_189:

Rev 1.17 Tue Mar 16 15:07:50 1999 paloheim
SMR_152: Updated MAX_EVENTS
SNCR_156:

Rev 1.16 Tue Mar 09 12:39:20 1999 paloheim
SMR_146: TM alignment constraints are taken into account.
SNCR_149:

SNCR_150:

Rev 1.15 Thu Feb 11 15:26:12 1999 paloheim
SMR_136: Use of error and mode status bits corrected
SNCR_134:

SNCR_136:
SNCR_137:

REF

SPACE ISSUE -
SYSTEMS DEBIEDPUSW pare .
FINLAND PAGE

DEB-SSF-DD-001
1.4

: 31.8.1999
: 79

Rev 1.14 Tue Feb 09 17:10:46 1999 paloheim
SMR_134: DPU Self Test implemented
SNCR: none

Rev 1.13 Mon Feb 08 15:40:58 1999 paloheim
SMR_132: Hits during one Monitoring period limited
SNCR_1009:

Rev 1.12 Thu Jan 28 14:08:10 1999 paloheim
SMR_129: Length indicator added to Science telemetry data
SNCR: none

Rev 1.11 Mon Jan 18 11:55:02 1999 paloheim
SMR_114: Problems due to multiple inclusion prevented
SNCR_118

Rev 1.10 Tue Jan 05 16:11:28 1999 paloheim
SMR_110: Health monitoring updated

Rev 1.9 Sun Jan 03 13:24:28 1999 ville
SMR_105: Telemetry formats updated.
SNCR_091

Rev 1.8 Tue Dec 29 13:39:10 1998 ville
SMR_102: Science Data protected.

Rev 1.7 Fri Oct 02 14:54:20 1998 Vville
SMR_076: Only relevant bits from ModeStatus checked
SNCR_082

Rev 1.6 Thu Aug 20 12:57:46 1998 ville
SMR_031: Keil keyword replaced
SNCR_032

Rev 1.5 Mon Aug 17 14:13:04 1998 Vville
SMR_027: Variable declarations corrected
SNCR_28

Rev 1.4 Wed Aug 12 10:42:08 1998 ville
SMR_018: Replaced ’unsigned int’" with 'unsigned shor int’
SNCR_023

Rev 1.3 Thu Aug 06 16:23:56 1998 ville
SMR_013: Macros redefined
SNCR_014

Rev 1.2 Fri Jul 31 09:51:34 1998 ville
SMR_001: DEBIE mode constant macros defined
SNCR_002

Rev 1.1 Tue Jul 28 17:07:50 1998 ville
Type definitions modified: typedef used for structs

Rev 1.0 Thu Jul 02 10:54:24 1998 ville

REF

SPACE ISSUE -
SYSTEMS DEBIEDPUSW pare .
FINLAND PAGE

DEB-SSF-DD-001
1.4

: 31.8.1999
: 80

* |nitial revision.
/*
/*_ * */

/* Part of : DAS */

#ifndef TM_DATA_H
#define TM_DATA_H

#ifndef EXTERNAL
#include "keyword.h"
#endif

#include "dpu_ctrl.h"

#define MAX_EVENTS 1261
/* Size of one event is 26 bytes and MAX_EVENTS should be */

/* 32 768 bytes/ 26 bytes = 1261 (rounded up). This */
/* ensures that at least 32 kB of memory is used. */
#define NUM_SU 4

#define NUM_CH 5

/* Number of measurement channels. */
#define NUM_CLASSES 10

#define NUM_TEMP 2

#define NUM_NOT_USED (4 + 0x70 - Ox6A)

#define DPU_SELF_TEST 0
#define STAND_BY 1
#define ACQUISITION 2

#define MODE_BITS_MASK 3

/* Definitions related to error indicating bits in mode status register: */

#define SUPPLY_ERROR 0x80
#define DATA_MEMORY_ERROR 0x40
#define PROGRAM_MEMORY_ERROR 0x20
#define ADC_ERROR 0x04

/* Definitions related to error indicating bits in SU status register: */

#define HV_SUPPLY_ERROR 0x80
#define LV_SUPPLY_ERROR 0x40
#define TEMPERATURE_ERROR 0x20
#define SELF_TEST_ERROR 0x10
#define HV_LIMIT_ERROR 0x08
#define LV_LIMIT_ERROR 0x04
#define SUPPLY_VOLTAGE_MASK 0x03

/* Used when error indiacting bits are cleared. */

/* Definitions related to error indicating bits in error status register: */

SPACE REF

SYSTEMS DEBIE DPUSW pare
FINLAND PAGE

: DEB-SSF-DD-001
ISSUE :
: 31.8.1999
: 81

1.4

#define CHECKSUM_ERROR 0x08
#define WATCHDOG_ERROR 0x04
#define OVERALL_SU_ERROR OxFO
/* Used to indicate error in all of the SUs. */

#define ERROR_STATUS_OFFSET 0x10
/* Used when SU error indicating bit is selected. */

/* Definitions related to error indicating bits in software error register: */
#define MEASUREMENT_ERROR 0x01

#define OS_START_SYSTEM_ERROR 0x02

#define OS_WAIT_ERROR 0x04

#define OS_SET_SLICE_ERROR 0x08

#define NUM_QCOEFF 5
/* Number of Quality Coefficients. */

/* Sensor Unit low power and TC settings : */

typedef struct {
unsigned char plus_5_voltage; /* byte 1 *
unsigned char minus_5_voltage; /* byte 2 */
unsigned char plasma_1_plus_threshold; /* byte 3 */
unsigned char plasma_1_minus_threshold; /* byte 4 */
unsigned char piezo_threshold; /* byte 5 *
unsigned char plasma_1_plus_classification; /* byte 6 */
unsigned char plasma_1_minus_classification; I* byte 7 *
unsigned char piezo_1_classification; /* byte 8 */
unsigned char piezo_2_classification; /* byte 9 ¥/
unsigned char plasma_2_plus_classification; /* byte 10 */
unsigned char plasma_1_plus_to_minus_max_time; /* byte 11 */
unsigned char plasma_1_plus_to_piezo_min_time; /* byte 12 */
unsigned char plasma_1_plus_to_piezo_max_time; /* byte 13 */
unsigned char plasma_1_minus_to_piezo_min_time; /* byte 14 */
unsigned char plasma_1_minus_to_piezo_max_time; /* byte 15 */

} SU_settings_t;

/* TM data registers : */
typedef struct {

unsigned char error_status; *reg O
unsigned char mode_status; *reg 1

unsigned short int TC_word,; *reg 2 -

unsigned long int TC_time_tag; *reg 4 -
unsigned char watchdog_failures; *reg 8
unsigned char checksum_failures; reg 9
unsigned char SW_version; /* reg 10
unsigned char isr_send_message_error; *reg 11

unsigned char SU_status[NUM_SUJ; I* reg 12 -
unsigned char SU_temperature[NUM_SU][INUM_TEMP]; /* reg 16 -

unsigned char DPU_plus_5_digital; /* reg 24
unsigned char os_send_message_error; /* reg 25

*/
*/
3%
7 %
*/
*
*
*
15 */
23 ¥/
*
*/

REF : DEB-SSF-DD-001

SPACE

ISSUE: 14

SYSTEMS DEBIEDPU SW e . 31.8.1999

FINLAND PAGE : 82
unsigned char os_create_task_error; I* reg 26 */
unsigned char SU_plus_50; I* reg 27 */
unsigned char SU_minus_50; I* reg 28 */
unsigned char os_disable_isr_error; I* reg 29 */
unsigned char not_used_1; /* reg 30 */
SU_settings_t sensor_unit_1; /*reg 31 - 45 %
unsigned char os_wait_error; I* reg 46 */
SU_settings_t sensor_unit_2; /* reg 47 - 61 *
unsigned char os_attach_interrupt_error; I* reg 62 */
SU_settings_t sensor_unit_3; /*reg 63 - 77 *
unsigned char os_enable_isr_error; I* reg 78 */
SU_settings_t sensor_unit_4; *reg 79 - 93 *
unsigned short int failed_code_address; I reg 94 - 95 %
unsigned short int failed_data_address; /*reg 96 - 97 *

unsigned short int SU_hits]NUM_SUJ; /* reg 98 - 105 */

tm_dpu_time_t time; /* reg 106 - 109 */
unsigned char software_error; /* reg 110 */
unsigned char hit_budget_exceedings; /* reg 111 */
unsigned char coefficientfNUM_QCOEFF]; /* reg 112 - 121 */
unsigned char not_used; I* reg 122 */
/* The last register of telemetry data should be 'not_used. */
/* This is necessary for correct operation of telemetry */
/* retrieving TCs i.e. number of bytes should be even. */
} telemetry_data_t;
extern EXTERNAL telemetry data_t telemetry_data;
/* Hit trigger event record : */
typedef struct {
unsigned char quality_number; /* byte 0 */
unsigned char classification; /* byte 1 */
unsigned char SU_number; /* byte 2 */
tm_dpu_time_t hit_time; /* byte 3 - 6 *
unsigned char SU_temperature_1; /* byte 7 */
unsigned char SU_temperature_2; /* byte 8 */
tm_ushort_t plasma_1_plus; /* byte 9 - 10 ¥/
tm_ushort_t plasma_1_minus; /* byte 11 - 12 ¥/
tm_ushort_t piezo_1; /* byte 13 - 14 */
tm_ushort_t piezo_2; /* byte 15 - 16 */
tm_ushort_t plasma_2_plus; [* byte 17 - 18 */
unsigned char rise_time; /* byte 19 */
signed char delay_1; /* byte 20 */
tm_ushort_t delay_2; /* byte 21 - 22 ¥/
tm_ushort_t delay_3; /* byte 23 - 24 */
unsigned char checksum; /* byte 25 */

