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Chapter 1

Introduction

1.1 What is ECLiPSe ?

ECLiPSe (ECLiPSe Constraint Logic Programming System) is an open-source software system
whose aim is to serve as a platform for integrating various Logic Programming extensions. It is
used in particular for the cost-effective development and deployment of constraint programming
applications, e.g. in the areas of planning, scheduling, resource allocation, timetabling, transport
etc. It is also ideal for teaching most aspects of combinatorial problem solving, e.g. problem
modelling, constraint programming, mathematical programming, and search techniques. It con-
tains several constraint solver libraries, a high-level modelling and control language, interfaces
to third-party solvers, an integrated development environment and interfaces for embedding into
host environments.
The ECLiPSe programming language has been developed from the Prolog language ([3]), more
specifically the Edinburgh family of Prologs and more recently the ISO Prolog standard ([1]).
ECLiPSe retains backward compatibility by supporting several language dialects.
In terms of implementation technology, ECLiPSe is built around an incremental compiler which
compiles ECLiPSe source into WAM-like code [14], and a runtime system comprising an emulator
of this abstract code, automatic memory management, I/O system and built-in predicates.

1.2 Overview

The ECLiPSe logic programming system was originally an integration of ECRC’s SEPIA, Mega-
Log and (parts of the) CHIP systems. It was then further developed into a Constraint Logic
Programming system with a focus on hybrid problem solving and solver integration. The docu-
mentation is organised as follows:

The User Manual describes the functionality of the ECLiPSe kernel (this document).

The Constraint Library Manual describes the major ECLiPSe libraries, in particular the
ones implementing constraint solvers.

The Interfacing and Embedding Manual describes how to interface ECLiPSe to other pro-
gramming languages, and in particular how to embed it into an application as a component.

The Reference Manual contains detailed descriptions of all the Built-in predicates and the li-
braries. This information is also available from the development system’s help/1 command
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and the tkeclipse library browser.

The Visualisation Manual describes the facilities for the visualisation of constraint propa-
gation and search.

All the documentation can be accessed using an html browser (refer to the eclipse installation
directory under doc/index.html).

1.3 Further Information

ECLiPSe was initially developed at the European Computer-Industry Research Centre (ECRC)
in Munich, and then at IC-Parc, Imperial College in London until the end of 2005. It is now an
open-source project, with the support of Cisco Systems. Up-to-date information can be obtained
from the ECLiPSe web site

http://www.eclipseclp.org

or from the Sourceforge site under the project name eclipse-clp

http://www.sourceforge.net/projects/eclipse-clp

which also hosts the main source repository. There you can also subscribe to the ECLiPSe user
group mailing list or access its archives.

eclipse-clp-users@lists.sf.net

1.4 Reporting Problems

In order to make ECLiPSe as useful and reliable as possible, we would like to encourage users
to submit problem reports via the web site

http://eclipseclp.org/bugs.html

or by e-mail to

eclipse-clp-bugs@lists.sf.net

2



Chapter 2

Terminology

This chapter defines the terminology which is used throughout the manual and in related doc-
umentation.

+X This denotes an input argument. Such an argument must be instantiated before a predicate
is called.

++X This denotes a ground argument. Such an argument can be complex, but must be fully
instantiated, i.e., not contain any variables.

–X This denotes an output argument. Such an argument is allowed to be uninstantiated at call
time. When this mode is used in the description of a built-in or library predicate, it is only
descriptive. This means that the predicate can be called with an instantated argument,
but it will behave as if were called with an uninstantiated variable which is then unified
with the actual argument after returning from the call (e.g. atom_length(abc,3) behaves
the same as atom_length(abc,L),L=3). If this mode is used in a mode/1 declaration,
it is prescriptive, i.e. it is taken as a promise that the predicate will always be called
with an uninstantiated variable, and that the compiler is allowed to make corresponding
optimizations. Violating this promise will lead to unexpected failures.

?X This denotes an input or an output argument. Such an argument may be either instantiated
or not when the predicate is called.

Arity Arity is the number of arguments to a term. Atoms are considered as functors with zero
arity. The notation Name/Arity is used to specify a functor by giving its name and arity.

Atom An arbitrary name chosen by the user to represent objects from the problem domain.
A Prolog atom corresponds to an identifier in other languages. It can be written as a
conventional identifier (beginning with a lower-case letter), or a character sequnce enclosed
in single quotes.

Atomic An atom, string or a number. A term which does not contain other terms.

Body A clause body can either be of the form

Goal_1, Goal_2, ..., Goal_k

or simply
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Goal

Each Goal i must be a callable term.

Built-in Procedures These are predicates provided for the user by the ECLiPSe system, they
are either written in Prolog or in the implementation language (usually C).

Callable Term A callable term is either a compound term or an atom.

Clause See program clause or goal clause.

Compound Term Compound terms are of the form

f(t_1, t_2, ..., t_n)

where f is the functor of the compound term, n is its arity and t i are terms. Lists and
pairs are also compound terms.

Constant An atom, a number or a string.

Determinism The determinism specification of a built-in or library predicate says how many
solutions the predicate can have, and whether it can fail. The six determinism groups are
defined as follows:

| Maximum number of solutions

Can fail? | 0 1 > 1

------------+------------------------------------------

no | erroneous det multi

yes | failure semidet nondet

This classification is borrowed from the Mercury programming language, but in ECLiPSe

only used for the purpose of documentation. Note that the determinism of a predicate
usually depends on its calling mode.

DID Each atom created within ECLiPSe is assigned a unique identifier called the dictionary
identifier or DID.

Difference List A difference list is a special kind of a list. Instead of being ended by nil, a
difference list has an uninstantiated tail so that new elements can be appended to it in
constant time. A difference list is written as List - Tail where List is the beginning of the
list and Tail is its uninstantiated tail. Programs that use difference lists are usually more
efficient and always much less readable than programs without them.

