From e54e0a670cf93deaeaa9e9c61d8b323562851564 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?C=C3=A9cile=20Ruet-Cros?= <cecile.ruet-cros@cea.fr> Date: Wed, 3 Jul 2024 16:19:45 +0200 Subject: [PATCH] [wp] vset add test oracles --- src/plugins/wp/share/why3/frama_c_wp/vset.mlw | 20 +++---- .../wp/tests/wp_acsl/oracle/vset.res.oracle | 59 +++++++++---------- 2 files changed, 38 insertions(+), 41 deletions(-) diff --git a/src/plugins/wp/share/why3/frama_c_wp/vset.mlw b/src/plugins/wp/share/why3/frama_c_wp/vset.mlw index 65e6de7179d..af94135774d 100644 --- a/src/plugins/wp/share/why3/frama_c_wp/vset.mlw +++ b/src/plugins/wp/share/why3/frama_c_wp/vset.mlw @@ -36,7 +36,7 @@ theory Vset function member_bool 'a (set 'a) : bool predicate eqset (a : set 'a) (b : set 'a) = - forall x : 'a. (member x a) <-> (member x b) + forall x : 'a. (mem x a) <-> (mem x b) function range int int : set int (* [a..b] *) function range_sup int : set int (* [a..] *) @@ -46,19 +46,19 @@ theory Vset (* -------------------------------------------------------------------------- *) axiom member_bool : forall x:'a. forall s:set 'a [member_bool x s]. - if member x s then member_bool x s = True else member_bool x s = False + if mem x s then member_bool x s = True else member_bool x s = False - axiom member_range : forall x:int,a:int,b:int [member x (range a b)]. - member x (range a b) <-> (a <= x /\ x <= b) + axiom member_range : forall x:int,a:int,b:int [mem x (range a b)]. + mem x (range a b) <-> (a <= x /\ x <= b) - axiom member_range_sup : forall x:int,a:int [member x (range_sup a)]. - member x (range_sup a) <-> (a <= x) + axiom member_range_sup : forall x:int,a:int [mem x (range_sup a)]. + mem x (range_sup a) <-> (a <= x) - axiom member_range_inf : forall x:int,b:int [member x (range_inf b)]. - member x (range_inf b) <-> (x <= b) + axiom member_range_inf : forall x:int,b:int [mem x (range_inf b)]. + mem x (range_inf b) <-> (x <= b) - axiom member_range_all : forall x:int [member x range_all]. - member x range_all + axiom member_range_all : forall x:int [mem x range_all]. + mem x range_all (* -------------------------------------------------------------------------- *) diff --git a/src/plugins/wp/tests/wp_acsl/oracle/vset.res.oracle b/src/plugins/wp/tests/wp_acsl/oracle/vset.res.oracle index 110faf822ca..a71978a9753 100644 --- a/src/plugins/wp/tests/wp_acsl/oracle/vset.res.oracle +++ b/src/plugins/wp/tests/wp_acsl/oracle/vset.res.oracle @@ -19,8 +19,8 @@ Prove: true. Goal Lemma 'indirect_equal_constants': Assume Lemmas: 'indirect_not_in_constants' 'indirect_in_constants' 'direct_in_singleton' 'direct_in' -Prove: member(1, L_Set1) /\ member(2, L_Set1) /\ member(3, L_Set1) /\ - (forall i : Z. (member(i, L_Set1) -> ((i = 1) \/ (i = 2) \/ (i = 3)))). +Prove: mem(1, L_Set1) /\ mem(2, L_Set1) /\ mem(3, L_Set1) /\ + (forall i : Z. (mem(i, L_Set1) -> ((i = 1) \/ (i = 2) \/ (i = 3)))). ------------------------------------------------------------ @@ -36,8 +36,8 @@ Assume { Have: is_sint32(int2_0). Have: is_sint32(int3_0). } -Prove: member(int1_0, a) /\ member(int2_0, a) /\ member(int3_0, a) /\ - (forall i : Z. (member(i, a) -> +Prove: mem(int1_0, a) /\ mem(int2_0, a) /\ mem(int3_0, a) /\ + (forall i : Z. (mem(i, a) -> ((i = int1_0) \/ (i = int2_0) \/ (i = int3_0)))). ------------------------------------------------------------ @@ -47,14 +47,14 @@ Assume Lemmas: 'indirect_not_in_logical' 'indirect_in_logical' 