} event_record_t;

/* Science Data File : */

typedef struct {
unsigned short int length;

REF

SPACE ISSUE : 1.4

: 31.8.1999
: 83

SYSTEMS DEBIE DPUSW pare
FINLAND PAGE

DEB-SSF-DD-001

unsigned char event_counterflNUM_SU][NUM_CLASSES];
unsigned char not_used;
unsigned char counter_checksum;
event_record_t event{MAX_EVENTS];
} science_data_file_t;

extern EXTERNAL science_data_file_t science_data;

extern unsigned short int EXTERNAL max_events;

/* This variable is used to speed up certain */

/* Functional Test by adding the possibility */

/* to restrict the amount of events. */

/* It is initialised to value MAX_EVENTS at */

/* Boot. */

extern void RecordEvent(void);

/* This function increments proper event counter and stores */
/* the new event record to the science data memory, if there */
/* is free place or events with lower or equal quality number */

extern void ClearEvents(void);
/* Cleares the event counters and the quality numbers of */
/* the event records in the science data memory */

#endif

REF : DEB-SSF-DD-001

SPACE :
SYSTEMS DEBIEDPU SW pae . 5161069
FINLAND PAGE : 84

7.9 version.h

/*

/*
/*
/*
/*

Copyright (C) 1998 : Space Systems Finland Ltd. -

/*
/*
/*
/*
/*
/*
/*

</ersi0n.h,p $

*

*

*

*

*

*

System Name: DEBIE DPU SW

$Workfile: version.h $
$Author: paloheim $
$Date: Fri Aug 27 14:03:00 1999 $
$Revision: 1.25 $
$Log: /home/share/fileserver/projects/debie/design/code/DAS/PVCS/

Rev 1.25 Fri Aug 27 14:03:00 1999 paloheim
SMR_243: Updated version number
SNCR: none

Rev 1.24 Fri Aug 27 13:44:36 1999 paloheim
SMR_242: Corrected +/-50V error limit handling in SU self test
SNCR_265:

Rev 1.23 Thu Aug 26 09:52:38 1999 paloheim
SMR_240: Updated code_checksum value
SNCR: none

Rev 1.22 Thu Aug 19 11:20:50 1999 ville
SMR_236: Updated code_checksum value

Rev 1.21 Tue Aug 17 13:27:22 1999 paloheim
SMR_231: Updated code_checksum value
SNCR: none

Rev 1.20 Mon Aug 16 18:13:00 1999 paloheim
SMR_229: Updated code_checksum value
SNCR: none

Rev 1.19 Mon Aug 16 12:52:52 1999 paloheim
SMR_225: Updated code_checksum value
SNCR: none

Rev 1.18 Tue Aug 10 16:52:58 1999 paloheim
SMR_224 : Updated CODE_CHECKSUM value
SNCR: none

Rev 1.17 Sun Jul 25 15:46:18 1999 holsti
SMR_221: Reset-class protected from Data RAM test.
SNCR_242:

Rev 1.16 Fri Jul 02 12:37:26 1999 paloheim
SMR_218: Corrected errors in health.c
SNCR_239:

REF

DEB-SSF-DD-001

SPACE f
SYSTEMS DEBIEDPU SW pae . 5161069
FINLAND PAGE : 85

* SNCR_240:

/*

[*-

Rev 1.15 Thu Jul 01 15:36:00 1999 paloheim
SMR_217: Corrected Error in SU Self Testing
SNCR_241

Rev 1.14 Wed Jun 16 14:24:52 1999 paloheim
SMR_216: Edited HighVoltageCurrent
SNCR_229:

Rev 1.13 Thu Jun 10 14:27:44 1999 paloheim
SMR_215: Version update
SNCR: none

Rev 1.12 Fri May 21 00:14:30 1999 holsti
SMR_208: WaitMail returns execution_result.

Rev 1.11 Tue May 18 23:43:00 1999 holsti
SMR_206: SetSensorUnitOff defines its data.

Rev 1.10 Mon May 17 23:05:18 1999 holsti
SMR_205: Corrected RTX-51 usage mistages.

Rev 1.9 Sun May 16 09:21:20 1999 holsti
SMR_204: RTX interface portable and no calls from interrupts.

Rev 1.8 Thu May 06 17:19:36 1999 holsti
SMR_200: Enable Hit Trigger before Counter Reset.
SNCR_228:

Rev 1.7 Tue May 04 14:41:26 1999 holsti
SMR_199: Fast memory test routines.

Rev 1.6 Fri Apr 30 13:11:48 1999 holsti
SMR_196: New SW version.

Rev 1.5 Sat Apr 17 02:49:10 1999 holsti
SMR_191: Precedence error in shift-plus corrected.
SNCR_212:

Rev 1.3 Thu Apr 08 22:48:52 1999 holsti
SMR_184: Correct Init_SU_Settings and simplify Boot

Rev 1.2 Thu Apr 01 11:49:10 1999 ville
SMR_174: New SW version

Rev 1.1 Mon Jan 18 11:52:58 1999 paloheim
SMR_114: Problems due to multiple inclusion prevented
SNCR_118

Rev 1.0 Wed Dec 30 14:21:56 1998 ville
Initial revision.

REF

: DEB-SSF-DD-001

SYSTEMS DEBIEDPUSW oo a1
DATE : 31.8.1999

FINLAND PAGE : 86

/* Part of : DAS */

#ifndef VERSION_H

#define VERSION_H

#define SW_VERSION 19

/* Software version. Unique for each delivered build of the software. */

#define CODE_CHECKSUM 0x74

/* This must be set so that the checksum calculated from the code */

/* memory becomes zero (this value will then be actually equal to */

/* the code checksum when this value would be zero). */

/* So the procedure is as follows: */

I* 1. Set CODE_CHECKSUM to zero. */

/* 2. Compile and link DEBIE into a .hex file. */

/* 3. Compute the XOR of the .hex data (using e.g. 'hexor’). */

/* 4. Set CODE_CHECKSUM to the value computed in step 3. */

/* 5. Recompile and relink DEBIE into a new .hex file. */

/* 6. Verify that XOR of the new .hex file is zero. */

#endif

REF : DEB-SSF-DD-001

SPACE 1
SYSTEMS DEBIEDPU SW pae . 5161069
FINLAND PAGE : 87

8 DHI Header Files

This chapter contains the header source files for the DEBIE Harware Interface
software module.

These listings are taken from the reference directory of the PVCS archive of DHI.
The PVCS tool is used as a configuration management tool.

REF : DEB-SSF-DD-001

SPACE ISSUE : 1.4
SYSTEMS DEBIE DPU SW Otk . 3181999
FINLAND PAGE : 88
8.1 ad_conv.h

/*

I* -

I* Copyright (C) 1998 : Space Systems Finland Ltd. -

I* -

/*

/*

I* System Name: DEBIE DPU SW

/*

I* $Workfile: ad_conv.h

I* $Author: paloheim $

I* $Date: Tue Jun 01 12:35:44 1999 $

I* $Revision: 16 $

[* $Log: /home/share/fileserver/projects/debie/design/code/DHI/PVCS/
ad_conv.hp $

* Rev 1.6 Tue Jun 01 12:35:44 1999 paloheim

SMR_213: Commented reentrancy, edited comments and updated SW
SNCR_198:

SNCR_171:

SNCR_186:

SNCR_238: no scp

SNCR_154: no scp

*

*

*

*

*

*

*

Rev 1.5 Mon Jan 18 11:45:32 1999 paloheim
SMR_114: Problems due to multiple inclusion prevented
SNCR_118

*

*

*

Rev 1.4 Fri Oct 02 17:10:22 1998 ville
SMR_078: Reading of ADC channel register deleted etc.
SNCR_079
SNCR_080
SNCR_083

*

*

*

*

* Rev 1.3 Tue Aug 11 16:53:00 1998 Vville
SMR_016: Macro redefined
SNCR_019

*

*

* Rev 1.2 Fri Aug 07 14:17:08 1998 ville
SMR_014: Macros added for ADC bipolar/unipolar selection
SNCR_016

*

*

*

Rev 1.1 Fri Jul 24 15:03:12 1998 ville
Updated during DHI coding

*

* Rev 1.0 Thu Jul 02 10:24:46 1998 ville
Initial revision.

*

/*
[* */

/* Macros, functions, types and constants for controlling AD converter */

/* Part of : DHI */

REF

DEB-SSF-DD-001

SYSTEMS DEBIEDPUSW paw @ 27
DATE : 31.8.1999
FINLAND PAGE : 89
#ifndef AD_CONV_H
#define AD_CONV_H
#ifndef REG52_DEFINED
#include
#define REG52_DEFINED
#endif
#ifndef ABS_ADD_DEFINED
#include
#define ABS_ACC_DEFINED
#endif
/* Constant definitions */
#define AD_CHANNELS 0x28
/* Number of possible ADC channels (includes GND channels) */
/* AD converter control register addresses */
/* NOTE: these registers should be accessed only from */
/* ad_conv.c or macros defined in this file */
#define ADC_STATUS 0xFF20
#define ADC_DATA OxFF21
#define START_ADC OXFF21
#define RESET_ADC O0xFF20
#define ADC_CHANNEL OxFFAO
#define DAC_OUTPUT OxFFB7
#define BP_UP 0x40
#define BP_DOWN OxBF
shit END_OF _ADC = P172;
/* AD converter control macros */
#define UPDATE_ADC_CHANNEL_REG XBYTE[ADC_CHANNEL] = ADC_channel_register
#define START_CONVERSION XBYTE[START_ADC] =0
#define GET_RESULT XBYTE[ADC_DATA]
#define SET_DAC_OUTPUT(LEVEL) XBYTE[DAC_OUTPUT] = (LEVEL)

extern unsigned char xdata ADC_channel_register;

/* Holds value of the ADC Channel HW register */
/* Is used by Hit Trigger ISR task and Health */

/* Monitoring task. */
/* Updating must be atomic in the Health Monitoring */

/* task, because Hit Trigger can preempt it. */

#endif

REF : DEB-SSF-DD-001

SPACE i
SYSTEMS DEBIEDPU SW pae . 5161069
FINLAND PAGE : 90

8.2 dpu_ctrl.h

/*
/*
/*
/*
/*

Copyright (C) 1998 : Space Systems Finland Ltd.