Dynamic Procedure These are procedures which can be modified clause-wise, by adding or
removing one clause at a time. Note that this class of procedure is equivalent to interpreted
procedures in other Prolog systems. See also static procedures.

External Procedures These are procedures which are defined in a language other than Prolog,
and explicitly connected to Prolog predicates by the user.

Fact A fact or unit clause is a term of the form:

Head.

4



where Head is a head.

A fact may be considered to be a rule whose body is always true.

Functor A functor is characterised by its name (which is an atom), and its arity (which is its
number of arguments).

Goal Clause See query.

Ground A term is ground when it does not contain any uninstantiated variables.

Head A clause head is a structure or an atom.

Instantiated A variable is instantiated when it has been bound to an atomic or a compound
term as opposed to being uninstantiated or free. See also ground.

List A list is a special type of term within Prolog. It is a recursive data structure consisting of
pairs (whose tails are lists). A list is either the atom [] called nil as in LISP, or a pair
whose tail is a list. The notation :

[a , b , c]

is shorthand for:

[a | [b | [c | []]]]

Mode A predicate mode is a particular instantiation pattern of its arguments at call time. Such
a pattern is usually written as a predicate template, e.g.,

p(+,-)

where the symbols +, ++, - and ? represent instantiated, ground, uninstantiated and
unknown arguments respectively.

Name/Arity The notation Name/Arity is used to specify a functor by giving its name and
arity.

Number A number literal denotes a number, more or less like in all programming languages.

Pair A pair is a compound term with the functor ./2 (dot) which is written as :

[H|T]

H is the head of the pair and T its tail.

Predicate A predicate is another term for a procedure.

PredSpec This is similar to Name/Arity. Some built-ins allow the arity to be omitted and
to specify the name only: this stands for all (visible) predicates with that name and any
arity.

Program Clause A program clause (or simply clause) is either the term

Head :- Body.
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(i.e., a compound term with the functor :-/2), or only a fact.

Query A query has the same form as a body and is also called a goal. Such clauses occur mainly
as input to the top level Prolog loop and in files being compiled, then they have the form

:- Goal_1, ..., Goal_k.

or

?- Goal_1, ..., Goal_k.

The first of these two forms is often called a directive.

Regular Prolog Procedure A regular (Prolog) procedure is a sequence of user clauses whose
heads have the same functor, which then identifies the user procedure.

Simple Procedures Apart from regular procedures ECLiPSe recognises simple procedures
which are written not in Prolog but in the implementation language (i.e., C), and which
are deterministic. There is a functor associated with each simple procedure, so that any
procedure recognisable by ECLiPSe is identified by a functor, or by a compound term (or
atom) with this functor.

SpecList The SpecList notation means a sequence of PredSpec terms of the form:

name_1/arity_1, name_2/arity_2, ..., name_k/arity_k.

The SpecList notation is used in many built-ins, for example, to specify a list of procedures
in the export/1 predicate.

Static Procedures These are procedures which can only be changed as a whole unit, i.e.,
removed or replaced.

Stream This is an I/O channel identifier and can be a physical stream number, one of the
predefined stream identifiers (input, output, error, warning_output, log_output, null)
or a user defined stream name (defined using set stream/2 or open/3).

String A string is similar to those found in all other programming languages. A string is
enclosed in double quotes.

Structure Compound terms which are not pairs are also called structures.

Term A term is the basic data type in Prolog. It is either a variable, a constant or a compound
term.

Variable A variable is more similar to a mathematical variable than to a variable in some
imperative language. It can be free, or instantiated to a term, but once instantiated it
becomes indistinguishable from the term to which it was instantiated: in particular, it
cannot become free again (except upon backtracking through the point of instantiation).
The name of a variable is written in the form of an identifier that begins with an upper-case
letter or with an underscore. A single underscore represents an anonymous variable that
has only one occurrence (i.e., another occurrence of this name represents another variable).

The notation Pred/N1, N2 is often used in this documentation as a shorthand for Pred/N1,
Pred/N2.
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Chapter 3

Getting started with ECLiPSe

3.1 How do I install the ECLiPSe system?

Please see the installation notes that came with ECLiPSe. For Unix/Linux systems, these are
in the file README_UNIX. For Windows, they are in the file README_WIN.TXT.

Please note that choices made at installation time can affect which options are available in the
installed system.

3.2 How do I run my ECLiPSe programs?

There are two ways of running ECLiPSe programs. The first is using tkeclipse, which provides
an interactive graphical user interface to the ECLiPSe compiler and system. The second is using
eclipse, which provides a more traditional command-line interface. We recommend you use
TkECLiPSe unless you have some reason to prefer a command-line interface.

3.3 How do I use TkECLiPSe?

3.3.1 Getting started

To start TkECLiPSe, either type the command tkeclipse at an operating system command-
line prompt, or select TkECLiPSe from the program menu on Windows. This will bring up the
TkECLiPSe top-level, which is shown in Figure 3.1.

Note that help on TkECLiPSe and its component tools is available from the Help menu in the
top-level window. If you need more information than can be found in this manual, try looking
in the Help menu.

3.4 How do I write an ECLiPSe program?

You must use an editor to write your programs. ECLiPSe does not come with an editor, but
any editor that can save plain text files can be used. Save your program as a plain text file, and
you can then compile the program into ECLiPSe and run it.

With TkECLiPSe, you can specify the editor you want to use, and this editor will be started
by TkECLiPSe, e.g., when you select a file in the ‘Edit’ option under the File menu. The
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Figure 3.1: TkECLiPSe top-level

default values are the value of the VISUAL environment variable under Unix, or Wordpad
under Windows. This can be changed with the Preference Editor under the Tools menu.

3.4.1 Compiling a program

From the File menu, select the Compile ... option. This will bring up a file selection dialog.
Select the file you wish to compile, and click on the Open button. This will compile the file and
any others it depends on. Messages indicating which files have been compiled and describing
any errors encountered will be displayed in the bottom portion of the TkECLiPSe window
(Output and Error Messages).

