
Code generation for memory monitoring

...

December 14, 2012

1 Introduction

Memory accesses from a pointer or an array
are not safe in C, thus trying to access an ele-
ment of an array out of valid range or an invalid
pointer may cause a segmentation fault during
execution.

C compilers such as Gcc do not provide de-
tection mechanisms for this kind of errors. We
propose an automatic code instrumentation, so
that the generated code will perform memory
monitoring and will be able to check memory
properties during execution (runtime check-
ing). We consider as readable and writable
memory: global variables, dynamically allo-
cated memory, and formal parameters and lo-
cal variables of each function. We decided to
use the term “block” to nominate these four
cases.

E-Acsl is an executable subset of Acsl

[1], a formal specification language for C using
source code annotations to express properties.
Acsl-annotated C programs can be dealt with
Frama-C [2], a framework for modular anal-
ysis of C. Frama-C provides a plug-in gener-
ating executable C code from E-Acsl annota-
tions, used by the implementation discussed in
this paper. Memory blocks (as defined above)
held properties such as their base address and
their size. E-Acsl provides five annotations to
retrieve useful information about blocks:

\base_addr(p)
returns the base address of the block con-
taining the pointer p

\block_length(p)
returns the size (in bytes) of the block con-
taining the pointer p

\offset(p)
returns the offset between p and
\base_addr(p)

\valid(s)
whether reading and writing ∗s is safe

\initialized(s)
whether the variable stored at the address
s has been initialized

Our contribution allowed the E-Acsl plug-
in to generate executable C code from these five
annotations, thus checking these five memory
properties during execution.

2 Stored information

For each block, we need to store the follow-
ing information: the base address (address of
the first element within the block), the size (in
bytes), the validity status (whether reading and
writing the block is safe) and the initialization
status for each byte of the block. Figure 1 il-
lustrates the data structure (we call it block

descriptor) chosen to store this information.

init_ptr is an array of booleans that is dy-
namically allocated only if needed. If it has
been allocated, it contains a boolean for each
byte of the block: the nth boolean indicates
whether the nth byte has been initialized.

1

1 struct _block {
2 char ∗ ptr ;
3 size_t s i z e ;
4 int va l i d ;
5 unsigned char ∗ i n i t_pt r ;
6 unsigned long i n i t_cpt ;
7 } ;

Figure 1: Block descriptor

init_cpt counts the number of initialized
bytes within the block. If init_cpt = 0 (none)
or init_cpt = size (all) then init_ptr is freed.
So, when none or all of the bytes have been ini-
tialized (the most common cases), the memory
space needed for the block descriptor itself is
reduced. This consistency is maintained when
adding/removing an element.

3 Global architecture

E-ACSL plug-in

Monitoring functions

Common interface

Bittree or Linked list . . .

Figure 2: Global architecture

Interactions between the components of our
solution are displayed by Figure 2. A data

structure (see Section 4) stores the block de-
scriptors. The library functions (see Section 5)
add, remove or modify the block descriptors.
The E-Acsl plug-in then perform an instru-
mentation (see Section 6) to generate exe-
cutable C code. The generated code uses the
monitoring functions of this library.

4 Concrete data structure

used: bittree

In this section we discuss the choice of the con-
crete data structure used to store the block de-
scriptors.

4.1 Patricia tries

We need a data structure with a good time and
space complexity, indeed we may have to often
add or remove a block descriptor in the struc-
ture. The structure has to be sorted: we want
to access to a block descriptor by its base ad-
dress, and also to its predecessor and succes-
sor. Thus, hash-tables will not fit. We also
unconsidered the linked lists, due to the lin-
ear worst-case complexity. The (unbalanced)
binary search trees provide a linear worst-case
complexity too when the base address of in-
serted elements are monotonically increasing,
and this may be quite common. Self-balanced
binary search trees are dismissed because of the
numerous add/remove operations implying nu-
merous costly balancing operations.

We choose to use the Patricia tries [3] struc-
ture, which is efficient even if the tree is un-
balanced. The prefix used by a node (not a
leaf) is the greatest common prefix (on 32 or
64 bits) of its two children. The block de-
scriptors are held on leaves. Other nodes just
do the routing from the root to a block de-
scriptor. Patricia tries are usually used on
strings and characters, so we named “bittree”
the structure used in this article. For exam-

2

ple on 8-bit addresses, Figure 3 shows a bit-
tree storing three block descriptors (identified
by their addresses: 0010 0111, 0010 1001 and
0010 1101). The greatest common prefix of
0010 1001 and 0010 1101 is 0010 1 ∗ ∗∗ and
the greatest common prefix of 0010 0111 and
0010 1 ∗ ∗∗ is 0010 ∗ ∗ ∗ ∗. The ∗ means that
this bit is meaningless. Figure 4 shows that a
new node (with a new prefix) is added when a
block descriptor is inserted.