/*
/*
/*
/*
/*
/*
/*

épu_ctrl.h,p

*

*

*

*

*

*

System Name: DEBIE DPU SW

$Workfile: dpu_ctrl.lh $

$Author: holsti $

$Date: Fri May 28 14:59:30 1999 $
$Revision: 123 $

Rev 1.23 Fri May 28 14:59:30 1999 holsti
SMR_209: Memory Patch TC corrections.
SNCR_194:

Rev 1.22 Wed May 12 14:03:56 1999 holsti
SMR_201: Fast memory test and other reset updates.
SNCR_181:

SNCR_188:
SNCR_214:
SNCR_215:

Rev 1.21 Wed Apr 28 17:36:06 1999 holsti
SMR_193: Repair block telemetry.
SNCR_221:
SNCR_222:

Rev 1.20 Thu Mar 18 09:27:26 1999 paloheim
SMR_155: Corrected code patching
SNCR_161:
SNCR_162:

Rev 1.19 Thu Mar 11 10:48:48 1999 paloheim
SMR_147: Event storage condition signal check added
SNCR_120:

Rev 1.18 Tue Mar 09 12:36:06 1999 paloheim
SMR_146: TM alignment constraints are taken into account.
SNCR_149:

SNCR_150:

Rev 1.17 Thu Feb 18 15:15:48 1999 paloheim
SMR_138: Edited reentrant function declarations and line lengths
SNCR_139:

Rev 1.16 Thu Feb 11 15:34:16 1999 paloheim
SMR_136: Use of error and mode status bits corrected
SNCR_134:
SNCR_136:

$Log: /home/share/fileserver/projects/debie/design/code/DHI/PVCS/

REF

DEB-SSF-DD-001

SPACE f

SYSTEMS DEBIEDPU SW pae . 5161069

FINLAND PAGE : 91
SNCR_137:

Rev 1.15 Mon Feb 01 16:00:02 1999 paloheim
SMR_131: Line lengths checked and edited
SNCR: none

Rev 1.14 Mon Jan 25 14:25:00 1999 paloheim
SMR_128: CalculateChecksum edited
SNCR_115
SNCR_117

Rev 1.13 Tue Jan 19 09:54:50 1999 paloheim
SMR_116: Code copying enabled
SNCR_087
SNCR_111

Rev 1.12 Mon Jan 18 11:47:42 1999 paloheim
SMR_114: Problems due to multiple inclusion prevented
SNCR_118

Rev 1.11 Tue Jan 05 16:10:18 1999 paloheim
SMR_110: Health monitoring updated

Rev 1.10 Wed Dec 30 14:25:08 1998 ville
SMR_103: Write Memory telecommands implemented.

Rev 1.9 Tue Dec 29 13:37:34 1998 ville
SMR_102: Science Data protected.

Rev 1.8 Mon Sep 21 14:58:46 1998 Vville
SMR_063: Warm reset made possible
SNCR_065

Rev 1.7 Mon Sep 07 12:26:46 1998 Vville
SMR_053: GetResultClass changed to non-reentrant
SNCR_055

Rev 1.6 Fri Sep 04 17:30:16 1998 Vville
SMR_050: Program not copied in Prototype SW
SNCR_051

Rev 1.5 Thu Aug 13 11:23:42 1998 ville
SMR_024: Macros changed to portable
SNCR_024

Rev 1.4 Wed Aug 12 13:55:32 1998 ville
SMR_021: CopyProgramCode function added
SNCR_015

Rev 1.3 Tue Aug 04 13:53:18 1998 ville
SMR_006: Typos in include file check corrected
SNCR_007

Rev 1.2 Mon Aug 03 11:28:44 1998 Vville

REF : DEB-SSF-DD-001

SPACE :
SYSTEMS DEBIEDPU SW pae . 5161069
FINLAND PAGE : 92

* SMR_003: Enumeration redefinitions in dpu_ctrl.h

* SNCR_004

* Rev 1.1 Tue Jul 28 16:51:30 1998 ville

* Type definitions modified: typedef used

* Local variables eliminated from reentrant functions

/* dpu_ctrlh,p $

* Rev 1.0 Thu Jul 02 10:30:42 1998 ville

* |nitial revision.

/*

/*_ * */

/* Part of : DHI */

#ifndef DPU_CTRL_H
#define DPU_CTRL_H

#ifndef REG52_DEFINED
#include
#define REG52_DEFINED
#endif

#ifndef EXTERNAL
#include "keyword.h"
#endif

#define SAME 1
#define NOT_SAME 0

#define MEMORY_PATCHED 1
#define MEMORY_NOT_PATCHED 0

#ifndef HIGH
#define HIGH 1
#endif

#ifndef LOW
#define LOW 0
#endif

#define SELECTED 1
#define NOT_SELECTED 0
#define RESET_OK 1
#define RESET_NOT_OK 0

#define ACCEPT_EVENT 1
#define REJECT_EVENT 0

shit EVENT_FLAG = P1M4;
/* Event storage condition signal. */

/* memory addresses for program copy */
#define PROGRAM_COPY_START 0x1000

REF : DEB-SSF-DD-001
SPACE ISSUE : 1.4

SYSTEMS DEBIE DPU SW DATE - 31.8.1999
FINLAND PAGE : 93

#define PROGRAM_COPY_END 0x8000
/* this can be replaced with real end address (+1) of used program code */
* given in the linker map file */

~

~

* Comment or delete following definition, if program should be executed */
* from RAM */
* #define USE_ALWAYS_PROM */

~ ~

/* memory addresses for patching */
#define BEGIN_SRAM1 0x1000
#define END_SRAM1 OX7FFF
#define BEGIN_SRAM3 0x8000
#define END_SRAM3 OXFEFF
#define BEGIN_DATA_RAM 0x0000

#define SCIENCE_DATA_START_ADDRESS 0x0000
/* First free absolute data address. */

#define INITIAL_CHECKSUM_VALUE 0

/* A value given to 'reference_checksum’ variable at 'Boot()’. */

/* It is zero, since one code byte is dedicated to a constant */

/* that ensures that the checksum of the PROM is zero. *

#define SET_DATA_BYTE(ADDR,VALUE) XBYTE[(ADDR)] = (VALUE)

#define GET_DATA_BYTE(ADDR) XBYTE[(ADDR)]
#define GET_CODE_BYTE(ADDR) CBYTE[(ADDR)]
#define DATA_POINTER(ADDR) ((unsigned char *)(ADDR))

/* some register addresses */

shit WD_STATUS = P173;
shit WD_RESET = P1M7,;
shit MEM_CONF = P175;

/* macros to handle above registers */

#define SET_WD_RESET_HIGH WD_RESET = HIGH
#define SET_WD_RESET_LOW WD_RESET = LOW
#define SET_MEM_CONF_PROM MEM_CONF = HIGH
#define SET_MEM_CONF_SRAM MEM_CONF = LOW

/* macro used in healthmonitoring */

#define CHECK_CURRENT(BIT_NUMBERS) (XBYTE[HV_STATUS] &<HardSpace
(BIT_NUMBERS))

/* Checks whether given bit in the HV Status Register is HIGH or LOW. */

[*type definitions*/

typedef unsigned char DEBIE_mode_t;
/* Debie mode index. Valid values: */

REF

SYSTEMS DEBIE DPUSW pare
FINLAND PAGE

: DEB-SSF-DD-001
SPACE ISSUE : 1.4
: 31.8.1999

1 94

/* 00 DPU self test */
/* 01 Stand by */
/* 10 Acquisition */

typedef enum {
power_up_reset_e = 0, /* Don't change value ! */
watchdog_reset e = 1, /* Don't change value ! */
soft_reset_e,
warm_reset_e,
error_e,
checksum_reset_e

} reset_class_t;

extern reset_class_t EXTERNAL s_w_reset;
typedef enum {

PROM_e, SRAM_e
} memory_configuration_t;

#define MAX_TIME OXFFFFFFFF

/* Maximum value for DEBIE time. */

typedef unsigned long int dpu_time_t;
/* Data type for DEBIE time. */

/* */

/* Multi-byte TM types without alignment constraints. */

/* The Keil/8051 system does not constrain alignment for */

/* multi-byte types such as long int, but the Unix test */

/* systems do, and we must declare the TM structures to */

/* avoid constraints. *
/* Note that we still assume that the two systems have */

/* the same endianness. */
/* Note also that the native type is used in the TM when */

/* the component happens to have the correct alignment. */

/* The special types are used only when the alignment is */

/* otherwise incorrect. */
/* Data is moved between the native type and the special */

/* TM type only using the COPY or VALUE_OF macros. Thus, */
/* on the 8051 the two types can in fact be identical, */

/* with COPY defined as direct assignment ("="). */

typedef dpu_time_t tm_dpu_time_t;
/* The TM type corresponding to dpu_time_t (32-bit int). */

typedef unsigned short int tm_ushort_t;

/* The TM type corresponding to unsigned short int. */

I* */
/* */

typedef struct {

REF : DEB-SSF-DD-001
SPACE ISSUE : 1.4

SYSTEMS DEBIE DPU SW DATE - 31.8.1999
FINLAND PAGE : 95

unsigned char *source;

unsigned int destination;

unsigned char data_amount;

unsigned char execution_command;
} memory_patch_variables_t;

