From eca90ac82b764d8be84b31489f21b4c57e6d9140 Mon Sep 17 00:00:00 2001 From: Allan Blanchard <allan.blanchard@cea.fr> Date: Mon, 2 Dec 2019 15:43:44 +0100 Subject: [PATCH] [WP+Coq] 8.10 compatibility --- src/plugins/wp/configure.ac | 2 +- src/plugins/wp/share/coqwp/Bits.v | 2 +- src/plugins/wp/share/coqwp/BuiltIn.v | 2 +- src/plugins/wp/share/coqwp/Cbits.v | 12 ++-- src/plugins/wp/share/coqwp/Qedlib.v | 54 +++++++-------- src/plugins/wp/share/coqwp/Vlist.v | 4 +- src/plugins/wp/share/coqwp/Zbits.v | 68 +++++++++---------- src/plugins/wp/share/coqwp/int/Abs.v | 4 +- .../wp/share/coqwp/int/ComputerDivision.v | 8 +-- .../coqwp/int/ComputerOfEuclideanDivision.v | 2 +- .../wp/share/coqwp/int/EuclideanDivision.v | 12 ++-- .../wp/share/coqwp/int/Exponentiation.v | 12 ++-- src/plugins/wp/share/coqwp/int/Int.v | 4 +- src/plugins/wp/share/coqwp/int/MinMax.v | 20 +++--- src/plugins/wp/share/coqwp/int/Power.v | 4 +- 15 files changed, 105 insertions(+), 105 deletions(-) diff --git a/src/plugins/wp/configure.ac b/src/plugins/wp/configure.ac index 0185710fc06..6071257d209 100644 --- a/src/plugins/wp/configure.ac +++ b/src/plugins/wp/configure.ac @@ -82,7 +82,7 @@ if test "$ENABLE_WP" != "no"; then if test "$COQC" = "yes" ; then COQVERSION=`coqc -v | sed -n -e 's|.*version* *\([[^ ]]*\) .*$|\1|p' ` case $COQVERSION in - 8.7*|8.8*|8.9*|trunk) + 8.7*|8.8*|8.9*|8.10*|trunk) AC_MSG_RESULT(coqc version $COQVERSION found) ;; *) diff --git a/src/plugins/wp/share/coqwp/Bits.v b/src/plugins/wp/share/coqwp/Bits.v index 624a253f499..14ede3c3af1 100644 --- a/src/plugins/wp/share/coqwp/Bits.v +++ b/src/plugins/wp/share/coqwp/Bits.v @@ -460,7 +460,7 @@ Proof. Qed. Remark NxHpos_div2_p: forall n:N, - (0 < n)%N -> NxHpos (Ndiv2 n) = pred (NxHpos n). + (0 < n)%N -> NxHpos (N.div2 n) = pred (NxHpos n). Proof. destruct n. (** zero *) diff --git a/src/plugins/wp/share/coqwp/BuiltIn.v b/src/plugins/wp/share/coqwp/BuiltIn.v index c7b225032cb..097c5eeea2c 100644 --- a/src/plugins/wp/share/coqwp/BuiltIn.v +++ b/src/plugins/wp/share/coqwp/BuiltIn.v @@ -26,7 +26,7 @@ Global Instance int_WhyType : WhyType int. Proof. split. exact Z0. -exact Z_eq_dec. +exact Z.eq_dec. Qed. Notation real := R. diff --git a/src/plugins/wp/share/coqwp/Cbits.v b/src/plugins/wp/share/coqwp/Cbits.v index 2cedd5c8b56..a390807d456 100644 --- a/src/plugins/wp/share/coqwp/Cbits.v +++ b/src/plugins/wp/share/coqwp/Cbits.v @@ -1182,7 +1182,7 @@ Lemma is_uint_lxor : forall (n:Z) (x:Z) (y:Z), (Cint.is_uint n x) -> (Cint.is_uint n y) -> ((Cint.to_uint n (lxor x y)) = (lxor x y)). Proof. - intro n; is_uint_bitwise xorb (Zabs_nat n). + intro n; is_uint_bitwise xorb (Z.abs_nat n). Qed. (** * Some C-Integer Bits Conversions are identity *) @@ -1192,7 +1192,7 @@ Lemma is_uint_lor : forall (n:Z) (x:Z) (y:Z), (Cint.is_uint n x) -> (Cint.is_uint n y) -> ((Cint.to_uint n (lor x y)) = (lor x y)). Proof. - intro n; is_uint_bitwise orb (Zabs_nat n). + intro n; is_uint_bitwise orb (Z.abs_nat n). Qed. (* Why3 goal *) @@ -1200,7 +1200,7 @@ Lemma is_uint_land : forall (n:Z) (x:Z) (y:Z), (Cint.is_uint n x) -> (Cint.is_uint n y) -> ((Cint.to_uint n (land x y)) = (land x y)). Proof. - intro n; is_uint_bitwise andb (Zabs_nat n). + intro