

PROTECTED

Specification of Test Bench

Toyota InfoTechnology Center, U.S.A.

PROTECTED

【 Table of Contents 】
1 Scope ... 4
2 Overview of Test Suites .. 4
3 Detailed Specification .. 8

3.1 Bit Shift Bigger Than Integral Type or Negative ... 8
3.2 Dynamic Buffer Overrun ... 8
3.3 Dynamic Buffer Underrun ... 8
3.4 Comparison NULL with Function Pointer ... 8
3.5 Contradict Conditions ... 8
3.6 Integer Precision Lost Because of Cast ... 8
3.7 Data Overflow ... 8
3.8 Data Underflow ... 8
3.9 Deadcode ... 9
3.10 Deadlock .. 9
3.11 Deletion of Data Structure Sentinel ... 9
3.12 Double Free .. 9
3.13 Double Lock ... 9
3.14 Double Release .. 9
3.15 Unintentional Endless Loop ... 9
3.16 Free Non Dynamically Allocated Memory .. 10
3.17 Free NULL Pointer ... 10
3.18 Bad Cast of a Function Pointer .. 10
3.19 Return Value of Function Never Checked ... 10
3.20 Improper Error Handling... 10
3.21 Improper Termination of Block ... 10
3.22 Useless Assignment ... 10
3.23 Bad Extern Type for Global Variable ... 10
3.24 Invalid Memory Access to Already Freed Area ... 10
3.25 Assign Small Buffer for Structure ... 10
3.26 Live Lock .. 11
3.27 Locked but Never Unlock ... 11
3.28 Memory Allocation Failure ... 11
3.29 Memory Leakage ... 11
3.30 Non Void Function does not Return Value .. 11
3.31 Dereferencing a NULL pointer ... 11
3.32 Static Buffer Overrun .. 11
3.33 Memory Copy at Overlapping Areas .. 11
3.34 Power Related Errors ... 11
3.35 Incorrect Pointer Arithmetic .. 12
3.36 Race Condition ... 12
3.37 Redundant Condition ... 12
3.38 Return of a Pointer to a Local Variable .. 12
3.39 Integer Sign Lost Because of Unsigned Cast .. 13

1

PROTECTED

3.40 Long Lock ... 13
3.41 Cross Thread Stack Access ... 13
3.42 Stack Overflow ... 13
3.43 Stack Underrun .. 13
3.44 Static Buffer Underrun .. 13
3.45 Uninitialized Memory Access ... 13
3.46 Uninitialized Pointer ... 13
3.47 Uninitialized Variable .. 13
3.48 Unlock Without Lock .. 13
3.49 Unused Variable ... 14
3.50 Wrong Arguments Passed to a Function Pointer .. 14
3.51 Division by Zero.. 14

4 Bibliography ... 15

2

PROTECTED

【 Tables 】
Table 1 Defect Types .. 4
Table 2 Specification of Test Bench ... 4
Table 3 Relation between Defect Sub-Type and Test Suite Files .. 6
Table 4 Corner Cases of Pow (x,y) ... 12

3

PROTECTED

1 Scope
This document discusses the test suite specifications. It provides examples and variations of different
types of defects considered for generating the test suites.

2 Overview of Test Suites
Based on [1] Annex A (Source Code Weaknesses), we prepare a set of defect types. From [1] Annex
A, we select the defects related to embedded systems. Moreover, we add some defect types related to
dynamic memory allocation, error handling, multithreading, which can be detected by tools but not
mentioned in [1] Annex A.

Table 1 depicts the splitting of the 9 different defect types into specific number of defect sub-types.
These defect variations are shortlisted to make the test bench used for evaluation of various tools.