/* Holds parameters for PatchCode function: */

I* source source address of the patch */

I* (should be between 0x8000 and OxFFOO - */
I* data_amount) */
I* destination destination address of the patch */

I* (should be between 0x1000 and 0x8000 - */

I* data_amount) */
I* data_amount amount of bytes to be patched (max 255) */

I* execution_command action executed after patch */

I* 0x00 - continue normally */

I* 0x09 - execute soft reset */

I* 0x37 - execute warm reset */
I* Ox5A - jump to start address of patched */

I* memory area */

#define CALL_PATCH(FUNCTION) FUNCTION()
/* Jump to the patched memory. */

extern

unsigned char EXTERNAL code_not_patched,;

/* Initial value is 1, set at Boot(). Value is 1 when code */
/* checksum value is valid, cleared to 0 when code memory is */

/* patched, set to 1 when next checksum calculation */
/* period is started. */
extern unsigned char EXTERNAL reference_checksum;

/* Expected value for code checksum. Will be changed when */
/* code memory is patched. */

/* Function prototypes: */

extern

extern

extern

extern

extern

extern

extern

void Init_DPU (reset_class_t reset_class);

reset_class_t GetResetClass(void);

void SignalMemoryErrors (void);

void SetMemoryConfiguration (memory_configuration_t memory);

memory_configuration_t GetMemoryConfiguration(void) compact reentrant;

void PatchCode(memory_patch_variables_t xdata *patch_variables);

void Reboot(reset_class_t boot_type);

/* Assembly-language function prototypes (asmfuncs.a51): */

extern

unsigned char TestMemBits (unsigned short address);

SPACE
SYSTEMS DEBIE DPU SW
FINLAND

REF
ISSUE :
DATE
PAGE

: DEB-SSF-DD-001

1.4

: 31.8.1999
: 96

extern unsigned char TestMemData (
unsigned short start,
unsigned char bytes);

extern unsigned char TestMemSeq (
unsigned short start,

unsigned char bytes);

#endif

REF : DEB-SSF-DD-001

SPACE ISSUE : 1.4
SYSTEMS DEBIEDPUSW Oxe . 3181999
FINLAND PAGE : 97
8.3 isr_ctrl.h

/*

/* -

I* Copyright (C) 1998 : Space Systems Finland Ltd. -

/* -

/*

/*

I* System Name: DEBIE DPU SW

/*

/* $Workfile: isr_ctrlh $

/* $Author: holsti $

I* $Date: Sun Jul 25 15:02:08 1999 $

/* $Revision: 1.16 $

{;r_ctrl.h,p $

*

*

*

*

$Log: /home/share/fileserver/projects/debie/design/code/DHI/PVCS/

Rev 1.16 Sun Jul 25 15:02:08 1999 holsti
SMR_220: RTX-51 Timer Interrupt priority is high.
SNCR_250:

Rev 1.15 Mon May 17 22:50:20 1999 holsti
SMR_205: Corrected RTX-51 usage mistages.
SNCR_232:

Rev 1.14 Thu May 13 16:08:28 1999 paloheim
SMR_203: RTX-error indication implemented
SNCR_227:
SNCR_225:
SNCR_186:

Rev 1.13 Thu Feb 18 15:16:14 1999 paloheim
SMR_138: Edited reentrant function declarations and line lengths
SNCR_139:

Rev 1.12 Mon Feb 15 14:08:10 1999 paloheim
SMR_137: SU Self Test Implemented
SNCR: none

Rev 1.11 Mon Feb 08 15:42:20 1999 paloheim
SMR_132: Hits during one Monitoring period limited
SNCR_109:

Rev 1.10 Mon Feb 01 16:00:26 1999 paloheim
SMR_131: Line lengths checked and edited
SNCR: none

Rev 1.9 Mon Jan 18 11:53:48 1999 paloheim
SMR_114: Problems due to multiple inclusion prevented
SNCR_118

Rev 1.8 Mon Dec 28 12:17:10 1998 ville
SMR_101: Interrupt priorities set
SNCR_096

REF

SPACE ISSUE -
SYSTEMS DEBIEDPUSW pare .
FINLAND PAGE

DEB-SSF-DD-001
1.4

: 31.8.1999
: 98

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

/*
2

/*

Rev 1.7 Wed Dec 02 12:03:20 1998 ville
SMR_098: Minimum TC interval implemented
SNCR_103

Rev 1.6 Fri Oct 02 17:11:18 1998 Vville
SMR_078: Reading of ADC channel register deleted etc.
SNCR_079
SNCR_080
SNCR_083

Rev 1.5 Mon Sep 07 16:37:26 1998 Vville
SMR_055: Correct parameter for ResetinterruptMask used
SNCR_057

Rev 1.4 Tue Sep 01 15:35:04 1998 ville
SMR_044: Hit trigger handling corrected
SNCR_045

Rev 1.3 Fri Aug 21 14:52:08 1998 Vville
SMR_034: Waitinterrupt made portable
SNCR_035

Rev 1.2 Tue Jul 28 16:56:10 1998 ville
Local variables eliminated from reentrant functions

Rev 1.1 Fri Jul 24 14:58:26 1998 ville
Updated during DHI coding

Rev 1.0 Thu Jul 02 10:33:30 1998 ville
Initial revision.

Part of : DHI */

[*Type definitions*/

#ifndef ISR_CTRL_H
#define ISR_CTRL_H

#ifndef RTX51_DEFINED

#include
#define RTX51_DEFINED

#endif

#ifndef REG52_DEFINED

#include
#define REG52_DEFINED

#endif

#define SET_HIT_TRIGGER_ISR_FLAG EXF2=1

#define DISABLE_HIT_TRIGGER EXEN2=0

REF

DEB-SSF-DD-001

SPACE f
SYSTEMS DEBIEDPUSW pae . 3181999
FINLAND PAGE : 99

#define HIT_TRIGGER_FLAG EXEN2

#define CLEAR_HIT_TRIGGER_ISR_FLAG EXF2=0
#define ENABLE_HIT_TRIGGER EXEN2=1

#define SET_INTERRUPT_PRIORITIES IP=0x2D
/* Sets Timer 1, Timer 2 and External interrupt 0 and 1 */
[* priorities high, others to low. */

#define DISABLE_INTERRUPT_MASTER EA=0
#define ENABLE_INTERRUPT_MASTER EA=1
/* Clear and set interrupt master enable bit */

#define DISABLE_TC_TIMER_ISR ETO = 0
/* Macro for clearing TC timer interrupt enable flag */

#define TC_TIMER_OVERFLOW_FLAG TFO
/* TC timer overflow flag */

#define CLEAR_TC_TIMER_OVERFLOW_FLAG TFO =
#define SET_TC_TIMER_OVERFLOW_FLAG TFO =
/* TC timer overflow flag manipulation macros. */

= o

/* Function prototypes */

extern void Attachinterrupt(unsigned char ISR_VectorNumber);

extern void Enablelnterrupt(unsigned char ISR_VectorNumber);

extern void Disablelnterrupt(unsigned char ISR_VectorNumber);

extern signed char SetlnterruptMask(unsigned char ISR_MaskNumber);

extern signed char ResetInterruptMask(unsigned char ISR_MaskNumber);

extern void Waitinterrupt (unsigned char ISR_VectorNumber, unsigned char timer);

#endif

REF : DEB-SSF-DD-001

SPACE i
SYSTEMS DEBIEDPU SW pae . 5161069
FINLAND PAGE : 100

8.4 keyword.h

/*
I* -
I* Copyright (C) 1998 : Space Systems Finland Ltd. -

I* -
/*
/*
I* System Name: DEBIE DPU SW
/*

I* $Workfile: keyword.h $

I* $Author: paloheim $

I* $Date: Tue Mar 09 12:37:20 1999 $
/* $Revision: 19 $

((* $Log: /home/share/fileserver/projects/debie/design/code/DHI/PVCS/
eyword.h,p $

* Rev 1.9 Tue Mar 09 12:37:20 1999 paloheim
* SMR_146: TM alignment constraints are taken into account.
* SNCR_149:

* SNCR_150:

* Rev 1.8 Mon Jan 18 11:51:34 1999 paloheim
* SMR_114: Problems due to multiple inclusion prevented
* SNCR_118

* Rev 1.7 Fri Sep 25 10:35:48 1998 ville

* SMR_065: LOCATION macro changed to portable

* SNCR_067

* Rev 1.6 Thu Sep 24 11:03:20 1998 ville

* SMR_064: Macros for two Keil special keywords added
* SNCR_066

* Rev 1.5 Tue Aug 25 15:19:24 1998 ville

* SMR_040: Task function prototypes replaced etc.