Figure 5 shows an example of deletion of a
8-bit block descriptor. Patricia tries being com-
pact prefix trees, a node having an only child
is deleted. So 0010 1 ∗ ∗∗ becomes useless and
is replaced by its child 0010 1001. Deleting
useless nodes, or only storing useful ones for
routing, keeps the tree exploration efficient. A
32-bit (respectively 64-bit) bittree has a worst-
case depth of 33 (respectively 65) nodes.

0010 ****

0010 0111

0010 1*** 0010 1001
0010 1101

Figure 3: Example of bittree

0010 ****

0010 011* 0010 0110
0010 0111

0010 1*** 0010 1001
0010 1101

Figure 4: Bittree after adding 0010 0110 into
the bittree of Fig. 3

4.2 Greatest common prefix compu-

tation

The greatest common prefix of A and B can
be naively computed by: X = ¬(A ⊕ B)

0010 ****

0010 0111

0010 1001

Figure 5: Bittree after deleting 0010 1101 from
the bittree of Fig. 3

(where ⊕ is the XOR operator) to keep bits
in common, then each bit of X on the right
side of a 0 is set to 0. The obtained mask is
then applied to A or B. For example, con-
sidering A = 0110 0111 and B = 0111 1111,
X = ¬(A ⊕ B) = 1110 0111, setting each bit
on the right side of a 0 to 0 we get 1110 0000.
We apply this mask to A and get the greatest
common prefix of A and B: 011 ∗ ∗ ∗ ∗∗. This
algorithm is used by the first version of out im-
plementation and is named Bittree-naive in the
experiments.

We optimized this algorithm by firstly com-
puting all of the 65 or 33 different masks (from
0x0 to 0xf. . .f) and storing them in an ar-
ray. Then we use a dichotomic search to find
the mask corresponding to the greatest com-
mon prefix: if A and B have a 32-bit com-
mon prefix, do they have a 48-bit common pre-
fix ? Otherwise, do they have a 16-bit com-
mon prefix ? And so on. This search takes at
most 6 (respectively 5) steps on 64-bit (respec-
tively 32-bit) bittrees. This algorithm is used
by the final version of our implementation and
is named Bittree-opti in the experiments.

4.3 Experiments

These experiments justify the choice of bittrees
over linked lists and binary search trees. We
implemented the classic merge sort algorithm,
and added extra allocations/deallocations to
put each data structure to the test. The pro-
gram has been instrumented (see Section 6) to
call our monitoring functions (see Section 5).

3

The execution time of the instrumented pro-
gram using each data structure has been mea-
sured (in micro-seconds) and is plotted against
the number of calls to a function store (adding
an element to the data structure). Figure 6
displays the results of the experiments. The
reference time is the execution time of the pro-
gram without any instrumentation. Bittree-
naive and Bittree-opti are using two different
versions of the greatest common prefix compu-
tation (see Sub-section 4.2).

0 0.2 0.4 0.6 0.8 1

·107

0

2

4

6
·108

Number of calls to store

T
im

e
(µ

s)

List
Tree

Bittree-naive
Bittree-opti

Reference time

Figure 6: Execution time plotted against the
number of calls to store

The last but one measurement, the merge
sort applied to 50,000 elements (4,889,819 calls
to store), has a reference time of 0.07s. It runs
32s with the optimized bittree, 118s with the
naive bittree, 7 hours 15 minutes with the bi-
nary search trees and 19 hours 15 minutes with
linked lists. Our last measurement, the merge
sort applied to 100,000 elements (10,279,851
calls to store) has a reference time of 0.19s. It
runs 72s with the optimized bittree, 252s with
the naive bittree, but binary search trees and
linked lists exceed our 24-hour timeout.

5 Monitoring functions

This section presents the functions used
for adding/removing/retrieving in formations
about block descriptors into our data struc-
ture (bittree). These functions will be auto-
matically inserted in the source code by the
instrumentation step (see Section 6).

5.1 Automatic allocation

Automatic allocation functions keep track of all
non-dynamically allocated variables (but occu-
pying memory space nevertheless), such as for-
mal parameters, local variables or global vari-
ables.

1 void ∗ _store_block
2 (void ∗ ptr , size_t s i z e) ;
3 void _delete_block (void ∗ ptr) ;

Listing 1: Automatic alloca-

tion functions

5.2 Dynamic allocation

These functions have to be used instead of
those of the standard library (stdlib.h).

1 void ∗ _malloc (size_t s i z e) ;
2 void ∗ _rea l l o c
3 (void ∗ ptr , size_t s i z e) ;
4 void ∗ _cal loc
5 (size_t nbr , size_t s i z e) ;
6 void _free (void ∗ ptr) ;

Listing 2: Dynamic allocation

functions

5.3 Initialization

These functions have to be used for each as-
signment, to update the initialization status of

4

a block descriptor. _initialize(ptr, size)
marks the size first bytes starting from ptr as
initialized. _full_init(ptr) marks all the
bytes of ptr as initialized at once. It is de-
signed to avoid multiple calls to _initialize

whenever it is possible and improves efficiency
of the instrumented program.

