Software Analyzers

E-ACSL User Manual

FRAMA-C’s E-ACSL Plug-in

Release 0.14+dev compatible with Fluorine-20130501

Julien Signoles

CEA LIST, Software Safety Laboratory, Saclay, F-91191

(©2013 CEA LIST
This work has been supported by the ‘Hi-Lite’ FUI project (FUI AAP 9).

Foreword

1 Introduction

CONTENTS

Contents

2 What the Plug-in Provides

2.1 Simple Example .

2.1.1 Running EFACSL oo
2.1.2 Executing the generated code o oo

2.2 Execution Environment of the Generated Code

2.3 Potential Runtime Errors in the Generated Code

2.4 Handling Incomplete Program oL
2.5 Combining E-ACSL with Others Plug-ins
2.6 Customizing the Plug-in L L o

2.7 Verbosing Policy

3 Known Limitations

3.1 Undefined Value

3.2 Function without Code o

3.3 Recursive Function

3.4 Variadic Function
3.5 Function Pointer

Bibliography

Index

11
11
11
13
13
13
13
14
14
14

15
15
15
15
15
15

17

19

Foreword

This is the user manual of the FRAMA-C plug-in E-ACSL'. The content of this document
corresponds to its version 0.14dev (May 17, 2013) compatible with the version Fluorine-
20130501 of FRAMA-C |3, 5|. However the development of the E-ACSL plug-in is still ongoing;:
features described here may still evolve in the future.

"http://frama-c.com/eacsl

http://frama-c.com/eacsl

Chapter 1

Introduction

FrAMA-C [3, 5] is a modular analysis framework for the C language which supports the ACSL
specification language [1]. This manual documents the E-ACSL plug-in of FRAMA-C. This
plug-in automatically translates an annotated C code into a C code which fails at runtime if
an annotation is violated. If no annotation is violated, the behavior of the new program is
exactly the same than the one of the original program.

Such a translation brings several benefits. First it allows the user to monitor a C code, in
particular to perform what is usually called runtime assertion checking [2]'. That is the
primary goal of E-ACSL. Second it allows to combine FRAMA-C and its existing analyzers,
with other analyzer tools for C, even those who do not understand the ACSL specification
language. Third, the possibility to detect invalid annotations during a concrete execution may
be very helpful while writing a correct specification of a given program, e.g. for later program
proving. Finally, an executable specification makes it possible to check runtime assertions
that cannot be verified statically and to establish a link between monitoring tools and static
analysis tools like VALUE [6] or Wp [4].

Annotations must be written in the E-ACSL specification language |9, 7| which is a subset
of ACSL. This plug-in is still in a preliminary state: some parts of E-ACSL are not yet
supported. Which E-ACSL annotations are currently handled by the E-ACSL plug-in is
documented in a separated document [10].

This manual does not explain how to install the plug-in. Please have a look at file INSTALL
of the E-ACSL tarball for this purpose.

'In our context, “runtime annotation checking” would be a better more-general expression.

Chapter 2

What the Plug-in Provides

This chapter is the core of this manual and describes how to use the plug-in. First, Section 2.1
shows how to run the plug-in on a trivial example and how to execute the generated code with
a standard C compiler to detect invalid annotations at runtime. Then, Section 2.2 provides
additional details on the execution of the generated code. Section 2.3 explains how the plug-in
handles potential runtime errors in the generated code. Next, Section 2.4 focus on how to deal
with incomplete programs, .e. in which some functions have no body or in which there are
no main function. After, Section 2.5 explains how to combine the plug-in with other plug-ins
of FrRaMA-C. Finally, Section 2.6 introduces how to customize the plug-in, while Section 2.7
details the verbosing policy of the plug-in.

2.1 Simple Example

This Section is a mini-tutorial which explains from scratch how to detect at runtime that an
E-ACSL annotation is violated thanks to the use of the plug-in.

2.1.1 Running E-ACSL

Consider the following simple program in which the first assertion is valid while the second
one is not.

return 0;

File first.i
| int main(void) {
| int x = 0;
| /+#@ assert x =— 03 x*/
| /+#@ assert x =— 1; x*/

}

Running E-ACSL on this file just consists in adding the option -e-acsl to the FRAMA-C
command line:

$ frama-c -e-acsl first.i

[kernel] preprocessing with
[kernel] preprocessing with
[kernel] preprocessing with
[kernel] preprocessing with
[kernel] preprocessing with
[kernel] preprocessing with <...
[e-acsl] beginning translation.
[e-acsl] translation done in project "e-acsl".

share/frama-c/e-acsl/e_acsl_gmp_types.h
share/frama-c/e-acsl/e_acsl_gmp.h
share/frama-c/e-acsl/e_acsl.h
share/frama-c/e-acsl/memory_model/e_acsl_mmodel_api.h
share/frama-c/e-acsl/memory_model/e_acsl_bittree.h
share/frama-c/e-acsl/memory_model/e_acsl_mmodel.h

A A A A A
VvV V V V Vv VvV

11

CHAPTER 2. WHAT THE PLUG-IN PROVIDES

Even if first.i is already preprocessed, E-ACSL first asks the FRAMA-C kernel to preprocess
and link with first.i several files which forms the so-called E-ACSL library. Its usefulness
will be explain later, mainly in Section 2.2.

