diff --git a/src/libraries/stdlib/FCSet.ml b/src/libraries/stdlib/FCSet.ml index 999ab385bb6d95ec6ce4f6d932476bbee9adabdf..51e23698822bec26f57dbf3a1efd742d9cbf8f77 100644 --- a/src/libraries/stdlib/FCSet.ml +++ b/src/libraries/stdlib/FCSet.ml @@ -66,404 +66,20 @@ module type S_Basic_Compare = module type S = sig - include S_Basic_Compare - val min_elt: t -> elt - val max_elt: t -> elt - val split: elt -> t -> t * bool * t + include Set.S val nearest_elt_le: elt -> t -> elt val nearest_elt_ge: elt -> t -> elt end module Make(Ord: Set.OrderedType) = struct - type elt = Ord.t - type t = Empty | Node of t * elt * t * int + include Set.Make(Ord) - (* Sets are represented by balanced binary trees (the heights of the - children differ by at most 2 *) - - let height = function - Empty -> 0 - | Node(_, _, _, h) -> h - - (* Creates a new node with left son l, value v and right son r. - We must have all elements of l < v < all elements of r. - l and r must be balanced and | height l - height r | <= 2. - Inline expansion of height for better speed. *) - - let create l v r = - let hl = match l with Empty -> 0 | Node(_,_,_,h) -> h in - let hr = match r with Empty -> 0 | Node(_,_,_,h) -> h in - Node(l, v, r, (if hl >= hr then hl + 1 else hr + 1)) - - (* Same as create, but performs one step of rebalancing if necessary. - Assumes l and r balanced and | height l - height r | <= 3. - Inline expansion of create for better speed in the most frequent case - where no rebalancing is required. *) - - let bal l v r = - let hl = match l with Empty -> 0 | Node(_,_,_,h) -> h in - let hr = match r with Empty -> 0 | Node(_,_,_,h) -> h in - if hl > hr + 2 then begin - match l with - Empty -> invalid_arg "Set.bal" - | Node(ll, lv, lr, _) -> - if height ll >= height lr then - create ll lv (create lr v r) - else begin - match lr with - Empty -> invalid_arg "Set.bal" - | Node(lrl, lrv, lrr, _)-> - create (create ll lv lrl) lrv (create lrr v r) - end - end else if hr > hl + 2 then begin - match r with - Empty -> invalid_arg "Set.bal" - | Node(rl, rv, rr, _) -> - if height rr >= height rl then - create (create l v rl) rv rr - else begin - match rl with - Empty -> invalid_arg "Set.bal" - | Node(rll, rlv, rlr, _) -> - create (create l v rll) rlv (create rlr rv rr) - end - end else - Node(l, v, r, (if hl >= hr then hl + 1 else hr + 1)) - - (* Insertion of one element *) - - let rec add x = function - Empty -> Node(Empty, x, Empty, 1) - | Node(l, v, r, _) as t -> - let c = Ord.compare x v in - if c = 0 then t else - if c < 0 then bal (add x l) v r else bal l v (add x r) - - let singleton x = Node(Empty, x, Empty, 1) - - (* Beware: those two functions assume that the added v is *strictly* - smaller (or bigger) than all the present elements in the tree; it - does not test for equality with the current min (or max) element. - Indeed, they are only used during the "join" operation which - respects this precondition. - *) - - let rec add_min_element v = function - | Empty -> singleton v - | Node (l, x, r, _) -> - bal (add_min_element v l) x r - - let rec add_max_element v = function - | Empty -> singleton v - | Node (l, x, r, _) -> - bal l x (add_max_element v r) - - (* Same as create and bal, but no assumptions are made on the - relative heights of l and r. *) - - let rec join l v r = - match (l, r) with - (Empty, _) -> add_min_element v r - | (_, Empty) -> add_max_element v l - | (Node(ll, lv, lr, lh), Node(rl, rv, rr, rh)) -> - if lh > rh + 2 then bal ll lv (join lr v r) else - if rh > lh + 2 then bal (join l v rl) rv rr else - create l v r - - (* Smallest and greatest element of a set *) - - let rec min_elt = function - Empty -> raise Not_found - | Node(Empty, v, _, _) -> v - | Node(l, _, _, _) -> min_elt l - - let rec max_elt = function - Empty -> raise Not_found - | Node(_, v, Empty, _) -> v - | Node(_, _, r, _) -> max_elt r - - (* Remove the smallest element of the given set *) - - let rec remove_min_elt = function - Empty -> invalid_arg "Set.remove_min_elt" - | Node(Empty, _, r, _) -> r - | Node(l, v, r, _) -> bal (remove_min_elt l) v r - - (* Merge two trees l and r into one. - All elements of l must precede the elements of r. - Assume | height l - height r | <= 2. *) - - let merge t1 t2 = - match (t1, t2) with - (Empty, t) -> t - | (t, Empty) -> t - | (_, _) -> bal t1 (min_elt t2) (remove_min_elt t2) - - (* Merge two trees l and r into one. - All elements of l must precede the elements of r. - No assumption on the heights of l and r. *) - - let concat t1 t2 = - match (t1, t2) with - (Empty, t) -> t - | (t, Empty) -> t - | (_, _) -> join t1 (min_elt t2) (remove_min_elt t2) - - (* Splitting. split x s returns a triple (l, present, r) where - - l is the set of elements of s that are < x - - r is the set of elements of s that are > x - - present is false if s contains no element equal to x, - or true if s contains an element equal to x. *) - - let rec split x = function - Empty -> - (Empty, false, Empty) - | Node(l, v, r, _) -> - let c = Ord.compare x v in - if c = 0 then (l, true, r) - else if c < 0 then - let (ll, pres, rl) = split x l in (ll, pres, join rl v r) - else - let (lr, pres, rr) = split x r in (join l v lr, pres, rr) - - (* Implementation of the set operations *) - - let empty = Empty - - let is_empty = function Empty -> true | _ -> false - - let rec mem x = function - Empty -> false - | Node(l, v, r, _) -> - let c = Ord.compare x v in - c = 0 || mem x (if c < 0 then l else r) - - let rec remove x = function - Empty -> Empty - | Node(l, v, r, _) -> - let c = Ord.compare x v in - if c = 0 then merge l r else - if c < 0 then bal (remove x l) v r else bal l v (remove x r) - - let rec union s1 s2 = - match (s1, s2) with - (Empty, t2) -> t2 - | (t1, Empty) -> t1 - | (Node(l1, v1, r1, h1), Node(l2, v2, r2, h2)) -> - if h1 >= h2 then - if h2 = 1 then add v2 s1 else begin - let (l2, _, r2) = split v1 s2 in - join (union l1 l2) v1 (union r1 r2) - end - else - if h1 = 1 then add v1 s2 else begin - let (l1, _, r1) = split v2 s1 in - join (union l1 l2) v2 (union r1 r2) - end - - let rec inter s1 s2 = - match (s1, s2) with - (Empty, _) -> Empty - | (_, Empty) -> Empty - | (Node(l1, v1, r1, _), t2) -> - match split v1 t2 with - (l2, false, r2) -> - concat (inter l1 l2) (inter r1 r2) - | (l2, true, r2) -> - join (inter l1 l2) v1 (inter r1 r2) - - let rec diff s1 s2 = - match (s1, s2) with - (Empty, _) -> Empty - | (t1, Empty) -> t1 - | (Node(l1, v1, r1, _), t2) -> - match split v1 t2 with - (l2, false, r2) -> - join (diff l1 l2) v1 (diff r1 r2) - | (l2, true, r2) -> - concat (diff l1 l2) (diff r1 r2) - - type enumeration = End | More of elt * t * enumeration - - let rec cons_enum s e = - match s with - Empty -> e - | Node(l, v, r, _) -> cons_enum l (More(v, r, e)) - - let rec compare_aux e1 e2 = - match (e1, e2) with - (End, End) -> 0 - | (End, _) -> -1 - | (_, End) -> 1 - | (More(v1, r1, e1), More(v2, r2, e2)) -> - let c = Ord.compare v1 v2 in - if c <> 0 - then c - else compare_aux (cons_enum r1 e1) (cons_enum r2 e2) - - let compare s1 s2 = - compare_aux (cons_enum s1 End) (cons_enum s2 End) - - let equal s1 s2 = - compare s1 s2 = 0 - - let rec subset s1 s2 = - match (s1, s2) with - Empty, _ -> - true - | _, Empty -> - false - | Node (l1, v1, r1, _), (Node (l2, v2, r2, _) as t2) -> - let c = Ord.compare v1 v2 in - if c = 0 then - subset l1 l2 && subset r1 r2 - else if c < 0 then - subset (Node (l1, v1, Empty, 0)) l2 && subset r1 t2 - else - subset (Node (Empty, v1, r1, 0)) r2 && subset l1 t2 - - let rec iter f = function - Empty -> () - | Node(l, v, r, _) -> iter f l; f v; iter f r - - let rec fold f s accu = - match s with - Empty -> accu - | Node(l, v, r, _) -> fold f r (f v (fold f l accu)) - - let rec for_all p = function - Empty -> true - | Node(l, v, r, _) -> p v && for_all p l && for_all p r - - let rec exists p = function - Empty -> false - | Node(l, v, r, _) -> p v || exists p l || exists p r - - let rec filter p = function - Empty -> Empty - | Node(l, v, r, _) -> - (* call [p] in the expected left-to-right order *) - let