'indirect_not_equal_constants' 'indirect_equal_constants' 'indirect_not_in_constants' 'indirect_in_constants' 'direct_in_singleton' 'direct_in' -Prove: member(1, L_Set3) /\ member(2, L_Set3) /\ member(3, L_Set3) /\ - (forall i : Z. (member(i, L_Set3) -> ((i = 1) \/ (i = 2) \/ (i = 3)))). +Prove: mem(1, L_Set3) /\ mem(2, L_Set3) /\ mem(3, L_Set3) /\ + (forall i : Z. (mem(i, L_Set3) -> ((i = 1) \/ (i = 2) \/ (i = 3)))). ------------------------------------------------------------ Goal Lemma 'indirect_in_constants': Assume Lemmas: 'direct_in_singleton' 'direct_in' -Prove: member(2, L_Set1). +Prove: mem(2, L_Set1). ------------------------------------------------------------ @@ -65,7 +65,7 @@ Assume Lemmas: 'indirect_not_equal_logical' 'indirect_equal_logical' 'indirect_not_in_constants' 'indirect_in_constants' 'direct_in_singleton' 'direct_in' Assume { Have: is_sint32(int2_0). } -Prove: member(int2_0, L_Set2(int3_0, int2_0, int1_0)). +Prove: mem(int2_0, L_Set2(int3_0, int2_0, int1_0)). ------------------------------------------------------------ @@ -73,16 +73,15 @@ Goal Lemma 'indirect_in_logical': Assume Lemmas: 'indirect_not_equal_constants' 'indirect_equal_constants' 'indirect_not_in_constants' 'indirect_in_constants' 'direct_in_singleton' 'direct_in' -Prove: member(2, L_Set3). +Prove: mem(2, L_Set3). ------------------------------------------------------------ Goal Lemma 'indirect_not_equal_constants': Assume Lemmas: 'indirect_equal_constants' 'indirect_not_in_constants' 'indirect_in_constants' 'direct_in_singleton' 'direct_in' -Prove: (!member(0, L_Set1)) \/ (!member(1, L_Set1)) \/ - (!member(2, L_Set1)) \/ - (exists i : Z. (i != 0) /\ (i != 1) /\ (i != 2) /\ member(i, L_Set1)). +Prove: (!mem(0, L_Set1)) \/ (!mem(1, L_Set1)) \/ (!mem(2, L_Set1)) \/ + (exists i : Z. (i != 0) /\ (i != 1) /\ (i != 2) /\ mem(i, L_Set1)). ------------------------------------------------------------ @@ -91,15 +90,14 @@ Assume Lemmas: 'indirect_equal_logical' 'indirect_not_in_logical' 'indirect_in_logical' 'indirect_not_equal_constants' 'indirect_equal_constants' 'indirect_not_in_constants' 'indirect_in_constants' 'direct_in_singleton' 'direct_in' -Prove: (!member(0, L_Set3)) \/ (!member(1, L_Set3)) \/ - (!member(2, L_Set3)) \/ - (exists i : Z. (i != 0) /\ (i != 1) /\ (i != 2) /\ member(i, L_Set3)). +Prove: (!mem(0, L_Set3)) \/ (!mem(1, L_Set3)) \/ (!mem(2, L_Set3)) \/ + (exists i : Z. (i != 0) /\ (i != 1) /\ (i != 2) /\ mem(i, L_Set3)). ------------------------------------------------------------ Goal Lemma 'indirect_not_in_constants': Assume Lemmas: 'indirect_in_constants' 'direct_in_singleton' 'direct_in' -Prove: !member(4, L_Set1). +Prove: !mem(4, L_Set1). ------------------------------------------------------------ @@ -107,7 +105,7 @@ Goal Lemma 'indirect_not_in_logical': Assume Lemmas: 'indirect_in_logical' 'indirect_not_equal_constants' 'indirect_equal_constants' 'indirect_not_in_constants' 'indirect_in_constants' 'direct_in_singleton' 'direct_in' -Prove: !member(0, L_Set3). +Prove: !mem(0, L_Set3). ------------------------------------------------------------ @@ -118,7 +116,7 @@ Assume Lemmas: 'rec_iota' 'rec_iota_gt0' 'rec_iota_le0' 'iota_ind0' 'indirect_not_equal_constants' 'indirect_equal_constants' 'indirect_not_in_constants' 'indirect_in_constants' 'direct_in_singleton' 'direct_in' -Prove: member(0, L_iota(0)). +Prove: mem(0, L_iota(0)). ------------------------------------------------------------ @@ -132,8 +130,8 @@ Assume Lemmas: 'iota3_compute_equal_constants' 'iota3_compute_2in_constants' 'indirect_not_in_constants' 'indirect_in_constants' 'direct_in_singleton' 'direct_in' Let a = L_iota(1). -Prove: member(0, a) /\ member(1, a) /\ - (forall i : Z. (member(i, a) -> ((i = 0) \/ (i = 1)))). +Prove: mem(0, a) /\ mem(1, a) /\ + (forall i : Z. (mem(i, a) -> ((i = 0) \/ (i = 1)))). ------------------------------------------------------------ @@ -145,7 +143,7 @@ Assume Lemmas: 'iota0_compute_0in_constants' 'rec_iota' 'rec_iota_gt0' 'indirect_not_equal_constants' 'indirect_equal_constants' 'indirect_not_in_constants' 'indirect_in_constants' 'direct_in_singleton' 'direct_in' -Prove: member(0, L_iota(3)). +Prove: mem(0, L_iota(3)). ------------------------------------------------------------ @@ -157,7 +155,7 @@ Assume Lemmas: 'iota3_compute_0in_constants' 'iota0_compute_0in_constants' 'indirect_not_equal_constants' 'indirect_equal_constants' 'indirect_not_in_constants' 'indirect_in_constants' 'direct_in_singleton' 'direct_in' -Prove: member(2, L_iota(3)). +Prove: mem(2, L_iota(3)). ------------------------------------------------------------ @@ -171,9 +169,8 @@ Assume Lemmas: 'iota3_compute_2in_constants' 'iota3_compute_0in_constants' 'indirect_not_in_constants' 'indirect_in_constants' 'direct_in_singleton' 'direct_in' Let a = L_iota(3). -Prove: member(0, a) /\ member(1, a) /\ member(2, a) /\ member(3, a) /\ - (forall i : Z. (member(i, a) -> - ((i = 0) \/ (i = 1) \/ (i = 2) \/ (i = 3)))). +Prove: mem(0, a) /\ mem(1, a) /\ mem(2, a) /\ mem(3, a) /\ + (forall i : Z. (mem(i, a) -> ((i = 0) \/ (i = 1) \/ (i = 2) \/ (i = 3)))). ------------------------------------------------------------ @@ -185,7 +182,7 @@ Assume Lemmas: 'indirect_equal_ghost' 'indirect_in_ghost' 'indirect_not_in_constants' 'indirect_in_constants' 'direct_in_singleton' 'direct_in' Let a = L_iota(n). Assume { Have: n <= 0. } -Prove: member(0, a) /\ (forall i : Z. (member(i, a) -> (i = 0))). +Prove: mem(0, a) /\ (forall i : Z. (mem(i, a) -> (i = 0))). ------------------------------------------------------------ @@ -196,8 +193,8 @@ Assume Lemmas: 'rec_iota_gt0' 'rec_iota_le0' 'iota_ind0' 'indirect_not_equal_constants' 'indirect_equal_constants' 'indirect_not_in_constants' 'indirect_in_constants' 'direct_in_singleton' 'direct_in' -Assume { Have: member(i, L_iota(n)). } -Prove: (n = i) \/ member(i, L_iota(n - 1)). +Assume { Have: mem(i, L_iota(n)). } +Prove: (n = i) \/ mem(i, L_iota(n - 1)). ------------------------------------------------------------ @@ -208,8 +205,8 @@ Assume Lemmas: 'rec_iota_le0' 'iota_ind0' 'indirect_equal_ghost' 'indirect_not_equal_constants' 'indirect_equal_constants' 'indirect_not_in_constants' 'indirect_in_constants' 'direct_in_singleton' 'direct_in' -Assume { Have: 0 < n. Have: member(i, L_iota(n)). } -Prove: (n = i) \/ member(i, L_iota(n - 1)). +Assume { Have: 0 < n. Have: mem(i, L_iota(n)). } +Prove: (n = i) \/ mem(i, L_iota(n - 1)). ------------------------------------------------------------ @@ -220,7 +217,7 @@ Assume Lemmas: 'iota_ind0' 'indirect_equal_ghost' 'indirect_in_ghost' 'indirect_not_equal_constants' 'indirect_equal_constants' 'indirect_not_in_constants' 'indirect_in_constants' 'direct_in_singleton' 'direct_in' -Assume { Have: n <= 0. Have: member(i, L_iota(n)). } +Assume { Have: n <= 0. Have: mem(i, L_iota(n)). } Prove: i = 0. ------------------------------------------------------------ -- GitLab