Table 1 Defect Types

Defect Type Subtype samples # of Defect Subtypes

1 Static memory defects Static buffer overrun, etc. 2
2 Dynamic memory defects Dynamic buffer overrun, etc. 5
3 Stack related defects Stack overflow, etc. 3
4 Numerical defects Division by zero, etc. 7
5 Resource management defects Invalid memory access to already freed area, etc. 7
6 Pointer related defects Dereferencing a NULL pointer, etc. 7
7 Concurrency defects Dead lock, etc. 8
8 Inappropriate code Dead code, etc. 7
9 Misc defects Uninitialized variables, etc. 5
Total 51

Table 2 gives a detailed specification of the test bench in terms of the defect sub-type classification.
This depicts the fact that the test bench not only supports defects, but also supports defect-free
variation to evaluate the false-positive scenarios.

Table 2 Specification of Test Bench

Defect Subtype Defect Type w/ Defect w/o Defect

1 Bit shift bigger than integral type or negative Numerical 17 17
2 Dynamic buffer overrun Dynamic memory 32 32
3 Dynamic buffer underrun Dynamic memory 39 39
4 Comparison NULL with function pointer Pointer related 2 2
5 Contradict conditions Inappropriate code 10 10
6 Integer precision lost because of cast Numerical 19 19
7 Data overflow Numerical 25 25
8 Data underflow Numerical 12 12

4

PROTECTED

9 Dead code Inappropriate code 13 13
10 Dead lock Concurrency 5 5
11 Deletion of data structure sentinel Dynamic memory 3 3
12 Double free Resource management 12 12
13 Double lock Concurrency 4 4
14 Double release Concurrency 6 6
15 Unintentional endless loop Misc 9 9
16 Free non dynamically allocated memory Resource management 16 16
17 Free NULL pointer Pointer related 14 14
18 Bad cast of a function pointer Pointer related 15 15
19 Return value of function never checked Inappropriate code 16 16
20 Improper error handling Inappropriate code 4 4
21 Improper termination of block Inappropriate code 4 4
22 Useless assignment Misc 1 1
23 Bad extern type for global variable Misc 6 6
24 Invalid memory access to already freed area Resource management 17 17
25 Assign small buffer for structure Dynamic memory 11 11
26 Live lock Concurrency 1 1
27 Locked but never unlock Concurrency 9 9
28 Memory allocation failure Resource management 16 16
29 Memory leakage Resource management 18 18
30 Non void function does not return value Misc 4 4
31 Dereferencing a NULL pointer Pointer related 17 17
32 Static buffer overrun Static memory 54 54
33 Memory copy at overlapping areas Dynamic memory 2 2
34 Power related errors Numerical 29 29
35 Incorrect pointer arithmetic Pointer related 2 2
36 Race condition Concurrency 8 8
37 Redundant conditions Inappropriate code 14 14
38 Return of a pointer to a local variable Resource management 2 2
39 Integer sign lost because of unsigned cast Numerical 19 19
40 Long lock Concurrency 3 3
41 Cross thread stack access Stack related 6 6
42 Stack overflow Stack related 7 7
43 Stack underrun Stack related 7 7
44 Static buffer underrun Static memory 13 13
45 Uninitialized memory access Resource management 15 15

46 Uninitialized pointer Pointer related 16 16
47 Uninitialized variable Misc 15 15
48 Unlock without lock Concurrency 8 8
49 Unused variable Inappropriate code 7 7

5

PROTECTED

50 Wrong arguments passed to a function pointer Pointer related 18 18
51 Division by zero Numerical 16 16
Subtotal 638 638

Total 1,276

Table 3 shows the relation between the various defect sub-types used for analysis the file names as
specified in the test suite.