If a file has been modified since it was compiled, it may be recompiled by clicking on the make

button. This recompiles any files which have become out-of-date.

For more information on program compilation and the compiler, please see chapter 6.

3.4.2 Executing a query

To execute a query, first enter it into the Query Entry text field. You will also have to specify
which module the query should be run from, by selecting the appropriate entry from the drop-
down list to the left of the Query Entry field. Normally, the default selection of eclipse will
be fine; this will allow access to all ECLiPSe built-ins and all predicates that have not explicitly
been compiled into a different module. Selecting another module for the query is only needed
if you wish to call a predicate which is not visible from the eclipse module, in which case you
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must select that module. (For more information about the module system, please see chapter
8.)

To actually execute the query, either hit the Enter key while editing the query, or click on the
run button. TkECLiPSe maintains a history of commands entered during the session, and these
may be recalled either by using the drop-down list to the right of the Query Entry field, or by
using the up and down arrow keys while editing the Query Entry field.

If ECLiPSe cannot find a solution to the query, it will print No in the Results section of the
TkECLiPSe window. If it finds a solution and knows there are no more, it will print it in the
Results section, and then print Yes. If it finds a solution and there may be more, it will print
the solution found as before, print More, and enable the more button. Clicking on the more

button tells ECLiPSe to try to find another solution. In all cases it also prints the total time
taken to execute the query.

Note that a query can be interrupted during execution by clicking on the interrupt button.

3.4.3 Editing a file

If you wish to edit a file (e.g., a program source file), then you may do so by selecting the
Edit ... option from the File menu. This will bring up a file selection dialog. Select the file
you wish to edit, and click on the Open button.

When you have finished editing the file, save it. After you’ve saved it, if you wish to update the
version compiled into ECLiPSe (assuming it had been compiled previously), simply click on the
make button.

You can change which program is used to edit your file by using the TkECLiPSe Preference
Editor, available from the Tools menu.

3.4.4 Debugging a program

To help diagnose problems in ECLiPSe programs, TkECLiPSe provides the tracer. This can be
invoked by selecting the Tracer option from the Tools menu. The next time a goal is executed,
the tracer window will become active, allowing you to step through the program’s execution and
examine the program’s state as it executes.

The tracer displays the current call stack, the program source, and a trace log. By using the
left mouse button in the Call Stack region of the tracer window, you can bring up a menu of
additional operations you can perform on that goal, such as inspecting it, or setting a spy point
on the predicate in question. Source breakpoints can be set by marking the corresponding line
in the tracer’s source display. Selecting Configure filter ... from the Options menu of the
tracer will launch the conditional filter. This filter allows you to specify conditions on which the
tracer should stop at a debug port. This can be very useful for skipping over unwanted debug
ports.

For more information on using the tracer, please see the online help, available by selecting
Tracer Help from the Help menu.

Other TkECLiPSe tools which are useful while using the tracer are:

• the predicate browser (available by selecting the Predicate Browser option from the
Tools menu), which is useful for setting or removing spy points on predicates, or for
setting the start_tracing flag which activates the tracer when a particular predicate is
called for the first time; and
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• the term inspector (available by double left clicking on a term from the stack window, or
by selecting the Inspector option from the Tools menu), which is useful for examining
and browse the arguments of a term in detail.

• the delayed goals browser (available by selecting the Delayed Goals option from the Tools
menu), which allows you to inspect the current list of delayed goals.

• the display matrix (available either from calls in user’s code, or by interactively selecting
terms to be observed from the inspector, tracer or delay goals tools), which allows you to
monitor any changes to a term and its arguments.

More information about debugging in ECLiPSe may be found in chapter 15.

3.4.5 Getting help

More detailed help than is provided here can be obtained online. Simply select the entry from
the Help menu on TkECLiPSe’s top-level window which corresponds to the topic or tool you
are interested in.

3.4.6 Other tools

TkECLiPSe comes with a number of useful tools. Some have been mentioned above, but here is
a more complete list. Note that we only provide brief descriptions here; for more details, please
see the online help for the tool in question.

Compile scratch-pad

This tool allows you to enter small amounts of program code and have it compiled. This is useful
for quick experimentation, but not for larger examples or programs you wish to keep, since the
source code is lost when the session is exited.

Source File Manager

This tool allows you to keep track of and manage which source files have been compiled in the
current ECLiPSe session. You can select files to edit them, or compile them individually, as well
as adding new files.

Predicate Browser

This tool allows you to browse through the modules and predicates which have been compiled
in the current session. It also lets you alter some properties of compiled predicates.

Source Viewer

This tool attempts to display the source code for predicates selected in other tools.

Delayed Goals

This tool displays the current delayed goals, as well as allowing a spy point to be placed on the
predicate and the source code viewed.
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Tracer

As discussed in section 3.4.4, the tracer is useful for debugging programs. See also chapter 15.

Inspector

This tool provides a graphical browser for inspecting terms. Goals and data terms are displayed
as a tree structure. Sub-trees can be collapsed and expanded by double-clicking. A navigation
panel can be launched which provides arrow buttons as an alternative way to navigate the tree.

Note that while the inspector window is open, interaction with other TkECLiPSe windows is dis-
allowed. This prevents the term from changing while being inspected. To continue TkECLiPSe,
the inspector window must be closed.

Global Settings

This tool allows the setting of some global flags governing the way ECLiPSe behaves. See also
the documentation for the set flag/2 and get flag/2 predicates.

Statistics

This tool displays some statistics about memory and CPU usage of the ECLiPSe system, up-
dated at regular intervals. See also the documentation for the statistics/0 and statistics/2
predicates.