1 void _ i n i t i a l i z e
2 (void ∗ ptr , size_t s i z e) ;
3 void _fu l l_ in i t (void ∗ ptr) ;

Listing 3: Initialization func-

tions

5.4 Interrogation

These functions are used to retrieve informa-
tion about the block descriptors and match
the E-Acsl annotations we are trying to sup-
port: \valid, \base_addr, \block_length,
\offset and \initialized.

1 int _valid
2 (void ∗ ptr , size_t s i z e) ;
3 void ∗ _base_addr (void ∗ ptr) ;
4 size_t _block_length (void ∗ ptr) ;
5 int _of f s e t
6 (void ∗ ptr , size_t s i z e) ;
7 int _ i n i t i a l i z e d
8 (void ∗ ptr , size_t s i z e) ;

Listing 4: Interrogation func-

tions

_valid(ptr, size) returns 1 if it is safe
to read/write size bytes starting from ptr,
0 otherwise. _base_addr(ptr) returns
the base address of the block containing
ptr if such a block exists, NULL oth-
erwise. _block_length(ptr) returns the
size (in bytes) of the block containing
ptr if such a block exists, 0 otherwise.
_offset(ptr) returns the offset between ptr

and the base address of the block contain-
ing ptr if such a block exists, -1 otherwise.
_initialized(ptr, size) returns 1 if the size

first bytes starting from ptr are initialized, 0
otherwise.

6 Instrumentation

This section presents the instrumentation per-
formed by the E-Acsl plug-in to monitor the
memory used by a program. The generated
instrumented code uses the previously defined
functions (see previous section).

For each global variable, calls to
_store_block and _full_init are in-
serted at the beginning of the main function,
and a call to _delete_block at the end (see
Figure 9). For each formal parameter and
local variable, a call to _store_block is
inserted at the beginning of their scope block
and a call to _delete_block at the end of
their scope block (see Figure 10 and Figure 8).
Calls to _full_init and _initialize are
inserted on assignments (see Figure 11), and
E-Acsl annotations are translated to the
corresponding functions which result is tested
by an assertion (see Figure 12).

1 int ∗ p ;
2 p = _malloc (3 2) ;
3 _free (p) ;

Figure 7: Dynamic allocation instrumentation

7 Conclusion

We implemented an efficient data structure
(bittree) (see Section 4) to store the block de-
scriptors and functions (see Section 5) rely-
ing on this structure to perform memory mon-

5

1 {
2 int∗ p ;

3 _store_block(&p, sizeof(int*));

4 . . .

5 _delete_block(&p);

6 }

Figure 8: Local variable instrumentation

1 int g ;
2

3 int main () {

4 _store_block(&g, sizeof(int));

5 _full_init(&g);

6 . . .

7 _delete_block(&g);

8 . . .
9 return 0 ;

10 }

Figure 9: Global variable instrumentation

itoring. We also defined and implemented
into the E-Acsl plug-in the instrumentation
(see Section 6) to perform on a C source
code to monitor the memory. This allows
the runtime checking of the following E-Acsl

annotations: \base_addr, \block_length,
\offset, \valid and \initialized.

References

[1] P. Baudin, P. Cuoq, J. C. Filliâtre, C. Marché,
B. Monate, Y. Moy, and V. Prevosto. ACSL: ANSI/ISO
C Specification Language preliminary design version 1.5.
http://frama-c.com/acsl.html, 2010.

[2] P. Cuoq, F. Kirchner, N. Kosmatov, V. Prevosto, J. Sig-
noles, and B. Yakobowski. Frama-C: A program analysis
perspective. In Proc. of the 10th International Con-

1 void f (int i) {

2 _store_block(&i);

3 _full_init(&i);

4 . . .

5 _delete_block(&i);

6 }

Figure 10: Formal parameter instrumentation

1 int i ;
2 i = 4 ;

3 _full_init(&i);

4

5 int t [1 0] ;
6 t [2] = 4 ;

7 _initialize((t+2), sizeof(int));

Figure 11: Assignment instrumentation

ference on Software Engineering and Formal Methods,
SEFM ’2012, October 2012. To appear.

[3] W. Szpankowski. Patricia tries again revisited. J. ACM,
37(4):691–711, Oct. 1990.

6

http://frama-c.com/acsl.html

1 int p [1 2] ;
2 //@ assert \ va l i d (p+2);

3 assert(_valid((p+2), sizeof(int)));

Figure 12: Annotation instrumentation

7

	Introduction
	Stored information
	Global architecture
	Concrete data structure used: bittree
	Patricia tries
	Greatest common prefix computation
	Experiments

	Monitoring functions
	Automatic allocation
	Dynamic allocation
	Initialization
	Interrogation

	Instrumentation
	Conclusion

