
E-ACSL User Manual

Frama-C's E-ACSL Plug-in

Release 0.1+dev compatible with Fluorine-20130501

Julien Signoles

CEA LIST, Software Safety Laboratory, Saclay, F-91191

c©2013 CEA LIST

This work has been supported by the `Hi-Lite' FUI project (FUI AAP 9).

CONTENTS

Contents

Foreword 7

1 Introduction 9

2 What the Plug-in Provides 11

2.1 Simple Example . 11

2.1.1 Running E-ACSL . 11

2.1.2 Executing the generated code . 13

2.2 Execution Environment of the Generated Code 14

2.2.1 Runtime Errors in Annotations . 14

2.2.2 Architecture Dependent Annotations 14

2.2.3 Integers . 15

2.2.4 Memory-related Annotations . 16

2.2.5 Execution Behavior Environment . 17

2.3 Incomplete Program . 18

2.3.1 Program without Main . 18

2.3.2 Function without Code . 19

2.4 Combining E-ACSL with Others Plug-ins . 20

2.5 Customization . 21

2.6 Verbosing Policy . 22

2.6.1 Verbosing Level . 22

2.6.2 Message Categories . 22

3 Known Limitations 23

3.1 Uninitialized Value . 23

3.2 Incomplete Programs . 24

3.2.1 Program without Main . 24

3.2.2 Function without Code . 25

3.3 Recursive Function . 25

3.4 Variadic Function . 25

3.5 Function Pointer . 25

5

CONTENTS

Bibliography 27

Index 29

6

Foreword

This is the user manual of the Frama-C plug-in E-ACSL1. The content of this document
corresponds to its version 0.1+dev (May 23, 2013) compatible with the version Fluorine-
20130501 of Frama-C [4, 6]. However the development of the E-ACSL plug-in is still ongoing:
features described here may still evolve in the future.

1http://frama-c.com/eacsl

7

http://frama-c.com/eacsl

Chapter 1

Introduction

Frama-C [4, 6] is a modular analysis framework for the C language which supports the
ACSL speci�cation language [1]. This manual documents the E-ACSL plug-in of Frama-C,
version 0.1+dev. Which E-ACSL version you are using is indicated by running frama-c

-e-acsl-version. This plug-in automatically translates an annotated C code into another
one which fails at runtime if an annotation is violated. If no annotation is violated, the
behavior of the new program is exactly the same than the one of the original program.

Such a translation brings several bene�ts. First it allows the user to monitor a C code, in
particular to perform what is usually called �runtime assertion checking� [3]1. That is the
primary goal of E-ACSL. Second it allows to combine Frama-C and its existing analyzers,
with other analyzer tools for C like PathCrawler [2], even those who do not understand the
ACSL speci�cation language. Third, the possibility to detect invalid annotations during a
concrete execution may be very helpful while writing a correct speci�cation of a given program,
e.g. for later program proving. Finally, an executable speci�cation makes it possible to check
at runtime assertions that cannot be veri�ed statically and thus to establish a link between
monitoring tools and static analysis tools like Value [7] or Wp [5].

Annotations must be written in the E-ACSL speci�cation language [11, 8] which is a subset
of ACSL. This plug-in is still in a preliminary state: some parts of E-ACSL are not yet
supported. Which E-ACSL annotations are currently handled by the E-ACSL plug-in is
documented in a separated document [12].

This manual does not explain how to install the plug-in. Please have a look at �le INSTALL

of the E-ACSL tarball for this purpose.

1In our context, �runtime annotation checking� would be a better more-general expression.

9

Chapter 2

What the Plug-in Provides

This chapter is the core of this manual and describes how to use the plug-in. You can still call
the option -e-acsl-help to get the list of available options with few lines of documentation.
First, Section 2.1 shows how to run the plug-in on a trivial example and how to execute
the generated code with a standard C compiler to detect invalid annotations at runtime.
Then, Section 2.2 provides additional details on the execution of the generated code. Next,
Section 2.3 focuses on how to deal with incomplete programs, i.e. in which some functions
have no body or in which there are no main function. After, Section 2.4 explains how to
combine the plug-in with others Frama-C plug-ins. Finally, Section 2.5 introduces how to
customize the plug-in, while Section 2.6 details the verbosing policy of the plug-in.

2.1 Simple Example

This Section is a mini-tutorial which explains from scratch how to use the E-ACSL plug-in
to detect at runtime that an E-ACSL annotation is violated.

2.1.1 Running E-ACSL

Consider the following simple program in which the �rst assertion is valid while the second
one is not.

File �rst.i

i n t main(vo i d) {

i n t x = 0;

/∗@ assert x == 0; ∗/
/∗@ assert x == 1; ∗/
r e t u r n 0;

}

Running E-ACSL on this �le just consists in adding the option -e-acsl to the Frama-C
command line:

$ frama -c -e-acsl first.i

[kernel] preprocessing with <...> share/frama -c/e-acsl/e_acsl.h

[kernel] preprocessing with <...> share/frama -c/e-acsl/e_acsl_gmp_types.h

[kernel] preprocessing with <...> share/frama -c/e-acsl/e_acsl_gmp.h

[kernel] preprocessing with <...> share/frama -c/e-acsl/memory_model/e_acsl_mmodel_api.h

[kernel] preprocessing with <...> share/frama -c/e-acsl/memory_model/e_acsl_bittree.h

[kernel] preprocessing with <...> share/frama -c/e-acsl/memory_model/e_acsl_mmodel.h

[e-acsl] beginning translation.

