From d7e3a96d019152d0a507fb7cea06e20f219c06f6 Mon Sep 17 00:00:00 2001 From: Arthur Correnson <arthur.correnson@gmail.com> Date: Fri, 23 Jul 2021 14:05:40 +0200 Subject: [PATCH] Add basic binary constraint propagators on Intervals --- src_common/ieee/coq/Interval.v | 448 +++++++++++++------------------- src_common/ieee/coq/Rextended.v | 91 ------- src_common/ieee/coq/Utils.v | 121 +++++++++ 3 files changed, 299 insertions(+), 361 deletions(-) diff --git a/src_common/ieee/coq/Interval.v b/src_common/ieee/coq/Interval.v index 45217ccf5..dfcd035dd 100644 --- a/src_common/ieee/coq/Interval.v +++ b/src_common/ieee/coq/Interval.v @@ -118,9 +118,9 @@ Proof with auto. pose proof (le_not_nan_l _ _ H2). pose proof (le_not_nan_r _ _ H2). destruct Hx1 as [[Hc1 Hc1'] |], Hx2 as [[Hc2 Hc2'] |]; try (fdestruct x ; fail). - + pose proof (Hlt1 := Bleb_trans _ _ _ _ _ Hc2 Hc1'). + + pose proof (Hlt1 := Bleb_trans _ _ _ Hc2 Hc1'). apply Bleb_true_Bltb in Hlt1... - pose proof (Hlt2 := Bleb_trans _ _ _ _ _ Hc1 Hc2'). + pose proof (Hlt2 := Bleb_trans _ _ _ Hc1 Hc2'). apply Bleb_true_Bltb in Hlt2... rewrite Hlt1, Hlt2; simpl; left; split; auto using Bmax_le, Bmin_le. + fdestruct x; destruct nan2, nan1, (Bltb hi1 _), (Bltb hi2); simpl; try easy. @@ -195,309 +195,217 @@ Proof with auto. - right; fdestruct y; fdestruct x; destruct nan; simpl; intuition. Qed. +Notation "'Interval+⊥'" := Interval_opt. -(* Definition float := binary_float prec emax. - -Inductive Interval_aux := - | I_Bot : Interval_aux - | I_nan : Interval_aux - | I_intv : forall (l h : float) (nan : bool), Interval_aux. - -Definition contains (I : Interval_aux) (x : float) : Prop := +Program Definition Ile (I : Interval) : Interval+⊥ := match I with - | I_Bot => False - | I_nan => is_nan x = true - | I_intv l h n => - l <= x <= h \/ (is_nan x && n = true) + | Inan => None + | Intv a b n => + Some (Intv -oo b n) end. +Next Obligation. + destruct I as [[|l1 h1] H1]; simpl in *; fdestruct b. + inversion Heq_I; subst. + fdestruct l1. +Defined. + -Definition containsb (I : Interval_aux) (x : float) : bool := +Program Theorem Ile_correct : + forall (I : Interval) (x y : float), contains I y -> x <= y -> contains_opt (Ile I) x. +Proof. + intros [[| l1 h1] H1] x y Hx Hxy; simpl in *. + - fdestruct y; fdestruct x. + - destruct (is_nan x), Hx as [ [H H'] | ]; + try (left ; idtac; split; [ fdestruct x | apply (Bleb_trans _ _ _ Hxy H')]); + try (right ; fdestruct y; fdestruct x). +Qed. + +Program Definition Ilt (I : Interval) : Interval+⊥ := match I with - | I_Bot => true - | I_nan => is_nan x - | I_intv l h n => - (Bleb l x && Bleb x h) || (is_nan x && n) + | Inan => None + | Intv a b n => + Some (Intv -oo b n) end. +Next Obligation. + destruct I as [[|l1 h1] H1]; simpl in *; fdestruct b; + inversion Heq_I; subst; fdestruct l1. +Defined. -Definition Iadd_up_to_NaN (I1 I2 : Interval_aux) : bool := - match I1, I2 with - | I_Bot, _ => false - | _, I_Bot => false - | I_nan, _ => true - | _, I_nan => true - | I_intv l h n, I_intv l' h' n' => - n || n' || (containsb I1 +oo && containsb I2 -oo) || (containsb I1 -oo && containsb I2 +oo) - end. -Definition Iadd_aux (m : mode) (I1 