Simple Query

This tool allows the user to send a simple query to ECLiPSe even while ECLiPSe is running
some program and the Toplevel Query Entry window is unavailable. Note that the reply is
shown in EXDR format (see the ECLiPSe Embedding and Interfacing Manual).

Library Help

This tool allows you to browse the online help for the ECLiPSe libraries. On the left is a tree
display of the libraries available and the predicates they provide.

• Double clicking on a node in this tree either expands it or collapses it again.

• Clicking on an entry displays help for that entry to the right.

• Double clicking on a word in the right-hand pane searches for help entries containing that
string.

You can also enter a search string or a predicate specification manually in the text entry box
at the top right. If there is only one match, detailed help for that predicate is displayed. If
there are multiple matches, only very brief help is displayed for each; to get detailed help, try
specifying the module and/or the arity of the predicate in the text field.
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3.4.7 Preference Editor

This tool allows you to edit and set various user preferences. This include parameters for how
TkECLiPSe will start up, e.g., the amount of memory it will be able to use, and an initial
query to execute; and parameters which affects the appearance of TkECLiPSe, such as the fonts
TkECLiPSe uses.

3.5 How do I use eclipse?

3.5.1 Getting started

To start ECLiPSe, type the command eclipse at an operating system command-line prompt.
This will display something like this:

% eclipse

ECLiPSe Constraint Logic Programming System [kernel]

Kernel and basic libraries copyright Cisco Systems, Inc.

and subject to the Cisco-style Mozilla Public Licence 1.1

(see legal/cmpl.txt or eclipseclp.org/licence)

Source available at www.sourceforge.org/projects/eclipse-clp

GMP library copyright Free Software Foundation, see legal/lgpl.txt

For other libraries see their individual copyright notices

Version X.Y #Z, DAY MONTH DD HH:MM YYYY

[eclipse 1]:

The list in square brackets on the first line specifies the configuration of the running system,
i.e., the language extensions that are present. The copyright and version information is followed
by the prompt [eclipse 1]:, which tells the user that the top-level loop is waiting for a user
query in the module eclipse. The predicate help/0 gives general help and help/1 gives help
about specific built-in predicates.

3.5.2 Interacting with the top level loop

The ECLiPSe prompt [eclipse 1]: indicates that ECLiPSe is at the top level and the opened
module is eclipse. The top level loop is a procedure which repetitively prompts the user for a
query, executes it and reports its result, i.e., either the answer variable bindings or the failure
message. There is always exactly one module opened in the top level and its name is printed in
the prompt. From this point it is possible to enter ECLiPSe goals, e.g., to pose queries, to enter
an ECLiPSe program from the keyboard or to compile a program from a file. Goals are entered
after the prompt and are terminated by fullstop and newline.

The ECLiPSe system may be exited by typing CTRL-D (UNIX) or CTRL-Z + RETURN (Windows)
at the top level prompt, or by calling either the halt/0 or the exit/1 predicates.

3.5.3 Compiling a program

The square brackets [...] or the compile/1 predicate are used to compile ECLiPSe source from
a file. If the goal

compile(myfile).
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or the short-hand notation

[myfile].

is called, either as a query at the top level or within another goal, the system looks for the file
myfile or for a file called myfile.pl or myfile.ecl and compiles it. The short-hand notation
may also be used to compile several files in sequence:

[ file_1, file_2, ..., file_n ]

The compile/2 predicate may be used to compile a file or list of files into a module specified
in the second argument.
If a file has been modified since it was compiled, it may be recompiled by invoking the make/0
predicate. This recompiles any files which have become out-of-date.
For more information on program compilation and the compiler, please see chapter 6.

3.5.4 Entering a program from the terminal

Programs can be entered directly from the terminal, as well as being read from files. To do
this, simply compile the special file user. That is, [user]. or compile(user). at a top
level prompt. The system then displays the compiler prompt (which is a blank by default) and
waits for a sequence of clauses. Each of the clauses is terminated by a fullstop. (If the fullstop
is omitted the system just sits waiting, because it supposes the clause is not terminated. If
you omit the fullstop by accident simply type it in on the following line, and then proceed to
type in the program clauses, each followed by a fullstop and carriage return.) To return to the
top level prompt, type CTRL-D (UNIX), CTRL-Z + RETURN (Windows) or enter the atom
end_of_file followed by fullstop and RETURN.
For example:

[eclipse 1]: [user].

source_processor.eco loaded in 0.01 seconds

...

ecl_compiler.eco loaded in 0.23 seconds

father(abraham, isaac).

father(isaac, jacob).

father(jacob, joseph).

ancestor(X, Y) :- father(X, Y).

ancestor(X, Y) :- ancestor(X, Z), ancestor(Z, Y).

^D

tty compiled 420 bytes in 0.01 seconds

Yes (0.24s cpu)

[eclipse 2]:

The two predicates father/2 and ancestor/2 are now compiled and can be used.

3.5.5 Executing a query

Once a set of clauses has been compiled, it may be queried in the usual Prolog manner. If
there are uninstantiated variables in the query, the system will attempt to find an instantiation
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of them which will satisfy the query, and if successful it will display one such instantiation. If
potentially there is another solution, the top level will then wait for a further instruction: either
a <CR> (“newline” or “return”) or a semi-colon (;). A return will end the query successfully.
A semi-colon will initiate backtracking in an attempt to find another solution to the query.
Note that it is not necessary to type a new line after the semicolon — one keystroke is enough.
When the top level loop can detect that there are no further solutions, it does not wait for the
semicolon or newline, but it displays directly the next prompt. For example in a query on a
family database:

[eclipse 3]: father(X, Y).

X = abraham

Y = isaac

Yes (0.00s cpu, solution 1, maybe more) ? ; (user types ’;’)

X = isaac

Y = jacob

Yes (0.00s cpu, solution 2)

[eclipse 4]:

Queries may be extended over more than one line. When this is done the prompt changes to a
tabulation character, i.e., the input is indented to indicate that the query is not yet completed.
The fullstop marks the end of the input.