Table 3 Relation between Defect Sub-Type and Test Suite Files
Defect Sub-type Defect Type File Name

1 Bit shift bigger than integral type or negative Numerical defects bit_shift

2 Dynamic buffer overrun Dynamic memory defects buffer_overrun_dynamic

3 Dynamic buffer underrun Dynamic memory defects buffer_underrun_dynamic

4 Comparison NULL with function pointer Pointer related defects cmp_funcadr

5 Contradict conditions Inappropriate code conflicting_cond

6 Integer precision lost because of cast Numerical defects data_lost

7 Data overflow Numerical defects data_overflow

8 Data underflow Numerical defects data_underflow

9 Dead code Inappropriate code dead_code

10 Dead lock Concurrency defects dead_lock

11 Deletion of data structure sentinel Dynamic memory defects deletion_of_data_structure_sentinel

12 Double free Resource management defects double_free

13 Double lock Concurrency defects double_lock

14 Double release Concurrency defects double_release

15 Unintentional endless loop Misc defects endless_loop

16 Free non dynamically allocated memory Resource management defects free_nondynamic_allocated_memory

17 Free NULL pointer Pointer related defects free_null_pointer

18 Bad cast of a function pointer Pointer related defects func_pointer

19 Return value of function never checked Inappropriate code function_return_value_unchecked

20 Improper error handling Inappropriate code improper_error_handling

21 Improper termination of block Inappropriate code improper_termination_of_block

22 Useless assignment Misc defects insign_code

23 Bad extern type for global variable Misc defects invalid_extern

24 Invalid memory access to already freed area Resource management defects invalid_memory_access

25 Assign small buffer for structure Dynamic memory defects littlemem_st

26 Live lock Concurrency defects livelock

27 Locked but never unlock Concurrency defects lock_never_unlock

28 Memory allocation failure Resource management defects memory_allocation_failure

29 Memory leakage Resource management defects memory_leak

30 Non void function does not return value Misc defects not_return

31 Dereferencing a NULL pointer Pointer related defects null_pointer

32 Static buffer overrun Static memory defects overrun_st

33 Memory copy at overlapping areas Dynamic memory defects ow_memcpy

6

PROTECTED

34 Power related errors Numerical defects pow_related_errors

35 Incorrect pointer arithmetic Pointer related defects ptr_subtraction

36 Race condition Concurrency defects race_condition

37 Redundant conditions Inappropriate code redundant_cond

38 Return of a pointer to a local variable Resource management defects return_local

39 Integer sign lost because of unsigned cast Numerical defects sign_conv

40 Long lock Concurrency defects sleep_lock

41 Cross thread stack access Stack related defects st_cross_thread_access

42 Stack overflow Stack related defects st_overflow

43 Stack underrun Stack related defects st_underrun

44 Static buffer underrun Static memory defects underrun_st

45 Uninitialized memory access Resource management defects uninit_memory_access

46 Uninitialized pointer Pointer related defects uninit_pointer

47 Uninitialized variable Misc defects uninit_var

48 Unlock without lock Concurrency defects unlock_without_lock

49 Unused variable Inappropriate code unused_var

50 Wrong arguments passed to a function pointer Pointer related defects wrong_arguments_func_pointer

51 Division by zero Numerical defects zero_division

7

PROTECTED

3 Detailed Specification

3.1 Bit Shift Bigger Than Integral Type or Negative
This defect variation helps in identifying Numerical defects, which are related to the size of bit shift
operation being larger than the size of operands.

3.2 Dynamic Buffer Overrun
This defect variation identifies Dynamic Memory defects, which are related to memory access outside
dynamically allocated memory space.

3.3 Dynamic Buffer Underrun
This defect variation identifies Dynamic Memory defects, which are related to memory access lower
than the bounds of the dynamic allocated memory space.

3.4 Comparison NULL with Function Pointer
This defect variation identifies Pointer related defects, which are related to a function address
comparison with NULL. Usually, this operation is a misuse case that is supposed to be a coding error
of a function call with a missing ().

3.5 Contradict Conditions
This defect variation identifies Inappropriate code, which are related to validating the conditions that
conflict each other.

3.6 Integer Precision Lost Because of Cast
This defect variation identifies Numerical defects, which assign a variable of a larger variable type to
another variable with smaller data size. The result of which is some information of assigned variable is
lost.