n; is_uint_bitwise andb (Z.abs_nat n). Qed. (* Why3 goal *) @@ -1486,7 +1486,7 @@ Lemma is_sint_lxor : forall (n:Z) (x:Z) (y:Z), (Cint.is_sint n x) -> (Cint.is_sint n y) -> ((Cint.to_sint n (lxor x y)) = (lxor x y)). Proof. - intro n; is_sint_bitwise xorb (Zabs_nat n). + intro n; is_sint_bitwise xorb (Z.abs_nat n). Qed. (* Why3 goal *) @@ -1494,7 +1494,7 @@ Lemma is_sint_lor : forall (n:Z) (x:Z) (y:Z), (Cint.is_sint n x) -> (Cint.is_sint n y) -> ((Cint.to_sint n (lor x y)) = (lor x y)). Proof. - intro n; is_sint_bitwise orb (Zabs_nat n). + intro n; is_sint_bitwise orb (Z.abs_nat n). Qed. (* Why3 goal *) @@ -1502,7 +1502,7 @@ Lemma is_sint_land : forall (n:Z) (x:Z) (y:Z), (Cint.is_sint n x) -> (Cint.is_sint n y) -> ((Cint.to_sint n (land x y)) = (land x y)). Proof. - intro n; is_sint_bitwise andb (Zabs_nat n). + intro n; is_sint_bitwise andb (Z.abs_nat n). Qed. (* Why3 goal *) diff --git a/src/plugins/wp/share/coqwp/Qedlib.v b/src/plugins/wp/share/coqwp/Qedlib.v index f251ad04956..2c42f2d4961 100644 --- a/src/plugins/wp/share/coqwp/Qedlib.v +++ b/src/plugins/wp/share/coqwp/Qedlib.v @@ -33,12 +33,12 @@ Set Implicit Arguments. (** ** Tactical *) -Ltac forward := - repeat (first [ split | intros ]) ; - try discriminate ; - try contradiction ; - try tauto ; - try constructor ; +Ltac forward := + repeat (first [ split | intros ]) ; + try discriminate ; + try contradiction ; + try tauto ; + try constructor ; try (apply False_ind ; omega ; fail) ; try (apply False_ind ; auto with zarith ; fail) ; auto with zarith. @@ -75,16 +75,16 @@ Inductive reflect (P:Prop) : bool -> Prop := | R_true : P -> reflect P true | R_false : ~P -> reflect P false. -Definition boolean {A : Set} - (f : A -> A -> bool) +Definition boolean {A : Set} + (f : A -> A -> bool) (p : A -> A -> Prop) : Prop := forall x y, reflect (p x y) (f x y). - + (* forall x y, (f x y = true <-> p x y) /\ (f x y = false <-> ~(p x y)). *) -Ltac case_leq x y := +Ltac case_leq x y := generalize (Zle_cases x y) ; induction (Zle_bool x y) ; try omega. Ltac case_lt x y := @@ -130,12 +130,12 @@ Proof. unfold boolean. intros x y. by (case_neq x y). Qed. -Theorem Zlt_boolean : boolean Zlt_bool Zlt. +Theorem Zlt_boolean : boolean Zlt_bool Z.lt. Proof. unfold boolean. intros x y. by (case_lt x y). Qed. -Theorem Zle_boolean : boolean Zle_bool Zle. +Theorem Zle_boolean : boolean Zle_bool Z.le. Proof. unfold boolean. intros x y. by (case_leq x y). Qed. @@ -156,7 +156,7 @@ Hypothesis Aneq_boolean : forall A : Set, boolean (@Aneq_bool A) (fun x y => x<> (** ** Integer Induction (after a given rank) *) -Theorem Z_induction(m : Z)(P : Z -> Prop) : +Theorem Z_induction(m : Z)(P : Z -> Prop) : (forall n, n <= m -> P n ) -> (forall n, n >= m -> P n -> P (n+1)) -> (forall n, P n). @@ -165,12 +165,12 @@ Proof. induction (Z_le_dec n m) ; auto with zarith. apply Z.le_ind with (n := m) ; auto with zarith. unfold Morphisms.Proper. - unfold Morphisms.respectful. + unfold Morphisms.respectful. intros. rewrite H1. intuition. intros. apply H0; auto with zarith. Qed. -Theorem Z_induction_rank(m : Z)(P : Z -> Prop) : +Theorem Z_induction_rank(m : Z)(P : Z -> Prop) : P m -> (forall n, m <= n -> P n -> P (n+1)) -> (forall n, m <= n -> P