I2 : Interval_aux) : Interval_aux := - match I1, I2 with - | I_Bot, _ => I_Bot - | _, I_Bot => I_Bot - | I_nan, _ => I_nan - | _, I_nan => I_nan - | I_intv l h n, I_intv l' h' n' => - let sum1 := Bplus m l l' in - let sum2 := Bplus m h h' in - match is_nan sum1 with - | true => - match is_nan sum2 with - | true => I_nan - | false => I_intv +oo +oo true - end - | false => - match is_nan sum2 with - | true => I_intv -oo -oo true - | false => I_intv sum1 sum2 (Iadd_up_to_NaN I1 I2) - end - end - end. +Program Theorem Ilt_correct : + forall (I : Interval) (x y : float), contains I y -> Bltb x y = true -> contains_opt (Ilt I) x. +Proof. + intros [[| l1 h1] H1] x y Hx Hxy; simpl in *. + - fdestruct y; fdestruct x. + - apply Bltb_Bleb in Hxy. + destruct (is_nan x), Hx as [ [H H'] | ]; + try (left ; idtac; split; [ fdestruct x | apply (Bleb_trans _ _ _ Hxy H')]); + try (right ; fdestruct y; fdestruct x). +Qed. -Definition valid_interval (I : Interval_aux) : Prop := +Program Definition Ige (I : Interval) : Interval+⊥ := match I with - | I_intv l h _ => l <= h - | _ => True + | Inan => None + | Intv a b n => + Some (Intv a +oo n) end. +Next Obligation. + destruct I as [[|l1 h1] H1]; simpl in *; fdestruct b; + inversion Heq_I; subst; fdestruct l1. +Defined. -Lemma valid_interval_Iadd : - forall m I1 I2, valid_interval I1 -> valid_interval I2 -> valid_interval (Iadd_aux m I1 I2). +Program Theorem Ige_correct : + forall (I : Interval) (x y : float), contains I y -> Bleb y x = true -> contains_opt (Ige I) x. Proof. - intros m [ | | l h ] [ | | l' h' ] H H'; simpl; try easy. - destruct (is_nan (Bplus m l l')) eqn:E1, (is_nan (Bplus m h h')) eqn:E2; try easy. - apply B2Rx_le; auto. - repeat (rewrite Bplus_correct; auto). - apply round_le. - eapply leb_trans. - - apply (add_leb_mono_l _ _ _ (le_B2Rx _ _ H)). - - apply (add_leb_mono_r _ _ _ (le_B2Rx _ _ H')). + intros [[| l1 h1] H1] x y Hx Hxy; simpl in *. + - fdestruct y; fdestruct x. + - destruct (is_nan x), Hx as [ [H H'] | ]; + try (left ; idtac; split; [ apply (Bleb_trans _ _ _ H Hxy) | fdestruct x; fdestruct y ]); + try (right ; fdestruct y; fdestruct x). Qed. -Definition Interval := { I : Interval_aux | valid_interval I }. - -Program Definition Iadd (m : mode) (I1 I2 : Interval) : Interval := - Iadd_aux m I1 I2. +Program Definition Igt (I : Interval) : Interval+⊥ := + match I with + | Inan => None + | Intv a b n => + Some (Intv a +oo n) + end. Next Obligation. - apply valid_interval_Iadd; - now destruct I1, I2. + destruct I as [[|l1 h1] H1]; simpl in *; fdestruct b; + inversion Heq_I; subst; fdestruct l1. Defined. -Program Lemma Iadd_correct : - forall m (I1 I2 : Interval) (x y : float), contains I1 x -> contains I2 y -> contains (Iadd m I1 I2) (Bplus m x y). +Program Theorem Igt_correct : + forall (I : Interval) (x y : float), contains I y -> Bltb y x = true -> contains_opt (Ige I) x. Proof. - intros m [[ | | l h n ] H1] [[ | | l' h' n' ] H2] x y Hx Hy; - simpl in *; try easy. - - fdestruct x. - - fdestruct x. - - fdestruct x; fdestruct y. - - destruct (is_nan (Bplus m l l')) eqn:E1, (is_nan (Bplus m h h')) eqn:E2; intuition. - + destruct (Bplus_nan_inv _ _ _ E1); intuition; subst; try easy. - * rewrite (infp_le_is_infp _ _ _ H0) in *. - rewrite (infp_le_is_infp _ _ _ H1) in *. - fdestruct h'. - now rewrite (le_infm_is_infm _ _ _ H5) in *. - * rewrite (infp_le_is_infp _ _ _ H2) in *. - rewrite (infp_le_is_infp _ _ _ H4) in *. - fdestruct h. - now rewrite (le_infm_is_infm _ _ _ H3) in *. - + destruct (Bplus_nan_inv _ _ _ E1); intuition; subst; try easy. - * fdestruct y; fdestruct x. - * fdestruct y; fdestruct x. - + fdestruct x; fdestruct y. - + fdestruct x; fdestruct y. - + destruct (Bplus_nan_inv _ _ _ E1); intuition; subst; try easy. - * rewrite (infp_le_is_infp _ _ _ H0) in *. - rewrite (infp_le_is_infp _ _ _ H3) in *. - fdestruct y; simpl; auto. - * rewrite (infp_le_is_infp _ _ _ H2) in *. - rewrite (infp_le_is_infp _ _ _ H4) in *. - fdestruct x; simpl; auto. - + right; fdestruct x; fdestruct y. - + right; fdestruct x; fdestruct y. - + right; fdestruct x; fdestruct y. - + destruct (Bplus_nan_inv _ _ _ E2); intuition; subst. - * rewrite (le_infm_is_infm _ _ _ H5) in *. - rewrite (le_infm_is_infm _ _ _ H2) in *. - fdestruct x; simpl; auto. - * rewrite (le_infm_is_infm _ _ _ H1) in *. - rewrite (le_infm_is_infm _ _ _ H3) in *. - fdestruct y; simpl; auto. - * fdestruct x. - * fdestruct y. - + fdestruct y; fdestruct x; simpl; auto. - + fdestruct x; simpl; auto. - + fdestruct x; simpl; auto. - + simpl; destruct (is_nan (Bplus m x y)) eqn:E. - * right. destruct (Bplus_nan_inv _ _ _ E) as [ [-> ->] | [ [ -> -> ] | ] ]. - ** rewrite (le_infm_is_infm _ _ _ H4) in *. - rewrite (infp_le_is_infp _ _ _ H3) in *. - fdestruct l; simpl; fdestruct h'; simpl; intuition. - ** rewrite (le_infm_is_infm _ _ _ H0) in *. - rewrite (infp_le_is_infp _ _ _ H5) in *. - simpl in *. - fdestruct l'; simpl; fdestruct h; simpl; intuition. - ** destruct H as [-> | ->]; [ fdestruct h | fdestruct h' ]. - * left; split; now apply Bplus_le_compat'. - + fdestruct y; fdestruct x; destruct n'; simpl; intuition. - + fdestruct y; fdestruct x; destruct n; simpl; intuition. - + fdestruct y; fdestruct x; destruct n; simpl; intuition. + intros [[| l1 h1] H1] x y Hx Hxy; simpl in *. + - fdestruct y; fdestruct x. + - apply Bltb_Bleb in Hxy. + destruct (is_nan x), Hx as [ [H H'] | ]; + try (left ; idtac; split; [ apply (Bleb_trans _ _ _ H Hxy) | fdestruct x; fdestruct y ]); + try (right ; fdestruct y; fdestruct x). Qed. -Definition inter_aux (I1 I2 : Interval_aux) : Interval_aux := +Program Definition inter_opt (I1 I2 : Interval+⊥) : Interval+⊥ := match I1, I2 with - | I_Bot, _ => I_Bot - | _, I_Bot => I_Bot - | I_nan, I_nan => I_nan - | I_nan, I_intv _ _ b => if b then I_nan else I_Bot - | I_intv _ _ b, I_nan => if b then I_nan else I_Bot - | I_intv l h b, I_intv l' h' b' => - if Bltb h l' || Bltb h' l then - if (b && b') then I_nan else I_Bot - else I_intv (Bmax l l') (Bmin h h') (b && b') + | None, _ => None + | _, None => None + | Some i1, Some i2 => inter i1 i2 end. +Next Obligation. + destruct I1 as [[[|l1 h1 n1]|] H1]; simpl in *; now inversion Heq_I1. +Defined. +Next Obligation. + destruct I2 as [[[|l1 h1 n1]|] H1]; simpl in *; now inversion Heq_I2. +Defined. -Lemma valid_interval_inter : - forall I1 I2, valid_interval I1 -> valid_interval I2 -> valid_interval (inter_aux I1 I2). -Proof with auto. - intros [ | | l h] [ | | l' h'] H1 H2; simpl in *; try (now destruct nan); try easy. - case (Bltb h l') eqn:?, (Bltb h' l) eqn:?; simpl; try (now destruct nan, nan0). - pose proof (le_not_nan_r _ _ H1); - pose proof (le_not_nan_l _ _ H1); - pose proof (le_not_nan_r _ _ H2); - pose proof (le_not_nan_l _ _ H2). - auto using Bmax_le, Bmin_le, Bltb_false_Bleb. -Qed. - -Program Definition inter (I1 I2 : Interval) : Interval := - inter_aux I1 I2. +Program Definition to_opt (I : Interval) : Interval+⊥ := + Some (I :>). Next Obligation. - destruct I1, I2; simpl. - now apply valid_interval_inter. + now destruct I as [[| l h n ] H]. Defined. -Program Lemma inter_precise_l : - forall I1 I2, forall x, contains (inter I1 I2) x -> contains I1 x. +Coercion to_opt : Interval >-> Interval_opt. + +Ltac fall_cases x := + try (fdestruct x; fail). + +Ltac fall_cases2 x y := + try (fdestruct x; fdestruct y; fail). + + +Definition Ige_inv (I1 I2 : Interval) : Interval+⊥ * Interval+⊥ := + (inter_opt (Ige I2) I1, inter_opt (Ile I1) I2). + +Program Theorem Ige_inv_correct : + forall (I1 I2 : Interval) (x y : float), + contains I1 x -> contains I2 y -> + y <= x -> + contains_opt (fst (Ige_inv I1 I2)) x /\ + contains_opt (snd (Ige_inv I1 I2)) y. Proof. - intros [ [ | | ? ? [ ]] H1 ] [ [ | | ? ? [ ]] H2 ] x Hx; simpl in *; try easy. - - intuition. - - destruct (Bltb h l0), (Bltb h0 l); simpl in *; try (rewrite Hx; intuition). - destruct Hx as [ [Hc1 Hc2] | ]; auto; left; split. - + now apply Bmax_le_inv in Hc1. - + now apply Bmin_le_inv in Hc2. - - destruct (Bltb h l0) eqn:E1, (Bltb h0 l) eqn:E2; simpl in *; auto. - destruct Hx as [ [ Hc1 Hc2 ] | ]; auto; left; split. - + apply Bmax_le_inv in Hc1; intuition. - + apply Bmin_le_inv in Hc2; intuition. - + fdestruct x. - + fdestruct x. - - destruct (Bltb h l0) eqn:E1, (Bltb h0 l) eqn:E2; simpl in *; auto. - destruct Hx as [ [ Hc1 Hc2 ] | ]; auto; left; split. - + apply Bmax_le_inv in Hc1; intuition. - + apply Bmin_le_inv in Hc2; intuition. - - destruct (Bltb h l0) eqn:E1, (Bltb h0 l) eqn:E2; simpl in *; auto. - destruct Hx as [ [ Hc1 Hc2 ] | ]; auto; left; split. - + apply Bmax_le_inv in Hc1; intuition. - + apply Bmin_le_inv in Hc2; intuition. -Defined. + intros [[|l1 h1 n1] H1] [[|l2 h2 n2] H2] x y Hx Hy Hxy; fall_cases2 x y. + split; apply inter_correct; simpl in *; auto. + + destruct Hx as [[Hx Hx'] | Hx], Hy as [[Hy Hy'] | Hy]; fall_cases2 y x. + left; split; [ apply (Bleb_trans _ _ _ Hy Hxy) | fdestruct x ]. + + destruct Hx as [[Hx Hx'] | Hx], Hy as [[Hy Hy'] | Hy]; fall_cases2 y x. + left; split; [ fdestruct y; fdestruct x | apply (Bleb_trans _ _ _ Hxy Hx') ]. +Qed. -Program Lemma inter_precise_r : - forall I1 I2, forall x, contains (inter I1 I2) x -> contains I2 x. + +Definition Igt_inv (I1 I2 : Interval) : Interval+⊥ * Interval+⊥ := + (inter_opt (Igt I2) I1, inter_opt (Ilt I1) I2). + +Program Theorem Igt_inv_correct : + forall (I1 I2 : Interval) (x y : float), + contains I1 x -> contains I2 y -> + Bltb y x = true -> + contains_opt (fst (Igt_inv I1 I2)) x /\ + contains_opt (snd (Igt_inv I1 I2)) y. Proof. - intros [ [ | | ? ? [ ]] H1 ] [ [ | | ? ? [ ]] H2 ] x Hx; simpl in *; try easy. - - rewrite Hx; intuition. - - destruct (Bltb h l0), (Bltb h0 l); simpl in *; try (rewrite Hx; intuition). - destruct Hx as [ [Hc1 Hc2] | ]; auto; left; split. - + now apply Bmax_le_inv in Hc1. - + now apply Bmin_le_inv in Hc2. - - destruct (Bltb h l0), (Bltb h0 l); simpl in *; try easy. - destruct Hx as [ [Hc1 Hc2] | ]; auto; left; split. - + now apply Bmax_le_inv in Hc1. - + now apply Bmin_le_inv in Hc2. - - destruct (Bltb h l0), (Bltb h0 l); simpl in *; try easy. - destruct Hx as [ [Hc1 Hc2] | ]; auto; left; split. - + now apply Bmax_le_inv in Hc1. - + now apply Bmin_le_inv in Hc2. - + fdestruct x. - + fdestruct x. - - destruct (Bltb h l0), (Bltb h0 l); simpl in *; try easy. - destruct Hx as [ [Hc1 Hc2] | ]; auto; left; split. - + now apply Bmax_le_inv in Hc1. - + now apply Bmin_le_inv in Hc2. -Defined. + intros [[|l1 h1 n1] H1] [[|l2 h2 n2] H2] x y Hx Hy Hxy; fall_cases2 x y. + split; apply inter_correct; simpl in *; auto; destruct Hx as [[Hx Hx'] | Hx], Hy as [[Hy Hy'] | Hy]; auto; fall_cases2 x y. + + left; split. + * apply (Bleb_trans _ _ _ Hy (Bltb_Bleb _ _ _ _ Hxy)). + * fdestruct x. + + left; split. + * fdestruct y. + * apply (Bleb_trans _ _ _ (Bltb_Bleb _ _ _ _ Hxy) Hx'). +Qed. +Definition Ilt_inv (I1 I2 : Interval) : Interval+⊥ * Interval+⊥ := + (inter_opt (Ilt I2) I1, inter_opt (Igt I1) I2). -Lemma classification : - forall (f : float), - (f = NaN \/ is_finite f = true \/ is_infm f = true \/ is_infp f = true). +Program Theorem Ilt_inv_correct : + forall (I1 I2 : Interval) (x y : float), + contains I1 x -> contains I2 y -> + Bltb x y = true -> + contains_opt (fst (Ilt_inv I1 I2)) x /\ + contains_opt (snd (Ilt_inv I1 I2)) y. Proof. - intros; fdestruct f; intuition. + intros [[|l1 h1 n1] H1] [[|l2 h2 n2] H2] x y Hx Hy Hxy; fall_cases2 x y. + split; apply inter_correct; simpl in *; auto; destruct Hx as [[Hx Hx'] | Hx], Hy as [[Hy Hy'] | Hy]; auto; fall_cases2 x y. + + left; split; fall_cases x. + apply (Bleb_trans _ _ _ (Bltb_Bleb _ _ _ _ Hxy) Hy'). + + left; split; fall_cases y. + apply (Bleb_trans _ _ _ Hx (Bltb_Bleb _ _ _ _ Hxy)). Qed. -Ltac classify f := - destruct (classification f) as [ | [ | [ | ]]]; try (subst; easy). - -Ltac classify_nan x := - match goal with - | [ H : is_nan x = true |- _ ] => - rewrite (is_nan_inv x H) in * - | [ H : Bleb _ x = true |- _ ] => - assert (is_nan x = false) by apply (le_not_nan_r _ _ H) - | [ H : Bleb x _ = true |- _ ] => - assert (is_nan x = false) by apply (le_not_nan_l _ _ H) - | _ => fail "can't determine if" x "is NaN" - end. +Definition Ile_inv (I1 I2 : Interval) : Interval+⊥ * Interval+⊥ := + (inter_opt (Ile I2) I1, inter_opt (Ige I1) I2). -Lemma is_finite_not_nan : - forall (x : float), is_finite x = true -> is_nan x = false. -Proof. fdestruct x. Qed. - +Program Theorem Ile_inv_correct : + forall (I1 I2 : Interval) (x y : float), + contains I1 x -> contains I2 y -> + x <= y -> + contains_opt (fst (Ile_inv I1 I2)) x /\ + contains_opt (snd (Ile_inv I1 I2)) y. +Proof. + intros [[|l1 h1 n1] H1] [[|l2 h2 n2] H2] x y Hx Hy