* SNCR_041

* Rev 1.4 Tue Aug 04 11:07:04 1998 ville

* SMR_004: Invalid Keil keyword macros corrected

* SNCR_006

* Rev 1.3 Tue Jun 02 15:42:08 1998 Vville

* Tried to fix PVCS header

/*

I* Rev 1.2 Tue Jun 02 15:30:14 1998 ville

/* Improved PVCS header

/*

I* Rev 1.1 Tue Jun 02 15:18:16 1998 ville

/* Added PVCS header

/*

/*_ * */

/* Macro definitions for Keil specific keywords to be used */
/* in portable parts of the DEBIE DPU software */

REF

SPACE ISSUE -
SYSTEMS DEBIEDPUSW pare .
FINLAND PAGE

DEB-SSF-DD-001
1.4

: 31.8.1999
: 101

/* Part of : DHI */

/* Some macros for task and interrupt management */
#ifndef KEYWORD_H
#define KEYWORD_H

#ifndef REG52_DEFINED
#include
#define REG52_DEFINED
#endif

#define COPY(DEST,SOURCE) DEST=(SOURCE)
/* Copies the value of SOURCE to the location DEST. */
#define VALUE_OF(SOURCE) (SOURCE)

/* Returns the (integer) value of SOURCE. */

#define TASK(TASK_NUMBER) _task_ TASK_NUMBER
#define PRIORITY(LEVEL) _priority_ LEVEL

#define INTERRUPT(SOURCE) interrupt SOURCE
#define USED_REG_BANK(BANK) using BANK

/* Macro for declaring re-entrant function */

#define REENTRANT_FUNC reentrant

/* Memory model handling macros */

#define SMALL_DATA small
#define COMPACT_DATA compact
#define LARGE_DATA large
#define PROGRAM code
#define EXTERNAL xdata

#define DIRECT_INTERNAL data
#define INDIRECT_INTERNAL idata

#define LOCATION(ADDRESS) _at_ ADDRESS

#endif

REF : DEB-SSF-DD-001

SPACE i
SYSTEMS DEBIEDPU SW pae . 5161069
FINLAND PAGE : 102

8.5 msg_ctrl.h

/*
/*
/*
/*
/*

Copyright (C) 1998 : Space Systems Finland Ltd. -

/*
/*
/*
/*
/*
/*
/*

{nsg_ctrl.h,p $

*

*

*

*

System Name: DEBIE DPU SW

$Workfile: msg_ctrl.lh $
$Author: holsti $
$Date: Mon May 17 22:50:44 1999 $
$Revision: 111 $
$Log: /home/share/fileserver/projects/debie/design/code/DHI/PVCS/

Rev 1.11 Mon May 17 22:50:44 1999 holsti
SMR_205: Corrected RTX-51 usage mistages.
SNCR_232:

Rev 1.10 Thu May 13 16:09:14 1999 paloheim
SMR_203: RTX-error indication implemented
SNCR_227:
SNCR_225:
SNCR_186:

Rev 1.9 Tue May 04 11:46:50 1999 paloheim
SMR_198: Corrected critical errors
SNCR_227
SNCR_219

Rev 1.8 Tue Mar 16 13:37:58 1999 paloheim
SMR_149: Corrected embedded control-H in line
SNCR_148:

Rev 1.7 Thu Feb 18 15:16:42 1999 paloheim
SMR_138: Edited reentrant function declarations and line lengths
SNCR_139:

Rev 1.6 Mon Feb 01 16:00:42 1999 paloheim
SMR_131: Line lengths checked and edited
SNCR: none

Rev 1.5 Mon Jan 18 11:49:22 1999 paloheim
SMR_114: Problems due to multiple inclusion prevented
SNCR_118

Rev 1.4 Sun Sep 06 20:00:26 1998 ville
SMR_052: Correct memory models used
SNCR_054

Rev 1.3 Thu Aug 06 15:44:54 1998 Vville
SMR_011: Macros renamed
SNCR_012

REF : DEB-SSF-DD-001

SPACE .
SYSTEMS DEBIEDPU SW pae . 5161069
FINLAND PAGE : 103

* Rev 1.2 Tue Jul 28 17:00:06 1998 ville
* Type definitions modified: typedef used for structs
* Local variables eliminated from reentrant functions

* Rev 1.1 Fri Jul 24 15:02:08 1998 ville

* Updated during DHI coding

* Rev 1.0 Thu Jul 02 10:35:08 1998 ville

* |nitial revision.

/*

/*_ * */

/* Part of : DHI */
/* Macros */

#ifndef MSG_CTRL_H
#define MSR_CTRL_H

#ifndef RTX51_DEFINED
#include
#define RTX51_DEFINED
#endif

#ifndef REG52_DEFINED
#include
#define REG52_DEFINED
#endif

#define SEND_MESSAGE(BOX, MESSAGE) isr_send_message((BOX),(MESSAGE))
E%ﬁﬂﬁl?) SEND_TASK_MESSAGE(BOX, MESSAGE, TIMEOUT) os_send_message((BOX),(MESSAGE),(TIM

/* Type definitions */

#define MSG_RECEIVED 1

/* The value of execution_result in incoming_mail_t that */

/* signifies that a mail message has been received. */
/* Must be different from NOT_OK as defined in RTX51.h. */

#define TIMEOUT_OCCURRED 4

/* The value of execution_result in incoming_mail_t that */

/* signifies that the wait for mail has timed out. */

/* Must be different from NOT_OK as defined in RTX51.h. */

typedef struct {
unsigned char mailbox_number;
unsigned int message;
unsigned char timeout;
signed char execution_result;

REF

SPACE ISSUE

DEB-SSF-DD-001
1.4

SYSTEMS DEBIEDPU SW e . 31.8.1999
FINLAND PAGE : 104
[*This variable is used to indicate execution results. */
}outgoing_mail_t ;
typedef struct {
unsigned char mailbox_number;
unsigned char timeout;
unsigned int xdata *message;
signed char execution_result; /* This variable is used to indicate */

/* execution results. */
signed char wait_result; /* Result from a RTX operation. */
unsigned char event_selector; /* The value of this variable defines the */

/* execution of the wait-task. */

}incoming_mail_t ;
typedef struct {
signed char execution_result; /* This variable is used to indicate */

/* execution results. */
signed char wait_result; /* Result from a RTX operation. */
unsigned char event_selector; /* The value of this variable defines the */

/* execution of the wait-task. */
unsigned char semaphore; /* semaphore number */
unsigned char timeout; /* time-out definition */

} wait_token_variables_t;
extern wait_token_variables_t token_variables;

/* Function prototypes */

extern void WaitMail(incoming_mail_t xdata *message) compact reentrant;

#endif

REF : DEB-SSF-DD-001

SPACE i
SYSTEMS DEBIEDPU SW pae . 5161069
FINLAND PAGE : 105

8.6 su_ctrl.h

/*
/*
/*
/*
/*

Copyright (C) 1998 : Space Systems Finland Ltd. -

/*
/*
/*
/*
/*
/*
/*

/*
Su_

*

*

*

*

System Name: DEBIE DPU SW

$Workfile: su_ctrlh $

$Author: paloheim $

$Date: Mon Aug 16 17:30:10 1999 $
$Revision: 127 $

crlhp $ $Log: /home/share/fileserver/projects/debie/design/code/DHI/PVCS/

Rev 1.27 Mon Aug 16 17:30:10 1999 paloheim
SMR_227: New SU Self Test sequence
SNCR_249:
SNCR_256:

Rev 1.26 Tue Jun 01 12:36:34 1999 paloheim
SMR_213: Commented reentrancy, edited comments and updated SW
SNCR_198:
SNCR_171:
SNCR_186:
SNCR_238: no scp
SNCR_154: no scp

Rev 1.25 Thu May 13 13:20:42 1999 paloheim
SMR_202: DPU and SU self test sequences implemented
SNCR: none

Rev 1.24 Wed May 12 13:07:12 1999 paloheim
SMR_201: Fast memory test and other reset updates
SNCR_181:

SNCR_214:
SNCR_215:

Rev 1.23 Sat Apr 17 02:34:12 1999 holsti
SMR_190: TestPulseLevel renamed to SetTestPulselLevel.
SNCR_211

Rev 1.22 Sat Apr 17 00:26:26 1999 holsti
SMR_189: Additional ADC channel selection delay.
SNCR_210:

Rev 1.21 Thu Apr 08 18:42:00 1999 paloheim
SMR_183: Initialised classification parameters after power-up
SNCR_201:

Rev 1.20 Tue Mar 16 14:16:22 1999 paloheim
SMR_151: Adjusted ReadDelayCounters dependence on sizeof(int)
SNCR_153:

SPACE

SYSTEMS DEBIE DPU SW

FINLAND

REF

ISSUE :
: 31.8.1999
. 106

DATE
PAGE

DEB-SSF-DD-001
1.4

Rev 1.19 Tue Mar 16 13:48:10 1999 paloheim
SMR_150: Corrected size of data for COPY
SNCR_152:

Rev 1.18 Mon Mar 01 11:13:18 1999 paloheim
SMR_145: SU supply status modified
SNCR_147:

Rev 1.17 Mon Feb 22 15:43:34 1999 paloheim

SMR_142: Set default trigger thresholds and fixed failed_address parameter

SNCR_143:

Rev 1.16 Thu Feb 18 15:17:00 1999 paloheim

SMR_138: Edited reentrant function declarations and line lengths

SNCR_139:

Rev 1.15 Mon Feb 15 14:11:26 1999 paloheim
SMR_137: SU Self Test Implemented
SNCR: none

Rev 1.14 Mon Feb 01 16:01:02 1999 paloheim
SMR_131: Line lengths checked and edited
SNCR: none

Rev 1.13 Mon Jan 18 11:52:22 1999 paloheim
SMR_114: Problems due to multiple inclusion prevented
SNCR_118

Rev 1.12 Mon Jan 11 16:51:20 1999 paloheim
SMR_111: Update SU state transitions
SNCR_107

Rev 1.11 Mon Jan 04 13:55:32 1999 paloheim
SMR_109: ADC Channel selection delay updated
SNCR_104

Rev 1.10 Fri Nov 13 13:26:44 1998 ville
SMR_090: New Hit trigger sequence implemented.
SNCR_095

Rev 1.9 Tue Sep 29 10:57:50 1998 ville
SMR_068: Reading of write-only registers deleted
SNCR_068

Rev 1.8 Mon Aug 31 13:02:12 1998 Vville
SMR_043: Reset Peak Detector pulse generated
SNCR_044

Rev 1.7 Thu Aug 13 11:22:40 1998 ville
SMR_024: Macros changed to portable
SNCR_024

Rev 1.6 Tue Aug 11 16:24:10 1998 ville

REF

SPACE ISSUE :
SYSTEMS DEBIE DPU SW DATE
FINLAND PAGE

DEB-SSF-DD-001

1.4
: 31.8.1999
: 107

* SMR_015: Variable type redefined
* SNCR_018

* Rev 1.5 Wed Aug 05 15:40:50 1998 ville
* SMR_009: ResetPeakDetector function added
* SNCR_011

* Rev 1.4 Wed Aug 05 14:36:54 1998 ville
* SMR_008: ReadDelayCounters parameter redefined
* SNCR_009

* Rev 1.3 Mon Aug 03 10:58:50 1998 Vville
* SMR_002: SetTriggerLevel function prototype redefined
* SNCR_003

* Rev 1.2 Tue Jul 28 17:02:46 1998 ville
* Type definitions modified: typedef used for structs
* Local variables eliminated from reentrant functions

* Rev 1.1 Fri Jul 24 15:04:16 1998 ville

* Updated during DHI coding

* Rev 1.0 Thu Jul 02 10:36:14 1998 ville

* |nitial revision.