n). @@ -180,7 +180,7 @@ Proof. + intros. apply Z.le_ind with (n := m) ; auto with zarith. unfold Morphisms.Proper. - unfold Morphisms.respectful. + unfold Morphisms.respectful. intros. rewrite H1. intuition. + intros. auto with zarith. Qed. @@ -257,7 +257,7 @@ Qed. Definition Cdiv (n d : Z) : Z := match n , d with | 0 , _ | _ , 0 => 0 - | Zpos a , Zpos b + | Zpos a , Zpos b | Zneg a , Zneg b => (Zpos a/Zpos b) | Zpos a , Zneg b | Zneg a , Zpos b => (-(Zpos a/Zpos b)) @@ -269,7 +269,7 @@ Definition Cmod (n d : Z) : Z := | Zpos a , Zpos b | Zpos a , Zneg b => ( (Zpos a) mod (Zpos b) ) | Zneg a , Zpos b - | Zneg a , Zneg b => (-( (Zpos a) mod (Zpos b) )) + | Zneg a , Zneg b => (-( (Zpos a) mod (Zpos b) )) end. Lemma Cdiv_cases : forall n d, @@ -279,7 +279,7 @@ Lemma Cdiv_cases : forall n d, ((n <= 0) -> (d < 0) -> Cdiv n d = (-n)/(-d)). Proof. intros. - destruct n as [|a|a] ; + destruct n as [|a|a] ; destruct d as [|b|b] ; intuition ; by auto with zarith. @@ -292,14 +292,14 @@ Lemma Cmod_cases : forall n d, ((n <= 0) -> (d < 0) -> Cmod n d = -((-n) mod (-d))). Proof. intros. - destruct n as [|a|a] ; + destruct n as [|a|a] ; destruct d as [|b|b] ; intuition ; by auto with zarith. Qed. -Theorem Cdiv_enclidian : - forall (n d : Z), +Theorem Cdiv_enclidian : + forall (n d : Z), d <> 0 -> let q := Cdiv n d in let r := Cmod n d in (q * d + r = n). @@ -307,11 +307,11 @@ Proof. intros n d NEQ q r. assert (OPP: forall p, (- (Zneg p) = Zpos p)) by auto with zarith. assert (NEG: forall p, (Zneg p = - (Zpos p))) by auto with zarith. - destruct n as [|a|a] ; + destruct n as [|a|a] ; destruct d as [|b|b] ; auto with zarith ; - unfold Cdiv in q ; unfold Cmod in r ; - unfold q ; unfold r ; - repeat rewrite OPP ; repeat rewrite NEG ; + unfold Cdiv in q ; unfold Cmod in r ; + unfold q ; unfold r ; + repeat rewrite OPP ; repeat rewrite NEG ; rewrite (Zmod_eq_full (Zpos a) (Zpos b)) ; try discriminate ; try ring. Qed. @@ -323,7 +323,7 @@ Lemma Cmod_less : forall n d, ((n <= 0) -> (d < 0) -> d < Cmod n d <= 0). Proof. intros. - destruct n as [|a|a] ; + destruct n as [|a|a] ; destruct d as [|b|b] ; intuition ; simpl ; forward ; generalize (Z_mod_lt (Zpos a) (Zpos b) (Zgt_pos_0 b)) ; diff --git a/src/plugins/wp/share/coqwp/Vlist.v b/src/plugins/wp/share/coqwp/Vlist.v index e4f1f454f37..e642bb8fb17 100644 --- a/src/plugins/wp/share/coqwp/Vlist.v +++ b/src/plugins/wp/share/coqwp/Vlist.v @@ -76,7 +76,7 @@ Definition repeat {a:Type} {a_WT:WhyType a} : (list a) -> Z -> list a. exact(fun w n => match n with | Z0 => nil | Zneg _ => nil - | other => repeat_nat a w (Zabs_nat (n-1)) + | other => repeat_nat a w (Z.abs_nat (n-1)) end). Defined. @@ -89,7 +89,7 @@ Defined. Definition nth {a:Type} {a_WT:WhyType a} : (list a) -> Z -> a. exact(fun w n => match n with | Zneg _ => (@why_inhabitant a a_WT) - | other => List.nth (Zabs_nat n) w (@why_inhabitant a a_WT) + | other => List.nth (Z.abs_nat n) w (@why_inhabitant a a_WT) end). Defined. diff --git a/src/plugins/wp/share/coqwp/Zbits.v b/src/plugins/wp/share/coqwp/Zbits.v index 0c02116df5e..8fe2c8c4df0 100644 --- a/src/plugins/wp/share/coqwp/Zbits.v +++ b/src/plugins/wp/share/coqwp/Zbits.v @@ -93,37 +93,37 @@ Qed. (** Some remarks about