l' = filter p l in - let pv = p v in - let r' = filter p r in - if pv then join l' v r' else concat l' r' - - let rec partition p = function - Empty -> (Empty, Empty) - | Node(l, v, r, _) -> - (* call [p] in the expected left-to-right order *) - let (lt, lf) = partition p l in - let pv = p v in - let (rt, rf) = partition p r in - if pv - then (join lt v rt, concat lf rf) - else (concat lt rt, join lf v rf) - - let rec cardinal = function - Empty -> 0 - | Node(l, _, r, _) -> cardinal l + 1 + cardinal r - - let rec elements_aux accu = function - Empty -> accu - | Node(l, v, r, _) -> elements_aux (v :: elements_aux accu r) l - - let elements s = - elements_aux [] s - - let choose = min_elt - - let rec find x = function - Empty -> raise Not_found - | Node(l, v, r, _) -> - let c = Ord.compare x v in - if c = 0 then v - else find x (if c < 0 then l else r) - - (* Auxiliary function for function {!of_list} below *) - let sort_unique l = - let l = List.sort Ord.compare l in - let rec remove_duplicates l = - match l with - | [_] | [] -> l - | e1 :: (e2 :: _ as q) -> - if Ord.compare e1 e2 = 0 then - remove_duplicates q - else - let q' = remove_duplicates q in - if q' == q then l else e1 :: q' - in - remove_duplicates l - - let of_sorted_list l = - let rec sub n l = - match n, l with - | 0, l -> Empty, l - | 1, x0 :: l -> Node (Empty, x0, Empty, 1), l - | 2, x0 :: x1 :: l -> Node (Node(Empty, x0, Empty, 1), x1, Empty, 2), l - | 3, x0 :: x1 :: x2 :: l -> - Node (Node(Empty, x0, Empty, 1), x1, Node(Empty, x2, Empty, 1), 2), l - | n, l -> - let nl = n / 2 in - let left, l = sub nl l in - match l with - | [] -> assert false - | mid :: l -> - let right, l = sub (n - nl - 1) l in - create left mid right, l - in - fst (sub (List.length l) l) - - let of_list l = - match l with - | [] -> empty - | [x0] -> singleton x0 - | [x0; x1] -> add x1 (singleton x0) - | [x0; x1; x2] -> add x2 (add x1 (singleton x0)) - | [x0; x1; x2; x3] -> add x3 (add x2 (add x1 (singleton x0))) - | [x0; x1; x2; x3; x4] -> add x4 (add x3 (add x2 (add x1 (singleton x0)))) - | _ -> of_sorted_list (sort_unique l) - - let rec nearest_elt_le x = function - | Empty -> - raise Not_found - | Node(l, v, r, _) -> - let c = Ord.compare x v in - if c = 0 then v - else if c < 0 then - nearest_elt_le x l - else - let rec nearest w x = function - Empty -> w - | Node(l, v, r, _) -> - let c = Ord.compare x v in - if c = 0 then v - else if c < 0 then - nearest w x l - else - nearest v x r - in nearest v x r - - let rec nearest_elt_ge x = function - | Empty -> - raise Not_found - | Node(l, v, r, _) -> - let c = Ord.compare x v in - if c = 0 then v - else if c < 0 then - let rec nearest w x = function - Empty -> w - | Node(l, v, r, _) -> - let c = Ord.compare x v in - if c = 0 then v - else if c < 0 then - nearest v x l - else - nearest w x r - in nearest v x l - else - nearest_elt_ge x r + let nearest_elt_le x = + find_last (fun y -> y <= x) + let nearest_elt_ge x = + find_first (fun y -> y >= x) end (* diff --git a/src/libraries/stdlib/FCSet.mli b/src/libraries/stdlib/FCSet.mli index 30bd963cd1d1aebc318c5f7b659a0301fb420acd..9248764b0265f4f4e89b282bf0d1eaeaefe5b1ef 100644 --- a/src/libraries/stdlib/FCSet.mli +++ b/src/libraries/stdlib/FCSet.mli @@ -151,25 +151,7 @@ module type S_Basic_Compare = module type S = sig - include S_Basic_Compare - - val min_elt: t -> elt - (** Return the smallest element of the given set - (with respect to the [Ord.compare] ordering), or raise - [Not_found] if the set is empty. *) - - val max_elt: t -> elt - (** Same as {min_elt}, but returns the largest element of the - given set. *) - - val split: elt -> t -> t * bool * t - (** [split x s] returns a triple [(l, present, r)], where - [l] is the set of elements of [s] that are - strictly less than [x]; - [r] is the set of elements of [s] that are - strictly greater than [x]; - [present] is [false] if [s] contains no element equal to [x], - or [true] if [s] contains an element equal to [x]. *) + include Set.S (* Frama-C- additions *)