diff --git a/src/plugins/wp/MemLoader.ml b/src/plugins/wp/MemLoader.ml index bfe4d75df24c91bf60afe227a14a1cdfc1dc59f3..2fb65326e84fd03ef57d016384cad71606deccec 100644 --- a/src/plugins/wp/MemLoader.ml +++ b/src/plugins/wp/MemLoader.ml @@ -39,8 +39,6 @@ open Sigs let cluster () = Definitions.cluster ~id:"Compound" ~title:"Memory Compound Loader" () -type frame = string * Definitions.trigger list * pred list * term * term - module type Model = sig diff --git a/src/plugins/wp/MemLoader.mli b/src/plugins/wp/MemLoader.mli index 6f94c256955700557f6736215d5e40c72eacb6ae..ddc2677cbc01eff8c56b345c59582ab40f103109 100644 --- a/src/plugins/wp/MemLoader.mli +++ b/src/plugins/wp/MemLoader.mli @@ -32,16 +32,6 @@ open Sigs val cluster : unit -> cluster -(** Frame Conditions. - Consider a function [phi(m)] over memory [m], - we want memories [m1,m2] and condition [p] such that - [p(m1,m2) -> phi(m1) = phi(m2)]. - - [name] used for generating lemma - - [triggers] for the lemma - - [conditions] for the frame lemma to hold - - [mem1,mem2] to two memories for which the lemma holds *) -type frame = string * Definitions.trigger list * pred list * term * term - (** Loader Model for Atomic Values *) module type Model = sig diff --git a/src/plugins/wp/Sigs.ml b/src/plugins/wp/Sigs.ml index 6fc72a241aaea9e0a3f4c1e465d17c476d787977..a91e7770466e5c1a0f78d4e638690af8a1c871c2 100644 --- a/src/plugins/wp/Sigs.ml +++ b/src/plugins/wp/Sigs.ml @@ -85,6 +85,16 @@ type 'a result = (** Polarity of predicate compilation *) type polarity = [ `Positive | `Negative | `NoPolarity ] +(** Frame Conditions. + Consider a function [phi(m)] over memory [m], + we want memories [m1,m2] and condition [p] such that + [p(m1,m2) -> phi(m1) = phi(m2)]. + - [name] used for generating lemma + - [triggers] for the lemma + - [conditions] for the frame lemma to hold + - [mem1,mem2] to two memories for which the lemma holds *) +type frame = string * Definitions.trigger list * pred list * term * term + (* -------------------------------------------------------------------------- *) (** {1 Reversing Models}