absolute value *) Remark zabs_gt: forall n m: Z, - Zabs m < Zabs n -> (Zabs_nat m < Zabs_nat n)%nat. + Z.abs m < Z.abs n -> (Z.abs_nat m < Z.abs_nat n)%nat. Proof. - intros. apply (inj_lt_rev (Zabs_nat m) (Zabs_nat n)). + intros. apply (inj_lt_rev (Z.abs_nat m) (Z.abs_nat n)). rewrite (inj_Zabs_nat n). rewrite (inj_Zabs_nat m). omega. Qed. Remark zabs_le: forall n m: Z, - Zabs n <= Zabs m -> (Zabs_nat n <= Zabs_nat m)%nat. + Z.abs n <= Z.abs m -> (Z.abs_nat n <= Z.abs_nat m)%nat. Proof. - intros. apply (inj_le_rev (Zabs_nat n) (Zabs_nat m)). + intros. apply (inj_le_rev (Z.abs_nat n) (Z.abs_nat m)). rewrite (inj_Zabs_nat n). rewrite (inj_Zabs_nat m). omega. Qed. Remark zabs_le_plus: forall (n m:Z) (k: nat), - Zabs n <= Zabs m -> (Zabs_nat n <= k + Zabs_nat m)%nat. + Z.abs n <= Z.abs m -> (Z.abs_nat n <= k + Z.abs_nat m)%nat. Proof. intros. - apply (inj_le_rev (Zabs_nat n) (k + Zabs_nat m)%nat). + apply (inj_le_rev (Z.abs_nat n) (k + Z.abs_nat m)%nat). rewrite (inj_Zabs_nat n). rewrite inj_plus. rewrite (inj_Zabs_nat m). omega. Qed. Remark zabs_nat_zabs: forall n: Z, - Zabs_nat (Zabs n) = Zabs_nat n. + Z.abs_nat (Z.abs n) = Z.abs_nat n. Proof. intro. rewrite <- (inj_Zabs_nat n). rewrite Zabs_nat_Z_of_nat. auto. Qed. Remark zabs_minus: forall n m: Z, - Zabs n <= Zabs m -> (Zabs_nat m - Zabs_nat n)%nat = Zabs_nat (Zabs m - Zabs n). + Z.abs n <= Z.abs m -> (Z.abs_nat m - Z.abs_nat n)%nat = Z.abs_nat (Z.abs m - Z.abs n). Proof. intros. rewrite Zabs_nat_Zminus by (generalize (Zabs_pos n); omega). @@ -132,7 +132,7 @@ Proof. Qed. Remark zabs_plus: forall n m: Z, - (Zabs_nat m + Zabs_nat n)%nat = Zabs_nat (Zabs m + Zabs n). + (Z.abs_nat m + Z.abs_nat n)%nat = Z.abs_nat (Z.abs m + Z.abs n). Proof. intros. rewrite Zabs_nat_Zplus. @@ -1014,7 +1014,7 @@ Proof. Qed. Lemma Z_bitwise_ZxHbound: forall (f: bool -> bool -> bool) (x y: Z), - ZxHbound (Z_bitwise f x y) <= Zmax (ZxHbound x) (ZxHbound y). + ZxHbound (Z_bitwise f x y) <= Z.max (ZxHbound x) (ZxHbound y). Proof. intros f x y. generalize (Z_bitwise_ZxHpos f x y). @@ -1043,7 +1043,7 @@ Proof. generalize (Z_bitwise_ZxHbound f x y). pose (zxy := Z_bitwise f x y); fold zxy. generalize (ZxHrange zxy). - apply Zmax_case_strong. + apply Z.max_case_strong. (** ZxHbound y <= ZxHbound x *) + intros Ryx Rzxy. destruct Rzxy as [ bound_neg bound_pos ]. @@ -1128,7 +1128,7 @@ Proof. generalize (Z_bitwise_ZxHbound f x y). pose (zxy := Z_bitwise f x y); fold zxy; fold zxy in Bz. generalize (ZxHrange zxy). - apply Zmax_case_strong. + apply Z.max_case_strong. (** ZxHbound y <= ZxHbound x *) + intros Ryx Rzxy. destruct Rzxy as [ Bneg Bpos ]. @@ -1227,7 +1227,7 @@ Qed. Parameter lsl_undef: Z -> Z -> Z. Definition lsl_def (x:Z) (n:Z): Z := - lsl_shift_def x (Zabs_nat n). + lsl_shift_def x (Z.abs_nat n). Definition lsl (x : Z) (y : Z) : Z := if Zle_bool 0 y then lsl_def x y @@ -1249,7 +1249,7 @@ Qed. Parameter lsr_undef: Z -> Z -> Z. Definition lsr_def (x:Z) (n:Z): Z := - lsr_shift_def x (Zabs_nat n). + lsr_shift_def x (Z.abs_nat n). Definition lsr (x : Z) (y : Z) : Z := if Zle_bool 0 y then lsr_def x y @@ -1266,15 +1266,15 @@ Qed. (** ** Properties of shifting operators *) Theorem Zbit_lsl: forall (x n: Z) (k: nat), - Zbit (lsl_def