[e-acsl] translation done in project "e-acsl".

11

CHAPTER 2. WHAT THE PLUG-IN PROVIDES

Even if first.i is already preprocessed, E-ACSL �rst asks the Frama-C kernel to preprocess
and to link against first.i several �les which forms the E-ACSL library. Its usefulness will
be explain later, mainly in Section 2.2.

Then E-ACSL takes the annotated C code as input and translates it into a new Frama-C

project named e-acsl1. By default, the option -e-acsl does nothing more. It is however
possible to have a look at the generated code in the Frama-C GUI. It is also possible through
the command line thanks to the kernel options -then-on and -print which respectively
switches to another project and pretty prints the C code [4]:

$ frama -c -e-acsl first.i - then -on e-acsl - p r i n t
[kernel] preprocessing with <...> share/frama -c/e-acsl/e_acsl.h

[kernel] preprocessing with <...> share/frama -c/e-acsl/e_acsl_gmp_types.h

[kernel] preprocessing with <...> share/frama -c/e-acsl/e_acsl_gmp.h

[kernel] preprocessing with <...> share/frama -c/e-acsl/memory_model/e_acsl_mmodel_api.h

[kernel] preprocessing with <...> share/frama -c/e-acsl/memory_model/e_acsl_bittree.h

[kernel] preprocessing with <...> share/frama -c/e-acsl/memory_model/e_acsl_mmodel.h

[e-acsl] beginning translation.

[e-acsl] translation done in project "e-acsl".

/* Generated by Frama -C */

struct __anonstruct___mpz_struct_1 {

int _mp_alloc ;

int _mp_size ;

unsigned long *_mp_d ;

};

typedef struct __anonstruct___mpz_struct_1 __mpz_struct;

typedef __mpz_struct (__attribute__ ((__FC_BUILTIN__)) mpz_t)[1];

typedef unsigned int size_t;

/*@
model __mpz_struct { integer n };

*/

/*@ requires predicate != 0;

assigns \ no th i ng ; */

extern __attribute__ ((__FC_BUILTIN__)) void e_acsl_assert(int predicate ,

char *kind ,

char *fct ,

char *pred_txt ,

int line);

int __fc_random_counter __attribute__ ((__unused__));

unsigned long const __fc_rand_max = (unsigned long)32767;

/*@ ghost extern int __fc_heap_status; */

/*@
axiomatic

dynamic_allocation {

predicate is_allocable{L}(size_t n)

reads __fc_heap_status;

}

*/

extern size_t __memory_size;

/*@
predicate diffSize{L1 , L2}(integer i) =

\ at (__memory_size ,L1)-\ at (__memory_size ,L2) == i;

*/

int main(void)

{

int __retres;

int x;

x = 0;

/*@ assert x == 0; */

e_acsl_assert(x == 0,(char *)"Assertion",(char *)"main",(char *)"x == 0" ,3);

/*@ assert x == 1; */

e_acsl_assert(x == 1,(char *)"Assertion",(char *)"main",(char *)"x == 1" ,4);

__retres = 0;

1The notion of project is explained in Section 8.1 of the Frama-C user manual [4].

12

2.1. SIMPLE EXAMPLE

return __retres;

}

As you can see, the generated code contains additional type declarations, constant declarations
and global ACSL annotations that are not in the initial �le first.i. That is a part of the
included E-ACSL library. You can safely ignore it right now. The translated main function
of first.i is displayed at the end. Two lines have been added. The �rst one is just after the
�rst E-ACSL annotation, while the second one is just after the second one.

/∗@ assert x == 0; ∗/
e_acs l_assert (x == 0,(cha r *)"Assertion" ,(cha r *)"main",(cha r *)"x == 0" ,3);

/∗@ assert x == 1; ∗/
e_acs l_assert (x == 1,(cha r *)"Assertion" ,(cha r *)"main",(cha r *)"x == 1" ,4);

They are function calls to e_acsl_assert which is de�ned in the E-ACSL library. Each call
performs the dynamic veri�cation that the corresponding assertion is valid. More precisely, it
checks that its �rst argument (here x == 0 or x == 1) is not equal to 0 and fails otherwise.
The extra arguments are only used to display nice user feedback as shown later in Section 2.1.2.

2.1.2 Executing the generated code

By using the option -ocode of Frama-C [4], we can redirect the generated code into a C �le
as follows.

$ frama -c -e-acsl first.i - then -on e-acsl - p r i n t -ocode monitored_first.i

Then it may be executed by a standard C compiler like Gcc in the following way.

$ gcc -o monitored_first `frama -c - p r i n t -share -path `/e-acsl/e_acsl.c monitored_first.i

<file_path >/ e_acsl.h:41:3: warning: `FC_BUILTIN ' attribute directive ignored [-Wattributes]

monitored_first.i:8:1: warning: `__FC_BUILTIN__ ' attribute directive ignored [-Wattributes]

monitored_first.i:19:60: warning: `__FC_BUILTIN__ ' attribute directive ignored [-Wattributes]

You may notice that the generated �le monitored_first.i is linked against the �le `frama-c
-print-share-path`/e-acsl/e_acsl.c. This last �le is part of the E-ACSL library installed
with the plug-in. It contains an implementation of the function e_acsl_assert, which is
required to generate an executable binary from an E-ACSL-generated code.