3.7 Data Overflow
This defect variation identifies Numerical defects, which are illustrated in brief below.

- Integer - the result value of an operation exceed the maximum value of operands. As a result,
the result value is incorrect.

o Signed: Maximum Value+1→Minimum Value (Alternate Sign)

o Unsigned: Maximum Value+1→0

- Floating Point - the result value of an operation exceed the maximum value of operands. As a
result, the result value is infinite.

- Positive Overflow: Maximum Value + Positive Value -> Infinite Positive

- Negative Overflow: Minimum Value – Positive Value -> Infinite Negative

3.8 Data Underflow
This defect variation identifies Numerical defects, which are illustrated in brief below.

8

PROTECTED

- Integer…the result value is under the minimum value of operands. As a result, the result value
is incorrect.

o Signed: Minimum Value-1→Maximum Value (Alternate Sign)

o Unsigned：0-1→Maximum Value

- Floating point…the result value is under the minimum value of operands. As a result, the result
value is incorrect.

o Positive Underflow: Maximum Value/2→0

o Negative Underflow: Minimum Value2→0

3.9 Deadcode
This defect variation identifies Inappropriate code, which validates the existing code that is never
executed.

3.10 Deadlock
This defect variation identifies Concurrency defects. Deadlock conditions occur when resources with
exclusive control are implemented inappropriately i.e. if different orders of locks are sequenced among
tasks.

3.11 Deletion of Data Structure Sentinel
This defect variation identifies Dynamic memory defects. The accidental deletion of a data-structure
sentinel can cause serious programming logic problems. Often data-structure sentinels are used to
mark structure of data. A common example of this is the null character at the end of strings. Another
common example is linked lists, which may contain a sentinel to mark the end of the list. It is
dangerous to allow this type of control data to be easily accessible. Therefore, it is important to protect
from the deletion or modification outside of some wrapper interface, which provides safety.

3.12 Double Free
This defect variation identifies Resource Management defects, which validates an attempt to free heap
memory, which is already “free”.

3.13 Double Lock
This defect variation identifies Concurrency defects, which validates if in the same task, the same
resource is locked twice, or is never unlocked.

3.14 Double Release
This defect variation identifies Concurrency defects, which validates if in the same task, the same
resource is unlocked twice.

3.15 Unintentional Endless Loop
This defect variation identifies some Miscellaneous defects, which validates no termination of a
program due to an infinite loop.

9

PROTECTED

3.16 Free Non Dynamically Allocated Memory
This defect variation identifies Resource Management defects, which validates an attempt to free a
memory location that was not allocated dynamically.

3.17 Free NULL Pointer
This defect variation identifies Pointer Related defects, which validates an attempt to free a pointer
which is NULL.

3.18 Bad Cast of a Function Pointer
This defect variation identifies Pointer Related defects, which validates an attempt to assign a function
pointer to other function pointer that has different arguments and/or return value.

3.19 Return Value of Function Never Checked
This defect variation identifies Inappropriate code, which validates if a return value from a function is
never evaluated.

3.20 Improper Error Handling
This defect variation identifies Inappropriate code in C++ programing, which validates if detected
errors are handled properly. For instance, a try block without a catch or throw.

3.21 Improper Termination of Block
This defect variation identifies Inappropriate code as in the improper termination of a block of code.

3.22 Useless Assignment
This defect variation identifies Miscellaneous defects, which validates if within a certain block of
statements, there exists some meaningless assignment.

3.23 Bad Extern Type for Global Variable
This defect variation identifies Miscellaneous defects, which validates a global variable being used as
a different type in a different file.

3.24 Invalid Memory Access to Already Freed Area
This defect variation identifies Resource Management defects, which validates access to a memory
location, which is already freed.

3.25 Assign Small Buffer for Structure
This defect variation identifies Dynamic memory defects. These defects are used to validate an
allocation of a smaller array buffer to a larger structure pointer for data access. When such a structure
pointer is accessed, it could result in invalid data read or a buffer overrun.