/*

/*_ * */

/* Macros, functions, constants and types for controlling Sensor Units */
/* Part of : DHI */

#ifndef SU_CTRL_H
#define SU_CTRL_H

#ifndef REG52_DEFINED
#include
#define REG52_DEFINED
#endif

#ifndef RTX51_DEFINED
#include
#define RTX51_DEFINED
#endif

#ifndef ABS_ADD_DEFINED
#include
#define ABS_ACC_DEFINED
#endif

/* Sensor Channels */
#define PLASMA_1 PLUS 0

#define PLASMA_1_MINUS 1
#define PZT_1 2

SPACE

SYSTEMS

FINLAND

DEBIE DPU SW

REF :
ISSUE :
DATE
PAGE

DEB-SSF-DD-001
1.4

: 31.8.1999
: 108

#define
#define
#define

#define
#define
#define
#define

#define
#define
#define
#define

#define
#define
#define
#define

#define
#define
#define
#define
#define
#define
#define
/* Self t

#define
#define
#define
#define
#define
/* Low |

#define
#define
#define
#define
#define
/* High

#define
#define

#define
#define

#define

#define
/* Defau

PZT 2 3
PLASMA 2 PLUS 4
PZT 1 2 5

SU 11
SU 2 2
SU 3 3
SU 4 4

SU 1. ON 1
SU 2 ON 2
SU 3 ON 3
SU 4 ON 4

SU_1 OFF 1
SU_2 OFF 2
SU_3 OFF 3
SU_4 OFF 4

LOW_PLASMA_SELF_TEST_THRESHOLD
LOW_PIEZO_SELF_TEST_THRESHOLD

0x15
0x0D

HIGH_PLASMA_1_PLUS_SELF_TEST_THRESHOLD OxAB

HIGH_PLASMA_SELF TEST_THRESHOLD
HIGH_PIEZO_SELF_TEST_THRESHOLD
MAX_PLASMA_SELF_TEST_THRESHOLD
MAX_PIEZO_SELF _TEST_THRESHOLD
est threshold levels. */

PLASMA 1_PLUS_LOW 0x12
PLASMA_1_MINUS_LOW 0x07
PLASMA 2 _PLUS_LOW 0x0d
PZT 1 LOW 0x2B
PZT_2_LOW 0x26
evel test pulses. */

PLASMA 1 _PLUS_HIGH 0x50
PLASMA_1_MINUS_HIGH 0x24
PLASMA 2 _PLUS_HIGH 0x40
PZT_1_HIGH 0xB5
PZT 2 HIGH OxAL
level test pulses. */

SU_NOT_ACTIVATED 0
SU_NOT_DEACTIVATED 0

CHANNEL_NOT_SELECTED 5
SU_NOT_SELECTED 6

TRIGGER_SET_OK 1

DEFAULT_THRESHOLD 0Ox0D
It Trigger threshold is mid-scale value. */

0x80
0x2B
OxFF
OxFF

SPACE REF

SYSTEMS DEBIE DPUSW pare
FINLAND PAGE

ISSUE :
: 31.8.1999
: 109

DEB-SSF-DD-001
1.4

#define DEFAULT_TEST_PULSE_LEVEL 0x00

#define DEFAULT_CLASSIFICATION_LEVEL 0
#define DEFAULT_MAX_TIME 255
#define DEFAULT_MIN_TIME 0
/* These default levels are only temporary */

#define SU_ONOFF_MASK 3
/* Bit mask for SU Status register manipulation when SU is */
/* switched ON or OFF. *

#define SU_STATE_TRANSITION_OK 1
#define SU_STATE_TRANSITION_FAILED 0

#define NO_SU 0

/* Trigger level register base addresses */

#define SU_1 TRIGGER_BASE OxFFBO
#define SU_2 TRIGGER BASE OxFFB3
#define SU_3 TRIGGER_BASE OxFFCO
#define SU_4 TRIGGER_BASE OxFFC3

#define DELAY_1 2 MSB OxFF40
#define DELAY_1_LSB OxFF30
#define DELAY_2_LSB OxFF50

#define SU_1_THRESHOLD1 OxFFBO
#define SU_1_THRESHOLD2 OxFFB1
#define SU_1_THRESHOLD3 OxFFB2

#define SU_2_THRESHOLD1 OxFFB3
#define SU_2_THRESHOLD2 OxFFB4
#define SU_2_THRESHOLD3 OxFFB5

#define SU_3_THRESHOLD1 OXFFCO
#define SU_3_THRESHOLD2 OxFFC1
#define SU_3_THRESHOLD3 OXFFC2

#define SU_4_THRESHOLD1 OxFFC3
#define SU_4_THRESHOLD2 OxFFC4
#define SU_4_THRESHOLD3 OxFFC5

/* Some other register addresses */

#define TEST_PULSE_LEVEL OxFFB6
#define SU_SELF_TEST_CH OXFFEO

#define GET_MSB_COUNTER XBYTE[DELAY_1_2_MSB]
#define GET_LSB1_COUNTER XBYTE[DELAY_1_LSB]
#define GET_LSB2_COUNTER XBYTE[DELAY_2_LSB]
#define RISE_TIME_COUNTER 0xFF60

#define SU_CONTROL OxFFDO

REF

DEB-SSF-DD-001

SPACE f
SYSTEMS DEBIEDPU SW pae . 5161069
FINLAND PAGE : 110
#ifndef LOW
#define LOW 0

#endif

/* Macros */

#define SU_1 MINUS 50 1
#define SU_1 PLUS 50 2
#define SU_2 MINUS 50 4
#define SU_2_ PLUS 50 8
#define SU_3 MINUS 50 16
#define SU_3 PLUS 50 32
#define SU_4 MINUS 50 64
#define SU_4 PLUS_50 128

#define TRIGGER_SOURCE TO + 2 *
#define HV_STATUS O0xFF70
#define

sbit TRIGGER_SOURCE_0 = P3n4;
sbit TRIGGER_SOURCE_1 = P3r5;
shit V_DOWN = P170;
shit COUNTER_RESET = P176;

/* Type definitions */

typedef unsigned char sensor_number_t;

/* Sensor Unit number. Valid values SU

/* which must be successive integers.

T1

SET_COUNTER_RESET(LEVEL) COUNTER_RESET = LEVEL

1, SU_2, SU_3 and SU_4 ¥/
*

/* As a special case for some variables, the value NO_SU */
/* indicates "no Sensor Unit". This possibility is always */
/* shown by a comment on that variable, otherwise only real */

/* SU numbers are allowed.

typedef unsigned char sensor_index_t;

/* Sensor Unit index. Valid values 0, 1,

2 and 3. *

/* Index O corresponds to Sensor Unit number SU_1. */

typedef struct {
unsigned short int FromPlasmalPlus

unsigned short int FromPlasmalMinus;

}delays_t ;

typedef struct {
unsigned char sensor_unit;
unsigned char channel;
unsigned char level;
unsigned char execution_result;

*

REF

SPACE ISSUE

SYSTEMS DEBIE DPUSW pare
FINLAND PAGE

DEB-SSF-DD-001
1.4

: 31.8.1999

111

unsigned int base;
Mrigger_set_t ;

typedef struct {
unsigned char V_down_bit;
unsigned char HV_status;
}voltage_status_t ;

extern unsigned char xdata SU_ctrl_register;
/* This variable stores values of write-only registers */

/* Function prototypes */

/* Sensor Unit status */

/* Delay and rise time counters */
extern void ReadDelayCounters (delays_t EXTERNAL *delay);
extern unsigned char ReadRiseTimeCounter(void) compact reentrant;
extern void ResetDelayCounters(void) compact reentrant;
extern void ResetPeakDetector(unsigned char unit);
extern void SignalPeakDetectorReset(

unsigned char low_reset_value,

unsigned char high_reset_value);

[* Trigger levels */
extern void SetTriggerLevel(trigger_set_t xdata *setting) compact reentrant;

/* Test pulse level */
extern void SetTestPulseLevel(unsigned char level) compact reentrant;

extern void GetVoltageStatus(voltage_status_t xdata *v_status)
compact reentrant;

/* Sensor Unit power control */
extern void Switch_SU_On (unsigned char SU_Number, unsigned char xdata
*execution_result) compact reentrant;

extern void Switch_SU_Off (unsigned char SU_Number, unsigned char xdata
*execution_result) compact reentrant;

/* Sensor Unit calibration */

extern void EnableAnalogSwitch(sensor_index_t self_test_SU_index);
extern void DisableAnalogSwitch(sensor_index_t self test_SU_index);
extern void SelectSelfTestChannel(unsigned char channel);
extern void SelectTriggerSwitchLevel(

unsigned char test_channel,

sensor_index_t self_test_SU_index);
extern void SelectStartSwitchLevel(

unsigned char test_channel,

SPACE IRSESFU _ E)IIZB-SSF-DD-OM
SYSTEMS DEBIE DPU SW DATE - 31.8.1999

FINLAND PAGE : 112

sensor_index_t self_test_SU_index);