x n) k = if (Zle_bool (Zabs n) (Z_of_nat k)) then Zbit x (Zabs_nat ((Z_of_nat k) - (Zabs n))) else false. + Zbit (lsl_def x n) k = if (Zle_bool (Z.abs n) (Z_of_nat k)) then Zbit x (Z.abs_nat ((Z_of_nat k) - (Z.abs n))) else false. Proof. intros. unfold lsl_def. rewrite lsl_arithmetic_shift. unfold lsl_arithmetic_def. rewrite Zbit_shift_l. - case_leq (Zabs n) (Z_of_nat k). + case_leq (Z.abs n) (Z_of_nat k). (** case |n| <= k *) + intro LEQ. - cut (leb (Zabs_nat n) k= true). + cut (leb (Z.abs_nat n) k= true). { intro LEB. rewrite LEB. f_equal. rewrite Zabs_nat_Zminus; try split; try apply Zabs_pos; auto. rewrite Zabs_nat_Z_of_nat. @@ -1285,7 +1285,7 @@ Proof. auto. (** case |n| > k *) + intro GT. - cut (leb (Zabs_nat n) k = false). + cut (leb (Z.abs_nat n) k = false). intro GTB. rewrite GTB. auto. apply leb_correct_conv. rewrite <- (Zabs_nat_Z_of_nat k). @@ -1295,7 +1295,7 @@ Proof. Qed. Theorem Zbit_lsr: forall (x n: Z) (k: nat), - Zbit (lsr_def x n) k = Zbit x (k + (Zabs_nat n))%nat. + Zbit (lsr_def x n) k = Zbit x (k + (Z.abs_nat n))%nat. Proof. intros. (** left term *) @@ -1306,14 +1306,14 @@ Proof. Qed. Lemma lsl_of_lsl: forall (n m: Z) (x:Z), - lsl_def (lsl_def x n) m = lsl_def x (Zabs n + Zabs m). + lsl_def (lsl_def x n) m = lsl_def x (Z.abs n + Z.abs m). Proof. intros. unfold lsl_def. rewrite <- zabs_plus. rewrite lsl_arithmetic_shift. unfold lsl_arithmetic_def. - (replace (x * two_power_nat (Zabs_nat n) * two_power_nat (Zabs_nat m)) - with (x *(two_power_nat (Zabs_nat n) * two_power_nat (Zabs_nat m))) by ring). + (replace (x * two_power_nat (Z.abs_nat n) * two_power_nat (Z.abs_nat m)) + with (x *(two_power_nat (Z.abs_nat n) * two_power_nat (Z.abs_nat m))) by ring). f_equal. repeat rewrite two_power_nat_correct. rewrite Zpower_nat_is_exp. @@ -1321,7 +1321,7 @@ Proof. Qed. Lemma lsr_of_lsr: forall (n m: Z) (x:Z), - lsr_def (lsr_def x n) m = lsr_def x (Zabs n + Zabs m). + lsr_def (lsr_def x n) m = lsr_def x (Z.abs n + Z.abs m). Proof. intros. unfold lsr_def. rewrite <- zabs_plus. @@ -1339,7 +1339,7 @@ Qed. Lemma lsr_of_lsl: forall (n m: Z) (x:Z), - Zabs n <= Zabs m -> lsr_def (lsl_def x n) m = lsr_def x (Zabs m - Zabs n). + Z.abs n <= Z.abs m -> lsr_def (lsl_def x n) m = lsr_def x (Z.abs m - Z.abs n). Proof. intros. unfold lsr_def. rewrite <- zabs_minus by auto. @@ -1350,10 +1350,10 @@ Proof. unfold lsl_def. unfold lsl_shift_def. rewrite Z_decomp_recomp. unfold bitwise_lsl. unfold btest at 1. - rewrite (leb_correct (Zabs_nat n) (k + Zabs_nat m)). + rewrite (leb_correct (Z.abs_nat n) (k + Z.abs_nat m)). f_equal. (** arg 1 *) - + rewrite (inj_eq_rev (k + Zabs_nat m - Zabs_nat n) (k + (Zabs_nat m - Zabs_nat n))). + + rewrite (inj_eq_rev (k + Z.abs_nat m - Z.abs_nat n) (k + (Z.abs_nat m - Z.abs_nat n))). auto. rewrite inj_minus1 by (apply zabs_le_plus; omega). repeat rewrite inj_plus. @@ -1801,7 +1801,7 @@ Local Ltac lsl_distrib_r lop z := let k := fresh in intros; unfold lop; Zbit_bitwise k; repeat rewrite Zbit_lsl; rewrite Zbit_bitwise; - case_leq (Zabs z) (Z_of_nat k); + case_leq (Z.abs z) (Z_of_nat k); [ (intro; trivial) | trivial ]. (** Distributive lsl lor *) @@ -2066,7 +2066,7 @@ Proof. intros b x y Ry Rx Rb. apply Zle_is_le_bool in