3.5.6 Interrupting the execution

If a program is executing, it may be interrupted by typing CTRL-C (interrupt in the UNIX
environment). This will invoke the corresponding interrupt handler (see section 14.3). By
default, the system prints a menu offering some alternatives:

^C

interruption: type a, b, c, e, or h for help : ? h (user types ’h’)

help

a : abort

b : break level

c : continue

e : exit

h : help

interruption: type a, b, c, e, or h for help : ?

The a option returns to the toplevel, b starts a nested toplevel, c continues the interrupted
execution, and e is an emergency exit of the whole ECLiPSe session. If the debugger is running,
an additional option d is displayed: it switches the debugger to creep mode.

The execution of ECLiPSe may be suspended by typing CTRL-Z (suspend) or by calling pause/0.
This will suspend the ECLiPSe process and return the UNIX prompt. Entering the shell com-
mand fg will return to ECLiPSe. Note that this feature may not be available on all systems.
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3.5.7 Debugging a program

Please see the chapters on debugging in the tutorial and user manuals for more details. The
tutorial chapter covers the TkECLiPSe debugging in a tutorial style tour, and the user manual
chapter covers debugging in general and the command-line debugger in particular.

3.5.8 The history mechanism

The ECLiPSe toplevel loop provides a simple history mechanism which allows the examination
and repetition of previous queries. The history list is printed with the command h. A previous
query is invoked by typing either its absolute number or its relative negative offset from the
current query number (i.e., –1 will execute the previous query). The current query number is
displayed in the toplevel prompt.
The history is initialized from the file .eclipse_history in the current directory or in the home
directory. This file contains the history goals, each ended by a fullstop. The current history can
be written using the predicate write history/0 from the util library.

3.5.9 Getting help

Detailed documentation about all the predicates in the ECLiPSe libraries can be obtained online
through the help facility. It has two modes of operation. First, when a fragment of a built-in
name is specified, a list of short descriptions of all built-ins whose name contains the specified
string is printed. For example,

:- help(write).

will print one-line descriptions about write/1, writeclause/2, etc. When a unique specification
is given, the full description of the specified built-in is displayed, e.g., in

:- help(write/1).

3.6 How do I make things happen at compile time?

A file being compiled may contain queries. These are goals preceded by the symbol “:-”. As soon
as a query is encountered in the compilation of a file, the ECLiPSe system will try to satisfy it.
Thus by inserting goals in this fashion, things can be made to happen at compile time.
In particular, a file can contain a directive to the system to compile another file, and so large
programs can be split between files, while still only requiring a single simple command to compile
them. When this happens, ECLiPSe interprets the pathnames of the nested compiled files
relative to the directory of the parent compiled file; if, for example, the user calls

[eclipse 1]: compile(’src/pl/prog’).

and the file src/pl/prog.pl contains a query

:- [part1, part2].

then the system searches for the files part1.pl and part2.pl in the directory src/pl and not in
the current directory. Usually larger ECLiPSe programs have one main file which contains only
commands to compile all the subfiles. In ECLiPSe it is possible to compile this main file from
any directory. (Note that if your program is large enough to warrant breaking into multiple files
(let alone multiple directories), it is probably worth turning the constituent components into
modules — see chapter 8.)
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3.7 How do I use ECLiPSe libraries in my programs?

A number of files containing library predicates are supplied with the ECLiPSe system. These
predicates provide utility functions for general use. They are usually installed in an ECLiPSe

library directory (or directories). These predicates are either loaded automatically by ECLiPSe

or may be loaded “by hand”.
During the execution of an ECLiPSe program, the system may dynamically load files containing
library predicates. When this happens, the user is informed by a compilation or loading message.
It is possible to explicitly force this loading to occur by use of the lib/1 or use module/1
predicates. e.g., to load the library called lists, use one of the following goals:

lib(lists)

use_module(library(lists))

This will load the library file unless it has been already loaded. In particular, a program can
ensure that a given library is loaded when it is compiled, by including an appropriate directive
in the source, e.g., :- lib(lists).

Library files are found by searching the library path and by appending a suffix to the library
name. The search path used when loading libraries is specified by the global flag library_path

using the get flag/2 and set flag/2 predicates. This flag contains a list of strings containing
the pathnames of the directories to be searched when loading a library file. User libraries may
be be added to the system simply by copying the desired file into the ECLiPSe library directory.
Alternatively the library_path flag may be updated to point at a number of user specific
directories. The following example illustrates how a directive may be added to a file to add a
user-defined library in front of any existing system libraries.

?- get_flag(library_path,Path),

set_flag(library_path, ["/home/myuser/mylibs" | Path]).

The UNIX environment variable ECLIPSELIBRARYPATH may also be used to specify the initial
setting of the library path. The syntax is similar to the syntax of the UNIX PATH variable, i.e.,
a list of directory names separated by colons. The directories will be prepended to the standard
library path in the given order.

3.8 How do I make my programs run faster?

By default, ECLiPSe compiles programs as traceable, which means that they can be traced using
the built-in debugger. To obtain maximum efficiency, the directive nodbgcomp/0 should be
used, which will set some flags to produce a more efficient and shorter code:

[eclipse 2]: nodbgcomp.

yes.

[eclipse 3]: [user].

father(abraham, isaac).

father(isaac, jacob).

father(jacob, joseph).

ancestor(X, Y) :- father(X, Y).

ancestor(X, Y) :- ancestor(X, Z), ancestor(Z, Y).
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user compiled optimized 396 bytes in 0.02 seconds

yes.

[eclipse 4]:

Section 6.7 contains more detailed discussion on other techniques which can be used to optimise
your programs.