The warnings can be safely ignored. They refer to an attribute FC_BUILTIN internally used
by Frama-C. You can also add the option -Wno-attributes to Gcc if you do not want to
be polluted by these warnings.

Finally you can execute the generated binary.

$./mon i t o r e d_ f i r s t
Assertion failed at line 4 in function main.

The failing predicate is:

x == 1.

$ echo $?

1

This execution stops with an exit code of 1 and an error message indicated that the invalid
E-ACSL annotation has been violated. There is no output for the valid E-ACSL annotation.
So, thanks to the plug-in, we detect that the second assertion in the initial program is wrong,
while the �rst one is correct for this execution.

2.2 Execution Environment of the Generated Code

13

CHAPTER 2. WHAT THE PLUG-IN PROVIDES

The environment in which the code is executed is not necessarily the same than the one
assumed by Frama-C. You must take care of that when running the E-ACSL plug-in and
when compiling the generated code with Gcc. Also, the plug-in o�ers you few possibilities
of customization.

2.2.1 Runtime Errors in Annotations

The major di�erence between ACSL [1] and E-ACSL [11] speci�cation languages is that the
logic is total in the former language while it is partial in the latter one: the semantics of a
term denoting a C expression e is unde�ned if e leads to a runtime error and, consequently,
the semantics of any term t (resp. predicate p) containing such an expression e is unde�ned as
soon as e has to be evaluated in order to evaluate t (resp. p). The E-ACSL Reference Manual
also states that �it is the responsibility of the tools which interprets E-ACSL to ensure that
an unde�ned term is never evaluated� [11].

Accordingly, the E-ACSL plug-in prevents unde�ned term to be evaluated. If it should be
because an annotation contains such a term, it will report a proper error at runtime instead.

Consider for instance the following annotated program.

File rte.i

/∗@ behavior yes :
assumes x % y == 0;
ensures \ r e s u l t == 1;
behavior no :
assumes x % y != 0;
ensures \ r e s u l t == 0; ∗/

i n t d iv id e (i n t x, i n t y) {

r e t u r n x % y == 0;

}

i n t main(vo i d) {

d iv id e (2, 0);

r e t u r n 0;

}

The terms and predicates containing the modulo `%' in the clause assumes are unde�ned in
the context of the main's function call since the second argument is equal to 0.

However we can generate an instrumented code and compile it through the following command
lines:

$ frama -c -e-acsl rte.i - then -on e-acsl - p r i n t -ocode monitored_rte.i

$ gcc -o rte `frama -c - p r i n t -share -path `/e-acsl/e_acsl.c monitored_rte.i

Now, when you execute it, you get the following output which explains that your function
contract is invalid because it contains a division by zero.

$./ r t e
RTE failed at line 5 in function divide.

The failing predicate is:

division_by_zero: y != 0.

2.2.2 Architecture Dependent Annotations

In many cases, the execution of a C program depends on the underlying machine architecture
which it is executed on. Also the program must be compiled in the very same architecture
(or cross-compiled) for the compiler being able to generate a correct binary.

14

2.2. EXECUTION ENVIRONMENT OF THE GENERATED CODE

Frama-C mades assumptions about this machine when analyzed such a �le. By default, it
assumes a x86 32 bits platform, but it may be changed thanks to the option -machdep [4].
This option is of primary importance when using the E-ACSL plug-in: it must be set to the
value corresponding to the machine which the generated code will be executed on if the code
or the annotation is machine dependent.

Consider for instance the following program.

File archi.c

#de f i n e ARCH_BITS 64 /∗ assume a 64 bits architecture ∗/

#i f ARCH_BITS == 32

#de f i n e SIZEOF_LONG 4

#e l i f ARCH_BITS == 64

#de f i n e SIZEOF_LONG 8

#end i f

i n t main(vo i d) {

/∗@ assert s izeof (long) == SIZEOF_LONG; ∗/
r e t u r n 0;

}

We can generate an instrumented code and compile it through the following command lines
(the option -pp-annot must be used to preprocess the annotations [4]):

$ frama -c -pp-annot -e-acsl archi.c - then -on e-acsl - p r i n t -ocode monitored_archi.i

$ gcc -o archi `frama -c - p r i n t -share -path `/e-acsl/e_acsl.c monitored_archi.i

However, the generated code crashes at runtime on a x86 64 bits computer because a 32 bits
architecture was assumed at generation time.

$./ a r c h i
Assertion failed at line 10 in function main.

The failing predicate is:

sizeof(long) == 8.

There is no assertion failure if you add the option -machdep x86_64 when calling Frama-C.

$ frama -c -machdep x86_64 -pp -annot -e-acsl archi.c \

- then -on e-acsl - p r i n t -ocode monitored_archi.i

2.2.3 Integers

E-ACSL has got a type integer which exactly corresponds to mathematical integers. Such
a type does not �t in any integral C type. To circumvent this issue, E-ACSL uses the GMP
library2. Thus, even if E-ACSL does its best to use standard C integral type instead of
GMP [8], it may generate such integers from time to time. In such cases, the generated code
must be linked against GMP to be executed.

Consider for instance the following program.