Ry; unfold lsr; rewrite Ry. unfold lsr_def. rewrite lsr_arithmetic_shift. unfold lsr_arithmetic_def. - pose (d := two_power_nat (Zabs_nat y)); fold d. + pose (d := two_power_nat (Z.abs_nat y)); fold d. assert (PWR2: 0 < d) by apply two_power_nat_is_positive. apply Zdiv_lt_upper_bound; auto. assert (b <= b * d) by apply (upper_positive_mult_positive d b Rb PWR2). @@ -2079,7 +2079,7 @@ Proof. intros b x y Ry Rx Rb. apply Zle_is_le_bool in Ry; unfold lsr; rewrite Ry. unfold lsr_def. rewrite lsr_arithmetic_shift. unfold lsr_arithmetic_def. - pose (d := two_power_nat (Zabs_nat y)); fold d. + pose (d := two_power_nat (Z.abs_nat y)); fold d. assert (PWR2: 0 < d) by apply two_power_nat_is_positive. apply Zdiv_le_lower_bound; auto. assert (b * d <= b) by apply (lower_negative_mult_positive d b Rb PWR2). @@ -2155,7 +2155,7 @@ Parameter zbit_test_undef: Z -> Z -> bool. (* Extended version for negative value. *) Definition zbit_test_def (x:Z) (n:Z): bool := - Zbit x (Zabs_nat n). + Zbit x (Z.abs_nat n). Theorem zbit_test_ext: forall x y: Z, (forall n, zbit_test_def x n = zbit_test_def y n) -> x=y. @@ -2203,7 +2203,7 @@ Local Ltac bit_extraction bin_op := (** ** Link between Bit extraction and modulo operator *) Theorem uint_mod_two_power_extraction: forall (n:nat) (m x:Z), - zbit_test_def (x mod (two_power_nat n)) m = if leb n (Zabs_nat m) then false else zbit_test_def x m. + zbit_test_def (x mod (two_power_nat n)) m = if leb n (Z.abs_nat m) then false else zbit_test_def x m. Proof. intros. unfold zbit_test_def. @@ -2214,8 +2214,8 @@ Qed. (** ** Link between Bit extraction and bitwise shifting operators *) Theorem lsl_extraction: forall x n m: Z, zbit_test_def (lsl_def x n) m = - if Zle_bool (Zabs n) (Zabs m) - then zbit_test_def x ((Zabs m) - (Zabs n)) + if Zle_bool (Z.abs n) (Z.abs m) + then zbit_test_def x ((Z.abs m) - (Z.abs n)) else false. Proof. intros. unfold zbit_test_def. @@ -2224,7 +2224,7 @@ Proof. Qed. Theorem lsr_extraction: forall x n m: Z, - zbit_test_def (lsr_def x n) m = zbit_test_def x ((Zabs m) + (Zabs n)). + zbit_test_def (lsr_def x n) m = zbit_test_def x ((Z.abs m) + (Z.abs n)). Proof. intros. unfold zbit_test_def. (** right term *) diff --git a/src/plugins/wp/share/coqwp/int/Abs.v b/src/plugins/wp/share/coqwp/int/Abs.v index b6fe3478d67..e82ef0f39e5 100644 --- a/src/plugins/wp/share/coqwp/int/Abs.v +++ b/src/plugins/wp/share/coqwp/int/Abs.v @@ -25,12 +25,12 @@ Lemma abs_def : (~ (0%Z <= x)%Z -> ((ZArith.BinInt.Z.abs x) = (-x)%Z)). intros x. split ; intros H. -now apply Zabs_eq. +now apply Z.abs_eq. apply Zabs_non_eq. apply Znot_gt_le. contradict H. apply Zlt_le_weak. -now apply Zgt_lt. +now apply Z.gt_lt. Qed. (* Why3 goal *) diff --git a/src/plugins/wp/share/coqwp/int/ComputerDivision.v b/src/plugins/wp/share/coqwp/int/ComputerDivision.v index 060d4cdf041..ba0c9caf114 100644 --- a/src/plugins/wp/share/coqwp/int/ComputerDivision.v +++ b/src/plugins/wp/share/coqwp/int/ComputerDivision.v @@ -40,9 +40,9 @@ Lemma Div_bound : intros x y (Hx,Hy). split. now apply Z.quot_pos. -destruct (Z_eq_dec y 1) as [H|H]. +destruct (Z.eq_dec y 1) as [H|H]. rewrite H, Z.quot_1_r. -apply Zle_refl. +apply Z.le_refl. destruct (Zle_lt_or_eq 0 x Hx) as [H'|H']. apply