Hxy; fall_cases2 x y. + split; apply inter_correct; simpl in *; auto; destruct Hx as [[Hx Hx'] | Hx], Hy as [[Hy Hy'] | Hy]; auto; fall_cases2 x y. + + left; split; fall_cases x. + apply (Bleb_trans _ _ _ Hxy Hy'). + + left; split; fall_cases y. + apply (Bleb_trans _ _ _ Hx Hxy). +Qed. -Program Lemma inter_correct : - forall (I1 I2 : Interval) x, - contains I1 x -> contains I2 x -> contains (inter I1 I2) x. +Definition Ieq_inv (I1 I2 : Interval) : Interval+⊥ * Interval+⊥ := + (inter_opt I1 I2, inter_opt I1 I2). + + Program Theorem Ieq_inv_correct : + forall (I1 I2 : Interval) (x y : float), + contains I1 x -> contains I2 y -> + Beqb x y = true -> + contains_opt (fst (Ile_inv I1 I2)) x /\ + contains_opt (snd (Ile_inv I1 I2)) y. Proof. - intros [ [ | | ? ? [ ]] H1 ] [ [ | | ? ? [ ]] H2 ] x Hx1 Hx2; simpl in *; - try easy; try (fdestruct x; intuition; fail). - - destruct Hx1 as [[Hc1 Hc1'] |], Hx2 as [[Hc2 Hc2'] |]; try (fdestruct x ; fail). - + classify_nan l; classify_nan h; classify_nan l0; classify_nan h0. - destruct (Bltb h l0) eqn:E1, (Bltb h0 l) eqn:E2; simpl in *; try easy. - * apply Bltb_true_Bleb in E1; auto. - now rewrite (Bleb_trans _ _ _ _ _ Hc2 Hc1') in E1. - * apply Bltb_true_Bleb in E1; auto. - now rewrite (Bleb_trans _ _ _ _ _ Hc2 Hc1') in E1. - * apply Bltb_true_Bleb in E2; auto. - now rewrite (Bleb_trans _ _ _ _ _ Hc1 Hc2') in E2. - * left; split; [ now apply Bmax_le | now apply Bmin_le ]. - + fdestruct x. - destruct (Bltb h _), (Bltb h0); simpl; auto. - - destruct Hx1 as [[Hc1 Hc1'] |], Hx2 as [[Hc2 Hc2'] |]; try (fdestruct x ; fail). - classify_nan l; classify_nan h; classify_nan l0; classify_nan h0. - destruct (Bltb h l0) eqn:E1, (Bltb h0 l) eqn:E2; simpl in *; try easy. - * apply Bltb_true_Bleb in E1; auto. - now rewrite (Bleb_trans _ _ _ _ _ Hc2 Hc1') in E1. - * apply Bltb_true_Bleb in E1; auto. - now rewrite (Bleb_trans _ _ _ _ _ Hc2 Hc1') in E1. - * apply Bltb_true_Bleb in E2; auto. - now rewrite (Bleb_trans _ _ _ _ _ Hc1 Hc2') in E2. - * left; split; [ now apply Bmax_le | now apply Bmin_le ]. - - destruct Hx1 as [[Hc1 Hc1'] |], Hx2 as [[Hc2 Hc2'] |]; try (fdestruct x; fail). - classify_nan l; classify_nan h; classify_nan l0; classify_nan h0. - destruct (Bltb h l0) eqn:E1, (Bltb h0 l) eqn:E2; simpl in *; try easy. - * apply Bltb_true_Bleb in E1; auto. - now rewrite (Bleb_trans _ _ _ _ _ Hc2 Hc1') in E1. - * apply Bltb_true_Bleb in E1; auto. - now rewrite (Bleb_trans _ _ _ _ _ Hc2 Hc1') in E1. - * apply Bltb_true_Bleb in E2; auto. - now rewrite (Bleb_trans _ _ _ _ _ Hc1 Hc2') in E2. - * left; split; [ now apply Bmax_le | now apply Bmin_le ]. - - destruct Hx1 as [[Hc1 Hc1'] |], Hx2 as [[Hc2 Hc2'] |]; try (fdestruct x; fail). - classify_nan l; classify_nan h; classify_nan l0; classify_nan h0. - destruct (Bltb h l0) eqn:E1, (Bltb h0 l) eqn:E2; simpl in *; try easy. - * apply Bltb_true_Bleb in E1; auto. - now rewrite (Bleb_trans _ _ _ _ _ Hc2 Hc1') in E1. - * apply Bltb_true_Bleb in E1; auto. - now rewrite (Bleb_trans _ _ _ _ _ Hc2 Hc1') in E1. - * apply Bltb_true_Bleb in E2; auto. - now rewrite (Bleb_trans _ _ _ _ _ Hc1 Hc2') in E2. - * left; split; [ now apply Bmax_le | now