File gmp.i

uns i gned long long my_pow(uns i gned i n t x, uns i gned i n t n) {

i n t r e s = 1;

wh i l e (n) {

i f (n & 1) r e s *= x;
n >>= 1;

x *= x;
}

r e t u r n r e s ;
}

2http://gmplib.org

15

http://gmplib.org

CHAPTER 2. WHAT THE PLUG-IN PROVIDES

i n t main(vo i d) {

uns i gned long long x = my_pow(2, 63);

/∗@ assert (2 ∗ x + 1) % 2 == 1; ∗/
r e t u r n 0;

}

Even on a 64 bits machine, it is not possible to compute the assertion with a standard C type.
In this case, the E-ACSL plug-in generates GMP code.

We can generate an instrumented code as usual through the following command line:

$ frama -c -e-acsl gmp.i - then -on e-acsl - p r i n t -ocode monitored_gmp.i

To compile it however, you need to have GMP installed and to add the option -lgmp to Gcc
as follows:

$ gcc -o gmp `frama -c - p r i n t -share -path `/e-acsl/e_acsl.c monitored_gmp.i -lgmp

We can now execute it as usual.

$./gmp

Since the assertion is valid, there is no output in this case.

The option -e-acsl-gmp-only (unset by default) may be set to always generate GMP inte-
gers, even when it is not required. If it is set, the generated program must be linked against
GMP as soon as there is an integer or any integral C type in an annotation.

2.2.4 Memory-related Annotations

The E-ACSL plug-in handles memory-related annotations like \valid . When using such an
annotation, the generated code must be linked against a dedicated library installed with the
plug-in to be executed. This library includes two C �les which are installed in the E-ACSL'
share directory:

• memory_model/e_acsl_bittree.c; and

• memory_model/e_acsl_mmodel.c.

Consider for instance the following program.

File valid.c

#i n c l u d e "stdlib.h"

e x t e r n vo i d *malloc (s i ze_t);
e x t e r n vo i d f r e e (vo i d *);

i n t main(vo i d) {

i n t *x;
x = (i n t *)malloc (s i z e o f (i n t));
/∗@ assert \ v a l i d (x) ; ∗/
f r e e (x);
/∗@ assert freed : \ v a l i d (x) ; ∗/
r e t u r n 0;

}

Assuming that we want to execute the generated code on a x86 64 bits machine, the generation
of the instrumented code requires the use of the option -machdep since the code uses sizeof.
However, nothing more is required here.

$ frama -c -machdep x86_64 -e-acsl valid.c - then -on e-acsl - p r i n t -ocode monitored_valid.i

16

2.2. EXECUTION ENVIRONMENT OF THE GENERATED CODE

However, since the original code uses \valid , the executable binary must be generated from
monitored_valid.i as follows:

$ DIR=`frama -c - p r i n t -share -path `/e-acsl
$ MDIR=$DIR/memory_model
$ gcc -o valid $DIR/e_acsl.c $MDIR/e_acsl_bittree.c $MDIR/e_acsl_mmodel.c \

mon i to r ed_va l i d .i

Now we can execute the generate binary which fails at runtime since the second assertion is
violated.

$./ v a l i d
Assertion failed at line 11 in function main.

The failing predicate is:

freed: \ v a l i d (x).

Like for integers, we do our best to use the dedicated library only when required [10]. So,
if your program does not contain memory-related annotations, the generated one does not
require to be linked against the dedicated memory library, like the examples of the previous
sections.

However, if your program has annotations with pointer dereferencing (for instance), then the
generated code does require to be linked against the dedicated library at compile time. Why?
Because pointer dereferencing may lead to runtime errors, so the E-ACSL plug-in inserts
runtime checks to prevent them according to Section 2.2.1 as shown by the following example.

File pointer.c

#i n c l u d e "stdlib.h"

e x t e r n vo i d *malloc (s i ze_t);
e x t e r n vo i d f r e e (vo i d *);

i n t main(vo i d) {

i n t *x;
x = (i n t *)malloc (s i z e o f (i n t));
*x = 1;

/∗@ assert ∗x == 1; ∗/
f r e e (x);
/∗@ assert freed : ∗x == 1; ∗/
r e t u r n 0;

}

$ frama -c -machdep x86_64 -e-acsl pointer.c - then -on e-acsl - p r i n t -ocode

monitored_pointer.i

$ DIR=`frama -c - p r i n t -share -path `/e-acsl
$ MDIR=$DIR/memory_model
$ gcc -o pointer $DIR/e_acsl.c $MDIR/e_acsl_bittree.c $MDIR/e_acsl_mmodel.c\

monitored_pointer.i

$./ p o i n t e r
RTE failed at line 12 in function main.

The failing predicate is:

mem_access: \ va l i d_read (x).

The option -e-acsl-full-mmodel (unset by default) may be set to always instrument the
code for handling potential memory-related annotations, even when it is not required. If it is
set, the generated program must be always linked against the memory library.

2.2.5 Execution Behavior Environment

When a predicate is checked at runtime, the function e_acsl_assert is called. Its body is
de�ned in the �le e_acsl.c from the E-ACSL library. By default, it does nothing if the

17

CHAPTER 2. WHAT THE PLUG-IN PROVIDES

predicate is valid, while it prints an error message and exits (with status 1) if the predicate
is invalid.

It is however possible to modify this behavior by providing your own de�nition of e_acsl_assert.
You must only respect the signature of the function as declared in the �le e_acsl.h of the
E-ACSL library. Below is an example which prints the validity status of each property but
never exits.