Zlt_le_weak. apply Z.quot_lt with (1 := H'). @@ -57,10 +57,10 @@ Lemma Mod_bound : ((ZArith.BinInt.Z.rem x y) < (ZArith.BinInt.Z.abs y))%Z. intros x y Zy. destruct (Zle_or_lt 0 x) as [Hx|Hx]. -refine ((fun H => conj (Zlt_le_trans _ 0 _ _ (proj1 H)) (proj2 H)) _). +refine ((fun H => conj (Z.lt_le_trans _ 0 _ _ (proj1 H)) (proj2 H)) _). clear -Zy ; zify ; omega. now apply Zrem_lt_pos. -refine ((fun H => conj (proj1 H) (Zle_lt_trans _ 0 _ (proj2 H) _)) _). +refine ((fun H => conj (proj1 H) (Z.le_lt_trans _ 0 _ (proj2 H) _)) _). clear -Zy ; zify ; omega. apply Zrem_lt_neg with (2 := Zy). now apply Zlt_le_weak. diff --git a/src/plugins/wp/share/coqwp/int/ComputerOfEuclideanDivision.v b/src/plugins/wp/share/coqwp/int/ComputerOfEuclideanDivision.v index fc2edd83eb1..f9fb43d9194 100644 --- a/src/plugins/wp/share/coqwp/int/ComputerOfEuclideanDivision.v +++ b/src/plugins/wp/share/coqwp/int/ComputerOfEuclideanDivision.v @@ -19,7 +19,7 @@ Require int.EuclideanDivision. Require int.ComputerDivision. Lemma on_pos_euclidean_is_div: - forall n d, (int.EuclideanDivision.div n (Zpos d)) = Zdiv n (Zpos d). + forall n d, (int.EuclideanDivision.div n (Zpos d)) = Z.div n (Zpos d). intros n d. unfold EuclideanDivision.div. assert (0 < Z.pos d)%Z by reflexivity. diff --git a/src/plugins/wp/share/coqwp/int/EuclideanDivision.v b/src/plugins/wp/share/coqwp/int/EuclideanDivision.v index 9d614fb7776..45c05b8a8ab 100644 --- a/src/plugins/wp/share/coqwp/int/EuclideanDivision.v +++ b/src/plugins/wp/share/coqwp/int/EuclideanDivision.v @@ -20,8 +20,8 @@ Require int.Abs. Definition div : Z -> Z -> Z. intros x y. case (Z_le_dec 0 (Zmod x y)) ; intros H. -exact (Zdiv x y). -exact (Zdiv x y + 1)%Z. +exact (Z.div x y). +exact (Z.div x y + 1)%Z. Defined. (* Why3 goal *) @@ -87,16 +87,16 @@ unfold div. case Z_le_dec ; intros H. split. apply Z_div_pos with (2 := Hx). -now apply Zlt_gt. -destruct (Z_eq_dec y 1) as [H'|H']. +now apply Z.lt_gt. +destruct (Z.eq_dec y 1) as [H'|H']. rewrite H', Zdiv_1_r. -apply Zle_refl. +apply Z.le_refl. rewrite <- (Zdiv_1_r x) at 2. apply Zdiv_le_compat_l with (1 := Hx). omega. elim H. apply Z_mod_lt. -now apply Zlt_gt. +now apply Z.lt_gt. Qed. (* Why3 goal *) diff --git a/src/plugins/wp/share/coqwp/int/Exponentiation.v b/src/plugins/wp/share/coqwp/int/Exponentiation.v index 0aa04b60e8e..59490cede59 100644 --- a/src/plugins/wp/share/coqwp/int/Exponentiation.v +++ b/src/plugins/wp/share/coqwp/int/Exponentiation.v @@ -42,7 +42,7 @@ Hypothesis Unit_def_r : forall (x:t), ((infix_as x one) = x). (* Why3 goal *) Definition power : t -> Z -> t. intros x n. -exact (iter_nat (Zabs_nat n) t (fun acc => infix_as x acc) one). +exact (iter_nat (Z.abs_nat n) t (fun acc => infix_as x acc) one). Defined. (* Why3 goal *) @@ -58,7 +58,7 @@ Lemma Power_s : Proof. intros x n h1. unfold power. -fold (Zsucc n). +fold (Z.succ n). now rewrite Zabs_nat_Zsucc. Qed. @@ -88,7 +88,7 @@ revert n Hn. apply natlike_ind. apply sym_eq, Unit_def_l. intros n Hn IHn. -replace (Zsucc n + m)%Z with ((n + m) + 1)%Z by ring. +replace (Z.succ n + m)%Z with ((n + m) + 1)%Z by ring. rewrite Power_s by auto with zarith. rewrite IHn. now rewrite <- Assoc, <- Power_s. @@ -104,7 +104,7 @@ revert m