3.9 Other tips

3.9.1 Initialization at start-up

If you wish to have ECLiPSe do or execute things at startup time, you can achieve this in
TkECLiPSe by setting the initial query call in the Preference editor; and in the command-line
eclipse by putting via a .eclipserc file.
For eclipse, before displaying the initial prompt, the system checks whether there is a file
called .eclipserc in the current directory and if not, in the user’s home directory. If such a file
is found, ECLiPSe compiles it first. Thus it is possible to put various initialization commands
into this file. ECLiPSe has many possibilities to change its default behaviour and setting up a
.eclipserc file is a convenient way to achieve this. A different name for the initialization file
can be specified in the environment variable ECLIPSEINIT. If ECLIPSEINIT is set to an empty
string, no initialization is done. If the system is started with a -e option, then the .eclipserc

file is ignored.
For TkECLiPSe, the system will make the initial query call as set in the Preference Editor before
giving control to the user. This call can be set to compile an initialization file. This can be
the .eclipserc file, or some other file if the user wants to initialize the system differently in
TkECLiPSe.

3.9.2 Recommended file names

It is recommended programming practice to give the Prolog source programs the suffix .pl, or
.ecl if it contains ECLiPSe specific code. It is not enforced by the system, but it simplifies
managing the source programs. The compile/1 predicate automatically adds the suffix to the
file name, so that it does not have to be specified; if the literal file name can not be found,
the system tries appending each of the valid suffixes in turn and tries to find the resulting file
name. The system’s list of valid Prolog suffixes is in the global flag prolog_suffix and can be
examined and modified using get flag/2 and set flag/2. For example, to add the new suffix
.pro use:

get_flag(prolog_suffix, Old), set_flag(prolog_suffix, [".pro"|Old]).
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Chapter 4

The TkECLiPSe Development Tools

TkECLiPSe is a graphical user interface to ECLiPSe. It is an alternative to the traditional
textual line-based user interface, providing multiple windows, menus and buttons to assist the
user in interacting with ECLiPSe. It consists of two major components:

• A graphical top-level.

• A suite of development tools for aiding the development of ECLiPSe code.

TkECLiPSe is implemented in the Tcl/Tk scripting language/graphical toolkit [12], using the
new ECLiPSe Tcl/Tk interface [11]. The development tools are designed to be independent of
the top-level, so the users can develop their own applications with a graphical front end written
in Tcl/Tk, replacing the TkECLiPSe top-level, but still using the development tools.
Chapter 3 gave an introduction to using TkECLiPSe from a user’s point of view. This chapter
focuses on how to use the tools from a programmer’s point of view (i.e., how to include them in
a program). In particular it discusses in detail the display matrix tool, which can be invoked in
user’s ECLiPSe code; and also how to use the development tools in the user’s own applications.

4.1 Display Matrix

This tool provides a method to display the values of terms in a matrix form. It is particularly
useful because it can display the attributes of an attributed variable.1 The predicate which
invokes the display matrix is considered a no-op in the tty-based ECLiPSe,2 and so the same
code can be run without modification from either eclipse or tkeclipse, though the matrix
display is only presented to the user in the latter.
To invoke this tool use either make display matrix/2 or make display matrix/5. Adding
a call to one of these predicates should be the only change you need to make to your code. For
example, in the following fragment of a N-queens program, only one extra line has been added
to invoke a display matrix:

1The display matrix tool is similar to the variable display of Grace. The main differences are: it can display
all attributes, not just the finite domain attribute; the attributes can only be observed, not changed; and the
labelling strategy cannot be changed.

2Unless it is attached to the remote development tools, in which case the display matrix is invoked.
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Figure 4.1: Display Matrix Tool for 4-Queens (Initial)

Figure 4.2: Display Matrix Tool for 4-Queens (During execution)

queens(N, List) :-

length(List, N),

List :: 1..N,

make_display_matrix(List/0, queens),

% sets up a matrix with all variables in 1 row. This is the only

% extra goal that has to be added to enable monitoring

alldistinct(List),

constrain_queens(List),

labeling(List).

Figures 4.1 and 4.2 show the tool invoked with the example N-Queens programs for 4 Queens,
at the start initially and during the execution of the program. The name of the display window
is specified by the second argument of make display matrix/2, along with the module it is
in. The values of the terms are shown in the matrix, which can be one dimensional (as in this
case), or two dimensional. Spy points can be set on each individual cell of the matrix so that
execution will stop when the cell is updated. The matrix can be killed using the ‘Kill display’
button. Left-clicking on a cell will bring up a menu which shows the current and previous value
of the term in the cell (the current value is shown because the space available in the cell may be
too small to fully display the term), and allows the user to inspect the term using the inspector.
Note that the display matrix can be used independently of, or in conjunction with, the tracer.
Multiple display matrices can be created to view different terms.
The following predicates are available in conjunction with the display matrix:

make display matrix(+Terms, +Name)
make display matrix(+Terms, +Prio, +Type, +CondList, +Name)

These predicates create a display matrix of terms that can be monitored under TkECLiPSe. The
two argument form is a simplification of the five argument form, with defaults settings for the
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extra arguments. Terms is a list or array of terms to be displayed. A list List can be specified
in the form List/N, where N is the number of elements per row of the matrix. If N is 0, then
the list will be displayed in one row (it could also be omitted in this case). The extra arguments
are used to control how the display is updated.

The terms are monitored by placing a demon suspension on the variables in each term. When a
demon wakes, the new value of the term it is associated with is sent to the display matrix (and
possibly updated, depending on the interactive settings on the matrix). When the new value is
retracted during backtracking, the old value is sent to the display matrix. The other arguments
in this predicate are used to control when the demon wakes, and what sort of information is
monitored. Prio is the priority that the demon should be suspended at, Type is designed to
specify the attributes that are being monitored (currently all attributes are monitored, and
Type is a dummy argument), CondList is the suspension list that the demon should be added
to. Depending on these arguments, the level of monitoring can be controlled. Note that it is
possible for the display matrix to show values that are out of date because the change was not
monitored.