File my_assert.c

#i n c l u d e "stdio.h"

vo i d e_acs l_assert (i n t p r e d i c a t e ,

cha r *kind ,

cha r * f c t ,
cha r *pred_txt ,
i n t l i n e)

{

p r i n t f ("%s at line %d in function %s is %s.\n\
The verified predicate was: `%s'.\n",

kind , l i n e , f c t , p r e d i c a t e ? "valid" : "invalid", pred_txt);
}

Then you can generate the program as usual, but use your own �le to compile it instead
e_acsl.c as shown below (we reuse the initial example first.i of this manual).

$ frama -c -e-acsl first.i - then -on e-acsl - p r i n t -ocode monitored_first.i

$ gcc -o customized_first my_assert.c monitored_first.i

$./ c u s t om i z e d_ f i r s t
Assertion at line 3 in function main is valid.

The verified predicate was: `x == 0'.

Assertion at line 4 in function main is invalid.

The verified predicate was: `x == 1'.

2.3 Incomplete Program

Executing a C program requires to have a complete application. However, the E-ACSL
plug-in does not necessarily require to get it to generate the instrumented code.

2.3.1 Program without Main

The E-ACSL plug-in may work even if there is no main function. Consider for instance the
following annotated program without such a main.

File no_main.i

/∗@ behavior even :
@ assumes n % 2 == 0;
@ ensures \ r e s u l t >= 1;
@ behavior odd:
@ assumes n % 2 != 0;
@ \ r e s u l t >= 1; ∗/

uns i gned long long my_pow(uns i gned i n t x, uns i gned i n t n) {

uns i gned long long r e s = 1;

wh i l e (n) {

i f (n & 1) r e s *= x;
n >>= 1;

x *= x;
}

r e t u r n r e s ;
}

The instrumented code is generated as usual, even if you get an additional warning.

18

2.3. INCOMPLETE PROGRAM

$ frama -c -e-acsl no_main.i - then -on e-acsl - p r i n t -ocode monitored_no_main.i

<skip preprocessing command line >

[e-acsl] beginning translation.

[e-acsl] warning: cannot find entry point `main '.

Please use option `-main ' for specifying a valid entry point.

The generated program may miss memory instrumentation.

i f there are memory -related annotations.

[e-acsl] translation done in project "e-acsl".

This warning indicates that the instrumentation would be incorrect if the program contains
memory-related annotations (see Section 3.2.1). That is not the case here, so you can safely
ignore it. Now, it is possible to compile the generated code with a C compiler in a standard
way, and even to link it against additional �les like the following one. In this particular case,
we also need to link against GMP as explained in Section 2.2.3.

File main.c

#i n c l u d e "stdio.h"

i n t main(vo i d) {

uns i gned long long x = my_pow(2, 16);

p r i n t f ("x = %llu\n",x);
r e t u r n 0;

}

$ gcc -o no_main `frama -c - p r i n t -share -path `/e-acsl/e_acsl.c \

monitored_no_main.i main.c -lgmp

$./no_main
x = 65536

2.3.2 Function without Code

The E-ACSL plug-in may also work if some functions have no implementation. Consider
for instance the following annotated program for which the implementation of the function
my_pow is not provided.

File no_code.c

#i n c l u d e "stdio.h"

/∗@ behavior even :
@ assumes n % 2 == 0;
@ ensures \ r e s u l t >= 1;
@ behavior odd:
@ assumes n % 2 != 0;
@ ensures \ r e s u l t >= 1; ∗/

e x t e r n uns i gned long long my_pow(uns i gned i n t x, uns i gned i n t n);

i n t main(vo i d) {

uns i gned long long x = my_pow(2, 64);

r e t u r n 0;

}

The instrumented code is generated as usual, even if you get an additional warning.

[e-acsl] beginning translation.

[e-acsl] warning: annotated function `my_pow ' without code:

the generated program may miss memory instrumentation

i f there are memory -related annotations.

[kernel] warning: No code nor implicit assigns clause for function my_pow ,

generating default assigns from the prototype

[e-acsl] translation done in project "e-acsl".

Like in the previous Section, this warning indicates that the instrumentation would be incor-
rect if the program contains memory-related annotations (see Section 3.2.2). That is still not

19

CHAPTER 2. WHAT THE PLUG-IN PROVIDES

the case here, so you can safely ignore it. Now, it is possible to compile the generated code
with a C compiler in a standard way, and even to link it against additional �les that provided
an implementation for the missing functions like the following one. In this particular case, we
also need to link against GMP as explained in Section 2.2.3.

File pow.i

uns i gned long long my_pow(uns i gned i n t x, uns i gned i n t n) {

uns i gned long long r e s = 1;

wh i l e (n) {

i f (n & 1) r e s *= x;
n >>= 1;

x *= x;
}

r e t u r n r e s ;
}

$ gcc -o no_code `frama -c - p r i n t -share -path `/e-acsl/e_acsl.c \

pow.i monitored_no_code.i -lgmp

$./no_code
Postcondition failed at line 8 in function my_pow.

The failing predicate is:

\ o l d (n%2 != 0) ==> \ r e s u l t >= 1.

The execution of the corresponding binary fails at runtime: actually, our implementation of
the function my_pow that we use several times since the beginning of this manual may over�ow
in case of big exponentiations.