Then E-ACSL takes the annotated C code as input and translates it into a new FRAMA-C
project named e-acsl'. By default, the option -e-acsl does nothing more. It is however
possible to have a look at the generated code on the FRAMA-C GUI. It is also possible through
the command line thanks to the kernel options -then-on and -print:

$ frama-c -e-acsl first.i -then-on e-acsl -print
[kernel] preprocessing with <...> share/frama-c/e-acsl/e_acsl_gmp_types.h
[kernel] preprocessing with share/frama-c/e-acsl/e_acsl_gmp.h
[kernel] preprocessing with share/frama-c/e-acsl/e_acsl.h
[kernel] preprocessing with share/frama-c/e-acsl/memory_model/e_acsl_mmodel_api.
[kernel] preprocessing with share/frama-c/e-acsl/memory_model/e_acsl_bittree.h
[kernel] preprocessing with <...> share/frama-c/e-acsl/memory_model/e_acsl_mmodel.h
[e-acsl] beginning translation.
[e-acsl] translation done in project "e-acsl".
/* Generated by Frama-C */
struct __anonstruct___mpz_struct_l {
int _mp_alloc ;
int _mp_size ;
unsigned long *_mp_d ;
}s
typedef struct __anonstruct___mpz_struct_1 mpz_struct;
typedef __mpz_struct (__attribute__((__FC_BUILTIN__)) mpz_t)[1];
typedef unsigned int size_t;

A AN A A
VvV V. V V VvV

/*@

model __mpz_struct { integer n };

*/

/*#@ requires predicate != 0;

assigns \nothing; x*/

extern __attribute__ ((__FC_BUILTIN__)) void e_acsl_assert(int predicate,
char #*kind,
char x*xfct,
char *pred_txt,
int line);

int __fc_random_counter __attribute__((__unused__));

unsigned long const __fc_rand_max = (unsigned long)32767;

/*@ ghost extern int __fc_heap_status; */

/*Q

axiomatic
dynamic_allocation {
predicate is_allocable{L}(size_t n)

reads __fc_heap_status;
}
*/
extern __attribute__((__FC_BUILTIN__)) void __clean(void);
extern size_t __memory_size;
/*@
predicate diffSize{L1l, L2}(integer i) =
\at(__memory_size ,L1)-\at(__memory_size ,L2) == 1ij;
*/
int main(void)
1{
int __retres;
int x;
x = 0;
/%@ assert x == 0; */
e_acsl_assert(x == 0,(char *)"Assertion",(char *)"main",(char *)"x == 0",3);
/*Q@ assert x == 1; */
e_acsl_assert(x == 1,(char *)"Assertion",(char *)"main",(char *)"x == 1",4);

'The notion of project is explained in Section 8.1 of the FrRaMA-C user manual [3].

12

2.2, EXECUTION ENVIRONMENT OF THE GENERATED CODE

| __retres = 0;

| return __retres;

[>
As you can see, the generated code contains additional type declarations, constant declarations
and global ACSL annotations that are not in the initial file first.i. That is a part of the
included E-ACSL library. You can safely ignore it right now. The translated main function
of first.1i is displayed at the end. Two lines have been added. The first one is just after the
first E-ACSL annotation, while the second one is just after the second one.

| /+#@ assert x — 03 */

eiacsliassert(x == 0,(char x)"Assertion",(char *)"main",(char *)"x == 0",3);
| /*@ assert x =— 1; =/
| e acsl assert(x == 1,(char x)"Assertion",(char *)"main",(char *)"x == 1",4);

They are function calls to e_acsl_assert which is defined in the E-ACSL library. Each call
performs the dynamic verification that the corresponding assertion is valid. More precisely,
it checks that its first argument (here x == 0 or x == 1 corresponding to the annotations) is
not equal to 0 and fails otherwise. The extra arguments are only used to display nice user
feedback as shown later in Section 2.2.