apply Bmin_le ]. -Qed. *) - -End Finterval. \ No newline at end of file + intros [[|l1 h1 n1] H1] [[|l2 h2 n2] H2] x y Hx Hy Hxy; fall_cases2 x y. + split; apply inter_correct; simpl in *; auto; destruct Hx as [[Hx Hx'] | Hx], Hy as [[Hy Hy'] | Hy]; auto; fall_cases2 x y. + + left; split; fall_cases x. + apply (Bleb_trans _ _ _ (Beqb_Bleb _ _ _ _ Hxy) Hy'). + + left; split; fall_cases y. + apply (Bleb_trans _ _ _ Hx (Beqb_Bleb _ _ _ _ Hxy)). +Qed. + +End Finterval. + diff --git a/src_common/ieee/coq/Rextended.v b/src_common/ieee/coq/Rextended.v index 593261921..5262270bc 100644 --- a/src_common/ieee/coq/Rextended.v +++ b/src_common/ieee/coq/Rextended.v @@ -8,63 +8,6 @@ From F Require Import Utils. Set Implicit Arguments. -(** - Usefull facts & definitions about R -*) -Section Rutils. - -Definition sign (r : R) := - Raux.Rlt_bool r 0. - -Lemma sign_pos_inv : - forall r, sign r = false -> (0 <= r)%R. -Proof. - intros. - unfold sign in H. - now destruct (Raux.Rlt_bool_spec r 0). -Qed. - -Lemma sign_neg_inv : - forall r, sign r = true -> (r <= 0)%R. -Proof. - intros. - unfold sign in H. left. - now destruct (Raux.Rlt_bool_spec r 0). -Qed. - -Lemma sign_neg_inv_strict: - forall r, sign r = true -> (r < 0)%R. -Proof. - intros. - unfold sign in H. - now destruct (Raux.Rlt_bool_spec r 0). -Qed. - -Lemma minus_pos_lt : - forall r1 r2, (0 < r2)%R -> (r1 - r2 < r1)%R. -Proof. - intros; lra. -Qed. - -Lemma IZR_neg : - (forall x, IZR (Z.neg x) < 0)%R. -Proof. - induction x; try lra; - apply (Rgt_trans _ (IZR (Z.neg x))); auto; - apply IZR_lt; lia. -Qed. - -Lemma IZR_pos : - (forall x, IZR (Z.pos x) > 0)%R. -Proof. - induction x; try lra; - apply (Rgt_trans _ (IZR (Z.pos x))); auto; - apply IZR_lt; lia. -Qed. - -End Rutils. - - (** Inject BinarySingleNan in R extended with infinities *) @@ -199,10 +142,6 @@ Lemma F2R_congr : @Defs.F2R Zaux.radix2 {| Defs.Fnum := m2; Defs.Fexp := e2 |}. Proof. congruence. Qed. - - - - Definition round (m : mode) (r : Rx) : Rx := match r with | Real x => @@ -214,37 +153,7 @@ Definition round (m : mode) (r : Rx) : Rx := | _ => r end. -Lemma pos_Rleb_neg : - forall r1 r2, - sign r1 = false -> - sign r2 = true -> - Raux.Rle_bool r1 r2 = false. -Proof. - intros. unfold sign in *. - destruct (Raux.Rlt_bool_spec r1 0); try easy. - destruct (Raux.Rlt_bool_spec r2 0); try easy. - apply Raux.Rle_bool_false; lra. -Qed. -Lemma Rleb_Rle : - forall r1 r2, Raux.Rle_bool r1 r2 = true -> (r1 <= r2)%R. -Proof. - intros. - now destruct (Raux.Rle_bool_spec r1 r2). -Qed. - -Lemma Rltb_Rlt : - forall r1 r2, Raux.Rlt_bool r1 r2 = true -> (r1 < r2)%R. -Proof. - intros. - now destruct (Raux.Rlt_bool_spec r1 r2). -Qed. - -Lemma Rsign_split : - forall (r : R), (r < 0 \/ r = 0 \/ r > 0)%R. -Proof. - intros. lra. -Qed. Lemma dont_overflow_inv : forall m (r : R), diff --git a/src_common/ieee/coq/Utils.v b/src_common/ieee/coq/Utils.v index 191041f58..277f1a5c4 100644 --- a/src_common/ieee/coq/Utils.v +++ b/src_common/ieee/coq/Utils.v @@ -2,6 +2,101 @@ From Flocq Require Import IEEE754.BinarySingleNaN. From Coq Require Import ZArith Lia Reals Psatz Bool. (* From F Require Import Rextended. *) +(** + Usefull facts & definitions about R +*) +Section Rutils. + +Definition sign (r : R) := + Raux.Rlt_bool r 0. + +Lemma sign_pos_inv : + forall r, sign r = false -> (0 <= r)%R. +Proof. + intros. + unfold sign in H. + now destruct (Raux.Rlt_bool_spec r 0). +Qed. + +Lemma sign_neg_inv : + forall r, sign r = true -> (r <= 0)%R. +Proof. + intros. + unfold sign in H. left. + now destruct (Raux.Rlt_bool_spec r 0). +Qed. + +Lemma sign_neg_inv_strict: + forall r, sign r = true -> (r < 0)%R. +Proof. + intros. + unfold sign in H. + now destruct (Raux.Rlt_bool_spec r 0). +Qed. + +Lemma minus_pos_lt : + forall r1 r2, (0 < r2)%R -> (r1 - r2 < r1)%R. +Proof. + intros; lra. +Qed. + +Lemma IZR_neg : + (forall x, IZR (Z.neg x) < 0)%R. +Proof. + induction x; try lra; + apply (Rgt_trans _ (IZR (Z.neg x))); auto; + apply IZR_lt; lia. +Qed. + +Lemma IZR_pos : + (forall x, IZR (Z.pos x) > 0)%R. +Proof. + induction x; try lra; + apply (Rgt_trans _ (IZR (Z.pos x))); auto; + apply IZR_lt; lia. +Qed. + +Lemma pos_Rleb_neg : + forall r1 r2, + sign r1 = false -> + sign r2 = true -> + Raux.Rle_bool r1 r2 = false. +Proof. + intros. unfold sign in *. + destruct (Raux.Rlt_bool_spec r1 0); try easy. + destruct (Raux.Rlt_bool_spec r2 0); try easy. + apply Raux.Rle_bool_false; lra. +Qed. + +Lemma Rleb_Rle : + forall r1 r2, Raux.Rle_bool r1 r2 = true -> (r1 <= r2)%R. +Proof. + intros. + now destruct (Raux.Rle_bool_spec r1 r2). +Qed. + +Lemma Reqb_Req : + forall r1 r2, Raux.Req_bool r1 r2 = true -> (r1 = r2)%R. +Proof. + intros. + now destruct (Raux.Req_bool_spec r1 r2). +Qed. + +Lemma Rltb_Rlt : + forall r1 r2, Raux.Rlt_bool r1 r2 = true -> (r1 < r2)%R. +Proof. + intros. + now destruct (Raux.Rlt_bool_spec r1 r2). +Qed. + +Lemma Rsign_split : + forall (r : R), (r < 0 \/ r = 0 \/ r > 0)%R. +Proof. + intros. lra. +Qed. + +End Rutils. + (********************************************************* Simple & usefull results on floats **********************************************************) @@ -60,6 +155,14 @@ Proof. exact (proj2 (le_not_nan x y H)). Qed. +Lemma infm_min : + forall (x : float), is_nan x = false -> -oo <= x. +Proof. fdestruct x. Qed. + +Lemma infp_max : + forall (x : float), is_nan x = false -> x <= +oo. +Proof. fdestruct x. Qed. + Lemma infp_le_is_infp : forall x : float, +oo <= x -> x = +oo. Proof. @@ -252,6 +355,15 @@ Proof. lra. Qed. +Lemma Beqb_Bleb : + forall x y : float, Beqb x y = true -> Bleb x y = true. +Proof. + intros x y Hxy. + fdestruct x; fdestruct y; rewrite Beqb_correct in Hxy; auto; + apply Rle_Bleb; auto; right; + now apply Reqb_Req in Hxy. +Qed. + Lemma Bleb_refl : forall x:float, is_nan x = false -> Bleb x x = true. Proof. @@ -455,6 +567,13 @@ Proof. now apply (Bleb_trans z y x). Qed. +Lemma Bpred_not_nan : + forall (x : float), is_nan x = false -> is_nan (Bpred x) = false. +Proof. + intros x <-. + apply is_nan_Bpred. +Qed. + End Utils. Arguments le_not_nan {prec} {emax}. @@ -472,3 +591,5 @@ Arguments Bmax_max_1 {prec} {emax}. Arguments Bmax_max_2 {prec} {emax}. Arguments Bmin_min_1 {prec} {emax}. Arguments Bmin_min_2 {prec} {emax}. +Arguments Bleb_trans {prec} {emax}. +Arguments Bltb_Bleb_trans {prec} {emax}. -- GitLab