10

PROTECTED

3.26 Live Lock
This defect variation identifies Concurrency defects. Live lock is a condition that occurs when two or
more processes continually changes their state in response to changes in the other processes. The
result is that none of the processes will complete. An analogy is when two people meet in a hallway
and each tries to step around the other but they end up swaying from side to side getting in each
other's way as they try to get out of the way.

3.27 Locked but Never Unlock
This defect variation identifies Concurrency defects, which validates if a resource is locked from
access but never unlocked for access.

3.28 Memory Allocation Failure
This defect variation identifies Resource Management defects, which validates a memory allocation
failure due to insufficient memory. Typically a memory allocation failure would happen when there is a
heap overflow condition.

3.29 Memory Leakage
This defect variation identifies Resource Management defects, which validates a memory allocation on
the heap and but a failure to “free” it, resulting in memory holes.

3.30 Non Void Function does not Return Value
This defect variation identifies Miscellaneous defects, which evaluates if a function does not return a
value even though its return type is non-void.

3.31 Dereferencing a NULL pointer
This defect variation identifies Pointer Related defects, which validates access to an address pointed
by a NULL pointer.

3.32 Static Buffer Overrun
This defect variation identifies Static Memory defects, which validates an access to the memory area
that is not reserved statically, e.g., an oversized index for an array

3.33 Memory Copy at Overlapping Areas
This defect variation identifies Dynamic Memory defects, which validates data overwriting while
copying of array elements continuously.

3.34 Power Related Errors
This defect variation identifies Numerical defects, which validate use of large data as a result of “pow”
operations. Double values, which are given as an input to “pow” functions, may not be able to store
those big values. The result can be sometimes larger than the maximum value double can hold. Table
4 depicts a tabulation of the corner cases while using “pow” functionality.

11

http://www.webopedia.com/TERM/P/process.html

PROTECTED

- Positive Overflow: Maximum Value ^ Positive Value = Positive Overflow

- Negative Overflow: Minimum Value ^ Negative Value = Negative overflow or underflow

Table 4 Corner Cases of Pow (x,y)

Base

Exponent

Positive Large Number

> 1

Negative Large

Number < -1

Small Absolute

Number 0 < x < 1

Small Absolute

Number -1 < x < 0

Positive Large and

Even Number > 1
Overflow Overflow Losing precision Losing precision

Positive Large and

Odd Number > 1
Same as above Underflow Same as above Same as above

Negative Large and

Even Number > 0

Overflow

Overflow
Loosing Precision Loosing Precision

Negative Large and

Odd Number > 0
Same as above Same as above Same as above Underflow

Positive Small Number

1 > y > 0
Same as above Same as above Losing precision

Complex Number (Not

Real Number)

Negative Small

Number -1 < y < 0
Same as above Same as above Same as above Same as above

3.35 Incorrect Pointer Arithmetic
This defect variation identifies Pointer Related defects, which validates pointer arithmetic resulting to
access different kinds of memory areas.

3.36 Race Condition
This defect variation identifies Concurrency defects, which validates a race condition. A race condition
occurs when 2 or more threads are attempting to access shared data and write into the shared location
at the same time. A scheduler can swap between threads at any point and hence the order at which
the threads will attempt to access the shared data is unpredictable. Therefore, the result of the change
in data is dependent on the thread-scheduling algorithm, i.e. both threads are 'racing' to
access/change the data.

3.37 Redundant Condition
This defect variation identifies Inappropriate code, which validates any redundant conditions if they
exist.

3.38 Return of a Pointer to a Local Variable
This defect variation identifies Resource Management defects, which validates if a returned pointer
from a function call points to a local variable, and if the caller access the memory via the pointer.

12

PROTECTED

3.39 Integer Sign Lost Because of Unsigned Cast
This defect variation identifies Numerical defects, which validates if the sign information is lost while
assigning a signed variable to unsigned variable; If while an unsigned variable is assigned to a signed
variable, and then the sign is alternated.

3.40 Long Lock
This defect variation identifies Concurrency defects, which validates the time-consuming steps
between lock and unlock.