2.1.2 Executing the generated code

By using the option -ocode of FRAMA-C, we can redirect the generated code into a C file as
follows.

| $ frama-c -e-acsl first.i -then-on e-acsl -print -ocode monitored_first.i

| $ gcc -o monitored_first frama-c -print-share-path/e-acsl/e_acsl.c
| monitored_first.i

| $./monitored_first

| Assertion failed at line 4 of function main.

| The falllng predicate is:

| =

2.2 Execution Environment of the Generated Code

e takes care of architecture (32, 64 bits)
e memory model (linking issue) [3]
e GMP (linking issue)

e customizing e acsl assert

2.3 Potential Runtime Errors in the Generated Code

e runtime error in annotations

2.4 Handling Incomplete Program

e function without code

e program without main

13

CHAPTER 2. WHAT THE PLUG-IN PROVIDES

2.5 Combining E-ACSL with Others Plug-ins

e -c-acsl-valid

e -e-acsl-prepare

2.6 Customizing the Plug-in

e -e-acsl-project
e -e-acsl-check

e -cacsl-share

2.7 Verbosing Policy

e level

e category

14

Chapter 3

Known Limitations

The development of the E-ACSL plug-in is still ongoing. First, the whole E-ACSL reference
manual [9] is not yet supported. Which annotations are already translated into C code and
which are not is defined in a separated document [10]. Second, even if we do our best, bugs
may exist. If you find a new one, please report it on the bug tracking system (see Chapter
10 of the FRAMA-C User Manual [3]). Third, there are some additional known limitations,
which could be annoying for the user in some cases, but are hard to lift. Thus they could be
there for a while. Lifting them could be part of commercial supports'.

3.1 Undefined Value

e use of undefined values are not tracked in annotations

e missing guards for \offset, \block length and texbase_addr (offset(p) must ensures
that p is valid)

3.2 Function without Code

3.3 Recursive Function

3.4 Variadic Function

e Not yet duplicated

3.5 Function Pointer

!Contact us or read http://frama-c.com/support.html for additional details.

15

http://frama-c.com/support.html

1]

2]

3]

[5]

[6]

18]

19]

[10]

BIBLIOGRAPHY

Bibliography

Patrick Baudin, Jean-Christophe Fillidtre, Claude Marché, Benjamin Monate, Yannick
Moy, and Virgile Prevosto. ACSL: ANSI/ISO C Specification Language. Version 1.7,
April 2013.

Lori A. Clarke and David S. Rosenblum. A historical perspective on runtime asser-
tion checking in software development. ACM SIGSOFT Software Engineering Notes,
31(3):25-37, 2006.

Loic Correnson, Pascal Cuoq, Florent Kirchner, Armand Puccetti, Virgile Prevosto,
Julien Signoles, and Boris Yakobowski. Frama-C User Manual, May April. http:
//frama-c.cea.fr/download/user-manual .pdf.

Loic Correnson, Zaynah Dargaye, and Anne Pacalet. Frama-C’s WP plug-in, April 2013.
http://frama-c.com/download/frama-c-wp-manual.pdf.

Pascal Cuoq, Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles, and
Boris Yakobowski. Frama-C, A software Analysis Perspective. In Software Engineering
and Formal Methods (SEFM), October 2012.

Pascal Cuoq, Boris Yakobowski, and Virgile Prevosto. Frama-C"’s value analysis plug-in,
April 2013. http://frama-c.cea.fr/download/value-analysis.pdf.

Mickagl Delahaye, Nikolai Kosmatov, and Julien Signoles. Common specification lan-
guage for static and dynamic analysis of C programs. In the 28th Annual ACM Sympo-
sium on Applied Computing (SAC), pages 1230-1235. ACM, March 2013.

Nikolai Kosmatov, Guillaume Petiot, and Julien Signoles. Optimized Memory Monitoring
for Runtime Assertion Checking of C Programs. Submitted for publication.

Julien Signoles. E-ACSL: Ezecutable ANSI/ISO C Specification Language. Version 1.7,
May 2013. URL: http://frama-c.com/download/ e-acsl/e-acsl.pdf.

Julien Signoles. E-ACSL Version 1.7. Implementation in Frama-C Plug-in E-
ACSL wersion 0.2, May 2013. URL: http://frama-c.com/download/e-acsl/ e-acsl-
implementation.pdf.

17

http://frama-c.cea.fr/download/user-manual.pdf
http://frama-c.cea.fr/download/user-manual.pdf
http://frama-c.com/download/frama-c-wp-manual.pdf
http://frama-c.cea.fr/download/value-analysis.pdf

-e-acsl, 11,12
e_acsl_assert, 13

Function
Pointer, 15
Recursive, 15
Variadic, 15
Without code, 15

Installation, 9
-ocode, 13
-print, 12
-then-on, 12

Undefined value, 15

INDEX

19

Index

	Foreword
	Introduction
	What the Plug-in Provides
	Simple Example
	Running E-ACSL
	Executing the generated code

	Execution Environment of the Generated Code
	Potential Runtime Errors in the Generated Code
	Handling Incomplete Program
	Combining E-ACSL with Others Plug-ins
	Customizing the Plug-in
	Verbosing Policy

	Known Limitations
	Undefined Value
	Function without Code
	Recursive Function
	Variadic Function
	Function Pointer

	Bibliography
	Index