The display matrix will be removed on backtracking. However, it will not be removed if
make display matrix has been cut: kill display matrix/1 can be used to explicitly remove
the matrix in this case.

kill display matrix(+Name)

This predicate destroys an existing display matrix. Name is an atomic term which identifies the
matrix.

Destroys an existing display matrix. The display matrix is removed from being displayed.

4.1.1 Invoking display matrix tool interactively

Display matrices can be created interactively when a program is executing, if the program is
being debugged with the tracer tool. The user can select terms that are to be observed by a
display matrix while at a debug port. This can be done from the inspector, the tracer, and the
delay goal tools. See the online help files (available from the help menu of TkECLiPSe) for more
details.

4.2 Using the development tools in applications

The user can develop their own ECLiPSe applications using the development tools independently
of the TkECLiPSe toplevel. There are two ways to do this, depending on if the user is also
using the embedding Tcl/Tk interface (see the Embedding and Interfacing Manual) to provide
a graphical front end:

• The user is using the embedding Tcl/Tk interface, and is thus developing a graphical front
end in Tk. In this case the user can use the development tools via the embedding interface.
This is described in section 4.2.1.

• The user is not using the embedding Tcl/Tk interface. In this case the user can use
the development tools remotely, by using the remote tools library. This is described in
section 4.2.2.
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4.2.1 Using the Development tools in the Tcl/Tk Embedding Interface

The development tool suite was designed to be independent of the TkECLiPSe top-level so that
they can be used in a user’s application. In effect, the user can replace the TkECLiPSe top-level
with their own alternative top-level. Two simple examples in which this is done are provided in
the lib_tcl library as example.tcl and example1.tcl. In addition, tkeclipse itself, in the
file tkeclipse.pl, can be seen as a more complex example usage of the interface.

In order to use the Tcl/Tk interface, the system must be initialized as described in the Embed-
ding manual. In addition, the user’s Tcl code should probably also be provided as a package
using Tcl’s package facility, in order to allow the program to run in a different directory. See
the Embedding manual and the example programs for more details on the initialization needed.

The user should most likely provide a connection for the output stream of ECLiPSe so that out-
put from ECLiPSe will go somewhere in the GUI. In addition, especially during the development,
it is also useful to connect the error stream to some window so that errors (such as ECLiPSe

compilation errors) are seen by the user. This can be done using the ec_queue_connect Tcl
command described in the embedding manual.

Output from ECLiPSe need not be sent to a Tk window directly. The Tcl/Tk code which
receives the output can operate on it before displaying it. It is intended that all such graphical
operations should be performed on the Tcl side, rather than having some primitives provided
on the ECLiPSe side.

The user can also provide balloon-help to his/her own application. The balloon help package is
part of the Megawidget developed by Jeffrey Hobbs and used in TkECLiPSe. In order to define
a balloon help for a particular widget, the following Tcl code is needed:

balloonhelp <path> <text>

where <path> is the pathname of the widget, and <text> is the text that the user wants to
display in the balloon.

4.2.2 Using the Remote Development Tools

The user can also use the development tools via the remote tools library. In this case, the
development tools are run as a separate program from the ECLiPSe session, and are attached to
it via the Tcl/Tk remote interface (see the Embedding and Interfacing Manual). This allows any
ECLiPSe session to use the development tools, as long as there is the capability for graphical
display.

The main purpose for the remote tools library is to allow the user to use the development tools
in situations where (s)he cannot use the Tcl/Tk embedding interface, e.g., if ECLiPSe is already
embedded into another programming language, or if the user has to use the tty interface for
ECLiPSe.

Once attached to an ECLiPSe session, the remote development tools have their own window as
shown in Figure 4.3. The Tools menu is the same as in TkECLiPSe, providing access to the
same suite of development tools. The main body of the window consists of one button and a
status indicator. The indicator shows whether the tools can be used or not (the tools cannot be
used when the ECLiPSe is active), and the button is used to pass control explicitly to ECLiPSe.

The ECLiPSe session and the development tools are two separate processes (and in fact they
can be running on different machines) that are connected to each other via the remote Tcl/Tk
interface. The interactions of the two processes are synchronised in that there is a thread-like
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Figure 4.3: Remote Development Tools Toplevel (left: ECLiPSe active; right: remote tools
active)

flow of control between them: only one process can be ‘active’ at any time. The interaction
is similar to the standard interaction between a debugger and the program being debugged
– debugging commands can only be issued while the execution of the program is suspended.
In the same way, the user can only interact with the remote tools window when execution in
the ECLiPSe session is suspended. The toplevel window of the remote tools has an indicator
showing which side has control (see Figure 4.3). To allow ECLiPSe to resume execution, control
is transferred back from the remote tools to ECLiPSe. This can either be done automatically
from the tools (e.g., when one of the debug buttons is pressed in the tracer tool), or control
can be transferred explicitly back to ECLiPSe via the “Resume ECLiPSe” button on the remote
tools window.

Starting Remote Tools

To use the remote tools, the user must first load the right library with lib(remote_tools).
After loading the library, the user can start the remote tools by starting the development tools
as a separate program and then manually attaching the program to the ECLiPSe session. This
allows the development tools to be run on a different machine from the ECLiPSe session. In
this case, the user initiates the attachment in ECLiPSe with attach tools/0:

[eclipse 2]: attach_tools.