2.4 Combining E-ACSL with Others Plug-ins

As the E-ACSL plug-in generates a new Frama-C project, it is easy to run any plug-in on
the generated program, either in the same Frama-C session (thanks to the option -then

or through the GUI), or in another one. The only issue might be that, depending on the
plug-in, the analysis may be imperfect if the generated program uses GMP or the dedicated
memory library: both intensively use dynamic structures which are usually di�cult to handle
by analysis tools.

Another way to combine E-ACSL with others plug-ins is to run E-ACSL afterward. For
instance, the RTE plug-in [9] may be used to generate annotations corresponding to runtime
errors. Then the E-ACSL plug-in may generate an instrumented program to verify that there
is no such runtime errors during the execution of the program.

Consider the following program.

File combine.i

i n t main(vo i d) {

i n t x = 0 x f f f f ;
i n t y = 0 x f f f ;
i n t z = x + y;
r e t u r n 0;

}

To check at runtime that this programs does not perform any runtime error (which are po-
tential over�ows in this case), just do:

$ frama -c -rte combine.i - then -e-acsl - then -on e-acsl - p r i n t \

-ocode monitored_combine.i

$ gcc -o combine `frama -c - p r i n t -share -path `/e-acsl monitored_combine.i

$./ combine.

20

2.5. CUSTOMIZATION

Nevertheless if you run the E-ACSL plug-in after another one, it �rst generates a new tem-
porary project in which it links the analyzed program against its own library in order to
generate the Frama-C internal representation of the C program (aka AST), as explained
in Section 2.1.1. Consequently, even if the E-ACSL plug-in keeps the maximum amount of
information, results of already executed analyzer (like the validity status of the annotations)
are not known in this new project. If you want to keep them, you have to set the option
-e-acsl-prepare when the �rst analysis is asked for.

In this context, the E-ACSL plug-in does not generate code for annotations proven valid
by another plug-in, except if you explicitly set the option -e-acsl-valid. For instance,
Value [7] is able to prove that there is no potential over�ow in the previous program, so the
E-ACSL plug-in does not generate additional code for checking them if you run the following
command.

$ frama -c -e-acsl -prepare -rte combine.i - then -val - then -e-acsl \

- then -on e-acsl - p r i n t -ocode monitored_combine.i

The additional code will be generated with one of the two following commands.

$ frama -c -e-acsl -prepare -rte combine.i - then -val - then -e-acsl \

-e -acsl -valid - then -on e-acsl - p r i n t -ocode monitored_combine.i

$ frama -c -rte combine.i - then -val - then -e-acsl \

- then -on e-acsl - p r i n t -ocode monitored_combine.i

In the �rst case, that is because it is explicitly required by the option -e-acsl-valid while, in
the second case, that is because the option -e-acsl-prepare is not provided on the command
line which results in the fact that the result of the value analysis are unknown when the E-
ACSL plug-in is running.

2.5 Customization

There are few ways to customize the E-ACSL plug-in.

First, the name of the generated project �which is e-acsl by default� may be changed by
setting the option -e-acsl-project.

Second, the directory which the E-ACSL library �les are searched in �which is `frama-c

-print-share-path`/e-acsl by default�may be changed by setting the option -e-acsl-share.

Third, the option -e-acsl-check does not generate any new project but it only veri�es that
each annotation is translatable. Then it produces a summary as shown in the following
example (left shift in annotation is not yet supported by the E-ACSL plug-in).

File check.i

i n t main(vo i d) {

i n t x = 0;

/∗@ assert x == 0; ∗/
/∗@ assert x << 2 == 0; ∗/
r e t u r n 0;

}

$ frama -c -e-acsl -check check.i

<skip preprocessing commands >

check.i:4:[e-acsl] warning: E-ACSL construct `left/right s h i f t ' is not yet supported.

Ignoring annotation.

[e-acsl] 0 annotation was ignored , being untypable.

[e-acsl] 1 annotation was ignored , being unsupported.

21

CHAPTER 2. WHAT THE PLUG-IN PROVIDES

2.6 Verbosing Policy

By default, E-ACSL does not provide many information when it is running. Mainly, it prints
a message when it begins the translation, and one other when the translation is done. It
may also displays warnings when something usually requires the attention of the user, for
instance if it is not able to translate an annotation. Such information is usually enough but,
in some cases, you might want to get additional controls on what is displayed. As quite
usual in Frama-C, the E-ACSL plug-in o�ers two di�erent ways to do this: the verbosing
level which indicates the amount of information to display, and the message categories which
indicates the kind of information to display.

2.6.1 Verbosing Level

The amount of information displayed by the E-ACSL plug-in is settable by the option
-e-acsl-verbose. It is 1 by default. Below is indicated which information is displayed
according to the verbosing level. The level n also displays the information of the level n− 1.