#endif

REF : DEB-SSF-DD-001

SPACE :
SYSTEMS DEBIEDPU SW pae . 5161069
FINLAND PAGE : 113

8.7 taskctrl.h

/*
/*
/*
/*
/*

Copyright (C) 1998 : Space Systems Finland Ltd. -

/*
/*
/*
/*
/*
/*
/*

{;skctrl.h,p $

*

*

*

*

System Name: DEBIE DPU SW

$Workfile: taskctrlh $
$Author: holsti $
$Date: Mon May 17 22:51:12 1999 $
$Revision: 1.11 $
$Log: /home/share/fileserver/projects/debie/design/code/DHI/PVCS/

Rev 1.11 Mon May 17 22:51:12 1999 holsti
SMR_205: Corrected RTX-51 usage mistages.
SNCR_232:

Rev 1.10 Sun May 16 09:19:26 1999 holsti
SMR_204: RTX interface portable and no calls from interrupts.
SNCR_230:

Rev 1.9 Thu May 13 16:09:50 1999 paloheim
SMR_203: RTX-error indication implemented
SNCR_227:

SNCR_225:
SNCR_186:

Rev 1.8 Sat Apr 17 00:27:28 1999 holsti
SMR_189: Additional ADC channel selection delay.
SNCR_210:

Rev 1.7 Thu Feb 18 15:17:16 1999 paloheim
SMR_138: Edited reentrant function declarations and line lengths
SNCR_139:

Rev 1.6 Mon Feb 01 16:01:24 1999 paloheim
SMR_131: Line lengths checked and edited
SNCR: none

Rev 1.5 Mon Jan 18 11:54:42 1999 paloheim
SMR_114: Problems due to multiple inclusion prevented
SNCR_118

Rev 1.4 Mon Jan 04 13:53:30 1999 paloheim
SMR_109: ADC Channel selection delay updated
SNCR_104

Rev 1.3 Fri Nov 13 13:30:08 1998 ville
SMR_090: New Hit trigger sequence implemented.
SNCR_095

SPACE
SYSTEMS DEBIE DPU SW
FINLAND

REF :
ISSUE :
DATE
PAGE

DEB-SSF-DD-001
1.4

: 31.8.1999
114

* Rev 1.2 Tue Jul 28 17:04:48 1998 ville
* Type definitions modified: typedef used for structs
* Local variables eliminated from reentrant functions

* Rev 1.1 Fri Jul 24 14:59:40 1998 ville

* Updated during DHI coding

* Rev 1.0 Thu Jul 02 10:37:44 1998 ville

* |nitial revision.

/*

/*_ * */

/* Part of : DHI */

/* Type definitions */

#ifndef TASKCTRL_H
#define TASKCTRL_H

#ifndef RTX51_DEFINED
#include
#define RTX51_DEFINED
#endif

#define MACHINE_CYCLE 1.085
/* The machine (processor) cycle time, in microseconds. */

#define DELAY_LIMIT(TIME) (unsigned short)((((TIME) / MACHINE_CYCLE) - 4) / 2)
/* Computes the number of ShortDelay() argument-units that corresponds */

/* to a certain delay TIME in microseconds. Note that this formula can */

~ ~

* values for TIME.
#define MAX_SHORT_DELAY 255

/* The largest possible argument for ShortDelay(). */

typedef struct {

unsigned char rtx_task_number;

void (code *task_main_function)(void);
} task_info_t;
/* Function prototypes */
extern void ShortDelay (unsigned char delay_loops);
extern void CreateTask(task_info_t xdata *new_task);
extern void Waitinterval(unsigned char time);

extern void WaitTimeout(unsigned char time) compact reentrant;

extern void SetTimeSlice(unsigned int time_slice);

* yield values larger than ShortDelay() can implement in one call.
* This formula is mainly intended for use with compile-time constant

*/
*

*

SPACE REF

SYSTEMS DEBIE DPUSW pare
FINLAND PAGE

ISSUE :
: 31.8.1999
: 115

DEB-SSF-DD-001
1.4

extern void StartSystem(unsigned char task_number);

extern void SendTaskMail (

unsigned char mailbox,
unsigned char message,
unsigned char timeout);

#define. Send_ISR_Mail(mailbox,message) <HardReturn
if (isr_send_message (mailbox, message) == NOT_OK) <HardReturn
<HardReturn

/*
/*
/*
/*
/*
/*
/*

telemetry_data.isr_send_message_error = mailbox; <HardReturn

Send_ISR_Mail is to be used from C51 interrupt routines to send */
mail messages to tasks. If RTX-51 reports an error, the mailbox */
number is set in telemetry. The reason is probably the following: */
-Specified mailbox does not exist(wrong mailbox parameter). */
Send_ISR_Mail is made a macro instead of a function to avoid using */
reentrant functions from interrupt routines. */
Users of Send_ISR_Mail must have access to telemetry_data. */

#endif

REF : DEB-SSF-DD-001

SPACE 1
SYSTEMS DEBIEDPU SW pae . 5161069
FINLAND PAGE : 116

8.8 ttc_ctrl.h

/*
/*
/*
/*
/*

Copyright (C) 1998 : Space Systems Finland Ltd. -

/*
/*
/*
/*
/*
/*
/*

frc_

*

*

*

*

System Name: DEBIE DPU SW

$Workfile: ttc_ctrlh $

$Author: holsti $

$Date: Sun May 16 09:20:10 1999 $
$Revision: 1.11 $

crlhp $ $Log: /home/share/fileserver/projects/debie/design/code/DHI/PVCS/

Rev 1.11 Sun May 16 09:20:10 1999 holsti
SMR_204: RTX interface portable and no calls from interrupts.
SNCR_231:

Rev 1.10 Wed May 12 13:37:04 1999 paloheim
SMR: none, line length edited
SNCR: none

Rev 1.9 Mon Jan 18 11:50:30 1999 paloheim
SMR_114: Problems due to multiple inclusion prevented
SNCR_118

Rev 1.8 Wed Dec 02 12:02:26 1998 ville
SMR_098: Minimum TC interval implemented
SNCR_103

Rev 1.7 Mon Sep 07 16:37:00 1998 ville
SMR_055: Correct parameter for ResetinterruptMask used
SNCR_057

Rev 1.6 Sun Sep 06 18:58:50 1998 ville
SMR_051: TM interrupt enabled and disabled in TC ISR
SNCR_053

Rev 1.5 Fri Aug 21 15:36:16 1998 ville
SMR_035: Correct interrupt types set
SNCR_035

Rev 1.4 Thu Aug 20 15:38:56 1998 Vville
SMR_033: Interrupt flags cleared in ISRs
SNCR_034

Rev 1.3 Thu Aug 06 16:25:36 1998 ville
SMR_013: Macros redefined
SNCR_014

Rev 1.2 Thu Aug 06 10:12:54 1998 Vville
SMR_010: TM interrupt flag cleared

SPACE IRSESFU _ g)ﬁB-SSF-DD-OOl
SYSTEMS DEBIE DPU SW DATE - 31.8.1999
FINLAND PAGE : 117

* SNCR_010

* Rev 1.1 Tue Aug 04 11:26:58 1998
* SMR_005: Overlapping definitions removed

* SNCR_005

*

* Rev 1.0 Thu Jul 02 10:38:20 1998

* |nitial revision.
/*

[*

ville

ville

*/

/* Macros and function prototypes for handling Telecommand and Telemetry

/* interface.

/* Part of : DHI */

#ifndef TTC_CTRL_H
#define TTC_CTRL_H

#ifndef RTX51_DEFINED
#include "RTX51.h"
#defined RTX51_DEFINED

#endif

#ifndef REG52_DEFINED
#include
#define REG52_DEFINED
#endif

#ifndef ABS_ADD_DEFINED
#include
#define ABS_ACC_DEFINED
#endif

/* TC and TM register handling */

#define READ_TC_MSB XBYTE[OxFF10]
#define READ_TC_LSB XBYTE[OxFFO0O0]

#define WRITE_TM_LSB(TM_LSB) XBYTE[0OxFF80] = (TM_LSB)
#define WRITE_TM_MSB(TM_MSB) XBYTE[OXFF90] = (TM_MSB)

/* TM Interrupt flag */

#define CLEAR_TM_INTERRUPT_FLAG IE1 = 0

/* TC Interrupt flag*/

#define CLEAR_TC_INTERRUPT_FLAG IEO = 0

/*TM and TC interrupt controls*/

#define SET_INT_TYPEL1 EDGE IT1 = 1
#define SET_INT_TYPEO_EDGE ITO = 1

*
*/

REF

SPACE ISSUE :
SYSTEMS DEBIE DPU SW DATE
FINLAND PAGE

DEB-SSF-DD-001

14
: 31.8.1999
: 118

/*TM interrupt service handling*/
#define TM_ISR_MASK 0x04

/* Error Status register bits concerning TM/TC interface */

#define PARITY_ERROR 2
#define TC_ERROR 1

#define TC_OR_PARITY_ERROR (TC_ERROR + PARITY_ERROR)

#define TC_INT_MIN_INTERVAL (10000000 / 1085)
/* Minimum interval between two consecutive telecommands */
/* in machine cycles : 10000000 ns / (1085 ns / cycle) */

#define TC_TIMER_LSB ((OXFFFF - TC_INT_MIN_INTERVAL) & OXFF)
#define TC_TIMER_MSB ((OXFFFF - TC_INT_MIN_INTERVAL) 8)
/* MSB and LSB of the initial value for TC interval timer */