3.41 Cross Thread Stack Access
This defect variation identifies Stack Related defects, which validates a thread accessing a different
thread's stack

3.42 Stack Overflow
This defect variation identifies Stack Related defects, which validates the size of used stack exceeding
the size of the prepared stack memory.

3.43 Stack Underrun
This defect variation identifies Stack Related defects, which validates a memory access lower than the
bounds of a declared stack.

3.44 Static Buffer Underrun
This defect variation identifies Static Memory defects, which validates a memory access to lower
address allocated statically (arrays).

3.45 Uninitialized Memory Access
This defect variation identifies Resource Management defects, which validates a memory access/
read of a memory location without initialization.

3.46 Uninitialized Pointer
This defect variation identifies Pointer Related defects, which validates if a pointer is accessed without
initialization.

3.47 Uninitialized Variable
This defect variation identifies Miscellaneous defects, which validates an access to an uninitialized
variable.

3.48 Unlock Without Lock
This defect variation identifies Concurrency defects, which validates if resource is being unlocked prior
to being locked.

13

PROTECTED

3.49 Unused Variable
This defect variation identifies Inappropriate code, which validates the existence of any unused
variables in the code.

3.50 Wrong Arguments Passed to a Function Pointer
This defect variation identifies Pointer Related defects, which validates the different number of
arguments or argument types passed to the function pointer.

3.51 Division by Zero
This defect variation identifies Numerical defects, which validates if an arithmetic expression is divided
by zero or module operation is performed with zero.

14

PROTECTED

4 Bibliography

[1] P. E. Black, M. Kass, M. Koo and E. Fong, "Source Code Security Analysis Tool Functional

Specification Version 1.1," National Institute of Standards and Technology, Gaithersburg, 2011.

15

	1 Scope
	2 Overview of Test Suites
	3 Detailed Specification
	3.1 Bit Shift Bigger Than Integral Type or Negative
	3.2 Dynamic Buffer Overrun
	3.3 Dynamic Buffer Underrun
	3.4 Comparison NULL with Function Pointer
	3.5 Contradict Conditions
	3.6 Integer Precision Lost Because of Cast
	3.7 Data Overflow
	3.8 Data Underflow
	3.9 Deadcode
	3.10 Deadlock
	3.11 Deletion of Data Structure Sentinel
	3.12 Double Free
	3.13 Double Lock
	3.14 Double Release
	3.15 Unintentional Endless Loop
	3.16 Free Non Dynamically Allocated Memory
	3.17 Free NULL Pointer
	3.18 Bad Cast of a Function Pointer
	3.19 Return Value of Function Never Checked
	3.20 Improper Error Handling
	3.21 Improper Termination of Block
	3.22 Useless Assignment
	3.23 Bad Extern Type for Global Variable
	3.24 Invalid Memory Access to Already Freed Area
	3.25 Assign Small Buffer for Structure
	3.26 Live Lock
	3.27 Locked but Never Unlock
	3.28 Memory Allocation Failure
	3.29 Memory Leakage
	3.30 Non Void Function does not Return Value
	3.31 Dereferencing a NULL pointer
	3.32 Static Buffer Overrun
	3.33 Memory Copy at Overlapping Areas
	3.34 Power Related Errors
	3.35 Incorrect Pointer Arithmetic
	3.36 Race Condition
	3.37 Redundant Condition
	3.38 Return of a Pointer to a Local Variable
	3.39 Integer Sign Lost Because of Unsigned Cast
	3.40 Long Lock
	3.41 Cross Thread Stack Access
	3.42 Stack Overflow
	3.43 Stack Underrun
	3.44 Static Buffer Underrun
	3.45 Uninitialized Memory Access
	3.46 Uninitialized Pointer
	3.47 Uninitialized Variable
	3.48 Unlock Without Lock
	3.49 Unused Variable
	3.50 Wrong Arguments Passed to a Function Pointer
	3.51 Division by Zero

	4 Bibliography