Hm. apply natlike_ind. now rewrite Zmult_0_r, 2!Power_0. intros m Hm IHm. -replace (n * Zsucc m)%Z with (n + n * m)%Z by ring. +replace (n * Z.succ m)%Z with (n + n * m)%Z by ring. rewrite Power_sum by auto with zarith. rewrite IHm. now rewrite <- Power_s. @@ -119,7 +119,7 @@ intros x y comm. apply natlike_ind. now rewrite Power_0, Unit_def_r, Unit_def_l. intros n Hn IHn. -unfold Zsucc. +unfold Z.succ. rewrite (Power_s _ _ Hn). rewrite Assoc. rewrite IHn. @@ -139,7 +139,7 @@ apply natlike_ind. rewrite 3!Power_0. now rewrite Unit_def_r. intros n Hn IHn. -unfold Zsucc. +unfold Z.succ. rewrite 3!(Power_s _ _ Hn). rewrite IHn. rewrite <- Assoc. diff --git a/src/plugins/wp/share/coqwp/int/Int.v b/src/plugins/wp/share/coqwp/int/Int.v index 8447e44455a..09419cb7809 100644 --- a/src/plugins/wp/share/coqwp/int/Int.v +++ b/src/plugins/wp/share/coqwp/int/Int.v @@ -123,14 +123,14 @@ Qed. Lemma Refl : forall (x:Z), (x <= x)%Z. Proof. intros x. -apply Zle_refl. +apply Z.le_refl. Qed. (* Why3 goal *) Lemma Trans : forall (x:Z) (y:Z) (z:Z), (x <= y)%Z -> (y <= z)%Z -> (x <= z)%Z. Proof. -exact Zle_trans. +exact Z.le_trans. Qed. (* Why3 goal *) diff --git a/src/plugins/wp/share/coqwp/int/MinMax.v b/src/plugins/wp/share/coqwp/int/MinMax.v index 8510be57857..61d4850c8d6 100644 --- a/src/plugins/wp/share/coqwp/int/MinMax.v +++ b/src/plugins/wp/share/coqwp/int/MinMax.v @@ -26,8 +26,8 @@ Lemma min_def : Proof. intros x y. split ; intros H. -now apply Zmin_l. -apply Zmin_r. +now apply Z.min_l. +apply Z.min_r. omega. Qed. @@ -42,33 +42,33 @@ Lemma max_def : Proof. intros x y. split ; intros H. -now apply Zmax_r. -apply Zmax_l. +now apply Z.max_r. +apply Z.max_l. omega. Qed. (* Why3 goal *) Lemma Min_r : forall (x:Z) (y:Z), (y <= x)%Z -> ((ZArith.BinInt.Z.min x y) = y). -exact Zmin_r. +exact Z.min_r. Qed. (* Why3 goal *) Lemma Max_l : forall (x:Z) (y:Z), (y <= x)%Z -> ((ZArith.BinInt.Z.max x y) = x). -exact Zmax_l. +exact Z.max_l. Qed. (* Why3 goal *) Lemma Min_comm : forall (x:Z) (y:Z), ((ZArith.BinInt.Z.min x y) = (ZArith.BinInt.Z.min y x)). -exact Zmin_comm. +exact Z.min_comm. Qed. (* Why3 goal *) Lemma Max_comm : forall (x:Z) (y:Z), ((ZArith.BinInt.Z.max x y) = (ZArith.BinInt.Z.max y x)). -exact Zmax_comm. +exact Z.max_comm. Qed. (* Why3 goal *) @@ -78,7 +78,7 @@ Lemma Min_assoc : (ZArith.BinInt.Z.min x (ZArith.BinInt.Z.min y z))). Proof. intros x y z. -apply eq_sym, Zmin_assoc. +apply eq_sym, Z.min_assoc. Qed. (* Why3 goal *) @@ -88,6 +88,6 @@ Lemma Max_assoc : (ZArith.BinInt.Z.max x (ZArith.BinInt.Z.max y z))). Proof. intros x y z. -apply eq_sym, Zmax_assoc. +apply eq_sym, Z.max_assoc. Qed. diff --git a/src/plugins/wp/share/coqwp/int/Power.v b/src/plugins/wp/share/coqwp/int/Power.v index 47be81da9aa..5a4a39baae1 100644 --- a/src/plugins/wp/share/coqwp/int/Power.v +++ b/src/plugins/wp/share/coqwp/int/Power.v @@ -46,7 +46,7 @@ intros x n h1. rewrite Zpower_exp. change (power x 1) with (x * 1)%Z. ring. -now apply Zle_ge. +now apply Z.le_ge. easy. Qed. @@ -72,7 +72,7 @@ Lemma Power_sum : ((power x (n + m)%Z) = ((power x n) * (power x m))%Z). Proof. intros x n m Hn Hm. -now apply Zpower_exp; apply Zle_ge. +now apply Zpower_exp; apply Z.le_ge. Qed. (* Why3 goal *) -- GitLab