#define SET_TC_TIMER_MODE TMOD = (TMOD & OxFO0) | 0x01
/* Set TC timer (0) mode : Mode 1, counter operation, SW control */

#define INIT_TC_TIMER_MSB THO = TC_TIMER_MSB
#define INIT_TC_TIMER_LSB TLO = TC_TIMER_LSB
/* TC timer initialization macros */

#define START_TC_TIMER TRO = 1
#define STOP_TC_TIMER TRO = 0
/* TC timer run control macros */

#endif

. REF _ : DEB-SSF-DD-001
@ DEBIE DPU SW DATE :31.8.1999

SPACE SYSTEMS PAGE :119

DISTRIBUTION LIST

Quantity Person and Organisation

1 Juha Kuitunen, Patria Finavitec Systems

DEBIE DPU SW Design Document

	DEBIE DPU SOFTWARE
	DESIGN DOCUMENT
	1. Introduction
	1.1 Scope
	1.2 Overview
	1.3 Applicable Documents
	[AD1] DEBIE Requirements Specification, DEB-FIN-RS-001 Patria Finavitec Systems
	[AD2] DEBIE TM/TC Interface Control Document, DEB-FIN-IC-001 Patria Finavitec Systems
	[AD3] DEBIE HW/SW Interface Control Document, DEB-FIN-IC-002 Patria Finavitec Systems
	[AD4] DEBIE DPU Software Requirements Document, DEB-SSF-RS-001 Space Systems Finland Ltd

	1.4 Reference Documents
	[RD1] DEBIE Software Development Plan, DEB-SSF-PL-001 Space Systems Finland Ltd
	[RD2] MHS C51 Programmer’s Guide and Instruction Set Matra MHS
	[RD3] RTX-51, RTX-251 User’s Guide 05.96 Keil Software
	[RD4] C51 Compiler User’s Guide 01.97 Keil Software
	[RD5] DEBIE DPU SW Design and Coding Standard, DEB-SSF-ST-001 Space Systems Finland Ltd
	[RD6] DEBIE DPU SW User Manual, DEB-SSF-MA-001 Space Systems Finland Ltd

	1.5 Definitions
	1.6 Acronyms and Abbreviations

	2. DEBIE Requirements
	2.1 DEBIE DPU SW Requirement Summary
	2.1.1 Interface to the DEBIE Hardware
	2.1.2 Functional modes
	Table 1: Functional modes and transitions

	2.1.3 Particle Hit Detection and Actions
	2.1.4 Processing of the Measurement Data
	2.1.5 Storage of the Measurement data
	2.1.6 Health Monitoring
	2.1.7 SU Self Test and Calibration
	2.1.8 Reception and Execution of Telecommands
	2.1.9 Telemetry

	2.2 Critical Areas
	2.2.1 Watchdog
	2.2.2 Timing of Measurement Data Acquisition
	2.2.3 Timing of the Telecommand Reception
	2.2.4 Timing of the Telemetry Data Stream
	2.2.5 Interference Between Health Monitoring and Acquisitions
	2.2.6 Interference Between Memory Write and Checksums
	2.2.7 Summary of Possible Problems

	2.3 Open Issues

	3. DEBIE Architecture Overview
	3.1 DEBIE Application Software
	Figure 1: DEBIE Application Software Tasks
	3.1.1 Acquisition Task
	3.1.2 Health Monitoring Task
	3.1.3 Telecommand Execution Task
	3.1.4 Interrupt Services
	3.1.5 Shared Memory

	3.2 DEBIE Hardware Interface
	Figure 2: Role of DEBIE Hardware Interface

	4. General System Design
	4.1 The 80C32 Processor
	4.1.1 Registers
	4.1.2 Memory
	4.1.3 Instructions
	4.1.4 Memory Models
	4.1.5 Interrupts

	4.2 Use of RTX Kernel
	Table 2: Used RTX functions

	4.3 Interrupt Management
	4.4 Task Management
	4.5 Stack Sizes
	4.5.1 Standard task stacks
	4.5.2 Fast task stacks
	4.5.3 Interrupt service stacks
	4.5.4 Re-entrant Functions

	4.6 Portability of DEBIE Application Software

	5. Dynamic Architecture
	5.1 TC Interrupt Service
	Figure 3: TC interrupt service

	5.2 TM Interrupt Service
	Figure 4: TM interrupt service

	5.3 Telecommand Execution Task
	Figure 5: Telecommand and Telemetry task loop
	Table 3: Descriptions of the TC states

	Figure 6: TC State Transitions

	5.4 Health Monitoring Task
	5.4.1 SU Self Test
	Figure 7: Health Monitoring task
	Figure 8: Health monitoring function hierarchy
	Figure 9: Health Monitoring timeline

	5.5 Hit Trigger Interrupt Service
	Figure 10: Particle Hit interrupt service

	5.6 Acquisition Task
	Figure 11: Acquisition task loop

	6. Static Architecture
	6.1 Environment Object : RTX_51
	6.1.1 Problem definition
	6.1.2 Formalization of the solution
	6.1.2.1 Object Description Skeleton
	6.1.2.2 Generated spec code
	6.1.2.3 Generated body code

	6.2 Object : DEBIE
	6.2.1 Problem definition
	6.2.2 Formalization of the strategy
	6.2.2.1 Identification of objects
	6.2.2.2 Identification of operations

	Operation Dictionary
	Operation Set Dictionary
	6.2.2.3 Grouping operations and objects
	6.2.2.4 Graphical description
	6.2.3 Formalization of the solution
	6.2.3.1 Generated spec code

	6.3 Object : DAS
	6.3.1 Problem definition
	6.3.2 Formalization of the strategy
	6.3.2.1 Identification of objects
	6.3.2.2 Identification of operations

	Operation Dictionary
	Operation Set Dictionary
	6.3.2.3 Grouping operations and objects
	6.3.2.4 Graphical description
	6.3.3 Formalization of the solution
	6.3.3.1 Object Description Skeleton DAS
	6.3.3.2 Generated spec code
	6.3.3.3 Generated body code

	6.4 Object : Acquisitions
	6.4.1 Problem definition
	6.4.2 Formalization of the strategy
	6.4.2.1 Identification of objects
	6.4.2.2 Identification of operations

	Operation Dictionary
	Operation Set Dictionary
	6.4.2.3 Grouping operations and objects
	6.4.2.4 Graphical description
	6.4.3 Formalization of the solution
	6.4.3.1 Object Description Skeleton Acquisitions
	6.4.3.2 Generated spec code
	6.4.3.3 Generated body code

	6.5 Object : Measurements
	6.5.1 Problem definition
	6.5.2 Formalization of the solution
	6.5.2.1 Object Description Skeleton Measurements
	6.5.2.2 Generated spec code
	6.5.2.3 Generated body code

	6.6 Object : Classification
	6.6.1 Problem definition
	6.6.2 Formalization of the solution
	6.6.2.1 Object Description Skeleton Classification
	6.6.2.2 Generated spec code
	6.6.2.3 Generated body code

	6.7 Object : TmTcInterface
	6.7.1 Problem definition
	6.7.2 Formalization of the strategy
	6.7.2.1 Identification of objects
	6.7.2.2 Identification of operations

	Operation Dictionary
	Operation Set Dictionary
	6.7.2.3 Grouping operations and objects
	6.7.2.4 Graphical description
	6.7.3 Formalization of the solution
	6.7.3.1 Object Description Skeleton TmTcInterface
	6.7.3.2 Generated spec code
	6.7.3.3 Generated body code

	6.8 Object : TmTcHandler
	6.8.1 Problem definition
	6.8.2 Formalization of the solution
	6.8.2.1 Object Description Skeleton TmTcHandler
	6.8.2.2 Generated spec code
	6.8.2.3 Generated body code

	6.9 Object : Telemetry
	6.9.1 Problem definition
	6.9.2 Formalization of the solution
	6.9.2.1 Object Description Skeleton Telemetry
	6.9.2.2 Generated spec code
	6.9.2.3 Generated body code

	6.10 Object : HealthMonitoring
	6.10.1 Problem definition
	6.10.2 Formalization of the solution
	6.10.2.1 Object Description Skeleton HealthMonitoring
	6.10.2.2 Generated spec code
	6.10.2.3 Generated body code

	6.11 Object : DHI
	6.11.1 Problem definition
	6.11.2 Formalization of the strategy
	6.11.2.1 Identification of objects
	6.11.2.2 Identification of operations

	Operation Set Dictionary
	6.11.2.3 Grouping operations and objects
	6.11.2.4 Graphical description
	6.11.3 Formalization of the solution
	6.11.3.1 Object Description Skeleton DHI
	6.11.3.2 Generated spec code
	6.11.3.3 Generated body code

	6.12 Object : HW_Interface
	6.12.1 Problem definition
	6.12.2 Formalization of the solution
	6.12.2.1 Object Description Skeleton HW_Interface
	6.12.2.2 Generated spec code
	6.12.2.3 Generated body code

	6.13 Object : RTX_Interface
	6.13.1 Problem definition
	6.13.2 Formalization of the solution
	6.13.2.1 Object Description Skeleton RTX_Interface
	6.13.2.2 Generated spec code
	6.13.2.3 Generated body code

	7 DAS Header Files
	7.1 class.h
	7.2 classtab.h
	7.3 health.h
	7.4 kernobj.h
	7.5 measure.h
	7.6 tc_hand.h
	7.7 telem.h
	7.8 tm_data.h
	7.9 version.h

	8 DHI Header Files
	8.1 ad_conv.h
	8.2 dpu_ctrl.h
	8.3 isr_ctrl.h
	8.4 keyword.h
	8.5 msg_ctrl.h
	8.6 su_ctrl.h
	8.7 taskctrl.h
	8.8 ttc_ctrl.h