-e-acsl-verbose 0 only warnings and errors

-e-acsl-verbose 1 beginning and ending of the translation

-e-acsl-verbose 2 di�erent parts of the translation and about functions

-e-acsl-verbose 3 about predicates and statements

-e-acsl-verbose 4 and above about terms and expressions

2.6.2 Message Categories

The kind of information to display is settable by the option -e-acsl-msg-key (and unsettable
by the option -e-acsl-msg-key-unset). The di�erent keys refer to di�erent parts of the
translation, as detailed below.

analysis minimization of the instrumentation for memory-related annotation (section 2.2.4)

duplication duplication of functions with contracts (section 2.3.2)

translation translation of an annotation into C code

typing minimization of the instrumentation for integers (section 2.2.3)

22

Chapter 3

Known Limitations

The development of the E-ACSL plug-in is still ongoing. First, the whole E-ACSL reference
manual [11] is not yet supported. Which annotations are already translated into C code and
which are not is de�ned in a separated document [12]. Second, even if we do our best, bugs
may exist. If you �nd a new one, please report it on the bug tracking system (see Chapter
10 of the Frama-C User Manual [4]). Third, there are some additional known limitations,
which could be annoying for the user in some cases, but are hard to lift. Thus they could be
there for a while. Lifting them could be part of commercial supports1.

3.1 Uninitialized Value

As explained in Section 2.2.1, the E-ACSL plug-in should never translate an annotation into
a C code which can lead to a runtime error. That is the case, except for uninitialized values
which are values read before having been written like in the following example.

File uninitialized.i

i n t main(vo i d) {

i n t x;
/∗@ assert x == 0; ∗/
r e t u r n 0;

}

If you generate the instrumented code, compile it, and �nally execute it, you may get no
runtime error depending on your C compiler, but the behavior is actually uninitialized and
should be trap by the E-ACSL plug-in. That is not the case yet.

$ frama -c -e-acsl uninitialized.i - then -on e-acsl - p r i n t \

-ocode monitored_uninitialized.i

$ gcc -Wuninitialized -o pointer `frama -c - p r i n t -share -path `/e-acsl/e_acsl.c` \

mon i t o r e d_un i n i t i a l i z e d .i
monitored_uninitialized.i: In function 'main ':

monitored_uninitialized.i:44:16: warning: 'x' is used uninitialized in this function\

[-Wuninitialized]

$./mon i t o r e d_un i n i t i a l i z e d

Actually that is more a design choice that a limitation: if the E-ACSL plug-in would generate
additional instrumentation to prevent such values to be executed, the generated code would
be much more verbose and much slower.

If you really want to track such uninitializations in your annotation, you have to manually
add calls to the E-ACSL predicate \initialized [11].

1Contact us or read http://frama-c.com/support.html for additional details.

23

http://frama-c.com/support.html

CHAPTER 3. KNOWN LIMITATIONS

3.2 Incomplete Programs

Section 2.3 explains how the E-ACSL plug-in is able to handle incomplete programs, which
are either programs without main, or programs containing functions without bodies.

However, if such programs contain memory-related annotations, the generated code may be
incorrect. That is made explicit by a warning displayed when the E-ACSL plug-in is running
(see examples of Sections 2.3.1 and 2.3.2).

3.2.1 Program without Main

The generated program is incorrect for every program without main containing a memory-
related annotations, except if the option -e-acsl-full-mmodel is provided.

Consider the following example.

File valid_no_main.c

#i n c l u d e "stdlib.h"

e x t e r n vo i d *malloc (s i ze_t);
e x t e r n vo i d f r e e (vo i d *);

i n t f (vo i d) {

i n t *x;
x = (i n t *)malloc (s i z e o f (i n t));
/∗@ assert \ v a l i d (x) ; ∗/
f r e e (x);
/∗@ assert freed : \ v a l i d (x) ; ∗/
r e t u r n 0;

}

You can generate the instrumented program as follows.

$ frama -c -e-acsl -full -mmodel -machdep x86_64 -e-acsl valid_no_main.c \

- then -on e-acsl - p r i n t -ocode monitored_valid_no_main.i

<skip preprocessing commands >

[e-acsl] beginning translation.

<skip warnings about annotations from the Frama -C libc

which cannot be translated >

[kernel] warning: no entry point specified:

you must call function `e_acsl_global_init ' and `__clean ' by yourself.

[e-acsl] translation done in project "e-acsl".

The last warning states an important point: if this program is linked against another �le
containing a main function, then this main function must be modi�ed to insert a call to the
function e_acsl_global_init at the very beginning and a call to the function __clean at
the very end like in the following example.

File modi�ed_main.c

e x t e r n vo i d e_acs l_globa l_in i t (vo i d);
e x t e r n vo i d __clean(vo i d);
e x t e r n vo i d f (vo i d);

i n t main(vo i d) {

e_acs l_globa l_in i t ();
f ();
__clean();
r e t u r n 0;

}

Then just compile and run it as explained in Section 2.2.4.

24

3.3. RECURSIVE FUNCTION

$ DIR=`frama -c - p r i n t -share -path `/e-acsl
$ MDIR=$DIR/memory_model
$ gcc -o valid_no_main $DIR/e_acsl.c $MDIR/e_acsl_bittree.c \

$MDIR/e_acsl_mmodel.c monitored_valid_no_main.i modified_main.c

$./ val id_no_main
Assertion failed at line 11 in function f.

The failing predicate is:

freed: \ v a l i d (x).

3.2.2 Function without Code

The generated program is incorrect for every program which contains a memory-related an-
notation a and a function f without code if and only if:

• either f has an (even indirect) e�ect on a left-value occurring in a;

• or a is one of the post-condition of f .

There is no workaround yet.

Also, the option -e-acsl-check does not verify the annotations of function without code.
There is also no workaround yet.

3.3 Recursive Function

Programs containing recursive functions have the same limitations than the ones containing
function without code (Section 3.2.2) and memory-related annotations.

Also, even if there is no such annotations, the generated code may call a function before it is
declared. This behavior appears in a non-speci�ed way. The generated code is however easy
to �x by hand.

3.4 Variadic Function

Programs containing variadic functions without code but with a function contract are not yet
supported. There is no workaround.

3.5 Function Pointer

Programs containing function pointers have the same limitations as about memory-related
annotations than the ones containing function without code or recursive functions.

25

BIBLIOGRAPHY

Bibliography

[1] Patrick Baudin, Jean-Christophe Filliâtre, Claude Marché, Benjamin Monate, Yannick
Moy, and Virgile Prevosto. ACSL: ANSI/ISO C Speci�cation Language. Version 1.7,
April 2013.

[2] Bernard Botella, Mickaël Delahaye, Stéphane Hong-Tuan-Ha, Nikolai Kosmatov, Patricia
Mouy, Muriel Roger, and Nicky Williams. Automating structural testing of C programs:
Experience with PathCrawler. In the 4th Int. Workshop on Automation of Software Test
(AST 2009), pages 70�78. IEEE Computer Society, 2009.

[3] Lori A. Clarke and David S. Rosenblum. A historical perspective on runtime asser-
tion checking in software development. ACM SIGSOFT Software Engineering Notes,
31(3):25�37, 2006.

[4] Loïc Correnson, Pascal Cuoq, Florent Kirchner, Armand Puccetti, Virgile Prevosto,
Julien Signoles, and Boris Yakobowski. Frama-C User Manual, May April. http:

//frama-c.cea.fr/download/user-manual.pdf.

[5] Loïc Correnson, Zaynah Dargaye, and Anne Pacalet. Frama-C's WP plug-in, April 2013.
http://frama-c.com/download/frama-c-wp-manual.pdf.

[6] Pascal Cuoq, Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles, and
Boris Yakobowski. Frama-C, A software Analysis Perspective. In Software Engineering
and Formal Methods (SEFM), October 2012.

[7] Pascal Cuoq, Boris Yakobowski, and Virgile Prevosto. Frama-C's value analysis plug-in,
April 2013. http://frama-c.cea.fr/download/value-analysis.pdf.

[8] Mickaël Delahaye, Nikolai Kosmatov, and Julien Signoles. Common speci�cation lan-
guage for static and dynamic analysis of C programs. In the 28th Annual ACM Sympo-
sium on Applied Computing (SAC), pages 1230�1235. ACM, March 2013.

[9] Philippe Herrmann and Julien Signoles. Annotation Generation: Frama-C's RTE plug-in,
April 2013. http://frama-c.com/download/frama-c-rte-manual.pdf.

[10] Nikolaï Kosmatov, Guillaume Petiot, and Julien Signoles. Optimized Memory Monitoring
for Runtime Assertion Checking of C Programs. Submitted for publication.

[11] Julien Signoles. E-ACSL: Executable ANSI/ISO C Speci�cation Language. Version 1.7,
May 2013. URL: http://frama-c.com/download/ e-acsl/e-acsl.pdf.

[12] Julien Signoles. E-ACSL Version 1.7. Implementation in Frama-C Plug-in E-
ACSL version 0.2, May 2013. URL: http://frama-c.com/download/e-acsl/ e-acsl-
implementation.pdf.

27

http://frama-c.cea.fr/download/user-manual.pdf
http://frama-c.cea.fr/download/user-manual.pdf
http://frama-c.com/download/frama-c-wp-manual.pdf
http://frama-c.cea.fr/download/value-analysis.pdf
http://frama-c.com/download/frama-c-rte-manual.pdf

INDEX

Index

__clean, 24

-e-acsl, 11, 12
-e-acsl-check, 21, 25
-e-acsl-full-mmodel, 17, 24
-e-acsl-gmp-only, 16
-e-acsl-help, 11
-e-acsl-msg-key, 22
-e-acsl-msg-key-unset, 22
-e-acsl-prepare, 21
-e-acsl-project, 21
-e-acsl-share, 21
-e-acsl-valid, 21
-e-acsl-verbose, 22
-e-acsl-version, 9
e_acsl_assert, 13, 17
e_acsl_global_init, 24

Function
Pointer, 25
Recursive, 25
Variadic, 25
Without code, 19, 25

GMP, 15

Installation, 9
integer, 15

-lgmp, 16

-machdep, 15, 16

-ocode, 13

-pp-annot, 15
-print, 12
Program

Without main, 18, 24

Runtime Error, 14

-then, 20
-then-on, 12

Uninitialized value, 23

Value, 9

-Wno-attributes, 13
Wp, 9

29

	Foreword
	Introduction
	What the Plug-in Provides
	Simple Example
	Running E-ACSL
	Executing the generated code

	Execution Environment of the Generated Code
	Runtime Errors in Annotations
	Architecture Dependent Annotations
	Integers
	Memory-related Annotations
	Execution Behavior Environment

	Incomplete Program
	Program without Main
	Function without Code

	Combining E-ACSL with Others Plug-ins
	Customization
	Verbosing Policy
	Verbosing Level
	Message Categories

	Known Limitations
	Uninitialized Value
	Incomplete Programs
	Program without Main
	Function without Code

	Recursive Function
	Variadic Function
	Function Pointer

	Bibliography
	Index