Socket created at address holborn.icparc.ic.ac.uk/22849

ECLiPSe prints the host and port address it expects the remote tools to attach to, and execution
is now suspended waiting for the remote tools to attach. This is done by running the tktools
program, which is located with the other ECLiPSe executables. As stated, this program can be
run on a different machine from the ECLiPSe session, as long as the two are connected via a
network such as the internet. A connection window is then displayed as shown:
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The same ‘host’ and ‘port’ fields as printed by the ECLiPSe session should be entered. The
default ‘host’ field is ‘localhost’. This will work if the remote tools are ran on the same machine
as the ECLiPSe session. Otherwise the full name of the ‘host’ as given by attach tools/0 must
be entered:

Typing return in the ‘port’ field will start the attachment, and with success, the remote tools
window (see Figure 4.3) will be displayed. The attach tools/0 predicate will also return.
The user is not able to immediately interact directly with the remote tools, as the ECLiPSe

session is initially given control. The user can use the ECLiPSe session normally, with the
additional availability of the development tools. For example, the display matrix predicates can
be used as in TkECLiPSe. Also, the tracer tool replaces the previous tracing facilities of the
ECLiPSe session (this would typically be the command-line debugger).
The tools can be triggered by events in the ECLiPSe session as described above. In order to
use the tools in a more interactive way, control should be handed over to the remote tools. This
can be done by calling the tools/0 predicate. When the remote tools have control, the user can
now interactively select development tools from the Tools menu.
The remote tools library provides several predicates to facilitate the use of the remote develop-
ment tools:

tools Explicitly hands over control to the remote development tools. The tools
window can then be used interactively. Execution on the ECLiPSe session is
suspended until the remote tools allows ECLiPSe to resume, at which point
the predicate succeeds. The predicate will abort if the development tools are
disconnected from the ECLiPSe session.
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attached(?ControlStream) Checks if the remote development tools have been
attached to this ECLiPSe session or not. If attached, the predicate succeeds
and unifies ControlStream with the stream name of the control stream. If not
attached, the predicate fails.

Once attached, the remote development tools should be connected until the user quits the session.
Although it is possible to disconnect the tools from the ECLiPSe session (from the File menu in
the development tools window), this is not recommended, as there would not be any debugging
facilities available after the disconnection – the original tracer would not be restored.
It is possible to attach the remote development tools to any ECLiPSe session, including one that
is using the embedding Tcl/Tk interface (and indeed, to TkECLiPSe itself). However, using the
tools via the embedding interface is usually the better option if available, because the tools are
more tightly coupled to ECLiPSe in this case. This means that the communications between
ECLiPSe and the tools are more efficient (and hence something like the display matrix would
perform more efficiently).
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Chapter 5

ECLiPSe-specific Language Features

ECLiPSe is a logic programming language derived from Prolog. This chapter describes ECLiPSe-
specific language constructs that have been introduced to overcome some of the main deficiencies
of Prolog.

5.1 Structure Notation

ECLiPSe abstract structure notation provides a way to use structures with field names. It is
intended to make programs more readable and easier to modify, without compromising efficiency
(it is implemented by parse-time preprocessing).
A structure is declared by specifying a template like this

:- local struct( book(author, title, year, publisher) ).

Structures with the functor book/4 can then be written as

book{}

book{title:’tom sawyer’}

book{title:’tom sawyer’, year:1886, author:twain}

which translate to the corresponding forms

book(_, _, _, _)

book(_, ’tom sawyer’, _, _)

book(twain, ’tom sawyer’, 1886, _)

This transformation is done by the parser, therefore it can be used in any context and is as
efficient as using the structures directly.
The argument index of a field in a structure can be obtained using a term of the form

FieldName of StructName

For example, to access (i.e., unify) a single argument of a structure use arg/3 like this:

..., arg(year of book, B, Y), ...

which is translated into

..., arg(3, B, Y), ...

If a program is consistently written using the abstract structure notation (i.e., with {...} and
of), then the struct-declaration can be modified (fields added or rearranged) without having to
update the code anywhere else.
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5.1.1 Updating Structures

To construct an updated structure, i.e., a structure which is similar to an existing structure
except that one or more fields have new values, use the update struct/4 built-in, which allows
you to do that without having to mention all the other field names in the structure.

5.1.2 Arity and Functor of Structures

The arity of a structure can be symbolically written using of/2 as follows:

property(arity) of StructName

For example,

?- printf("A book has %d fields%n", [property(arity) of book]).

A book has 4 fields

Yes.

Similarly, the whole StructName/Arity specification can be written as

property(functor) of StructName

which is used for the portray-declaration in the example below.

5.1.3 Printing Structures

When structures are printed, they are not translated back into the abstract structure syntax by
default. The reason this is not done is that this can be bulky if all fields are printed, and often
it is desirable to hide some of the fields anyway.

A good way to control printing of big structures is to write customized portray-transformations
for them, for instance

:- local portray(property(functor) of book, tr_book_out/2, []).

tr_book_out(book{author:A,title:T},

no_macro_expansion(book{author:A,title:T})).

which will cause book/4 structures to be printed like

book{author:twain, title:tom sawyer}

while the other two arguments remain hidden.

5.1.4 Inheritance

Structures can be declared to contain other structures, in which case they inherit the base
structure’s field names. Consider the following declarations:

:- local struct(person(name,address,age)).

:- local struct(employee(p:person,salary)).

The employee structure contains a field p which is a person structure. Field names of the
person structure can now be used as if they were field names of the employee structure:
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[eclipse 1]: Emp = employee{name:john,salary:2000}.

Emp = employee(person(john, _105, _106), 2000)

yes.

Note that, as long as the abstract structure notation is used, the employee structure can be
viewed either as nested or as flat, depending on what is more convenient in a given situation.
In particular, the embedded structure can still be accessed as a whole:

[eclipse 1]:

Emp = employee{name:john,age:30,salary:2000,address:here},

arg(name of employee, Emp, Name),

arg(age of employee, Emp, Age),

arg(salary of employee, Emp, Salary),

arg(address of employee, Emp, Address),

arg(p of employee, Emp, Person).

Emp = employee(person(john, here, 30), 2000)

Name = john

Age = 30

Salary = 2000

Address = here

Person = person(john, here, 30)

yes.

The indices of nested structures expand into lists of integers rather than simple integers, e.g.,
age of employee expands into [1,3].

5.1.5 Visibility

Structure declaration can be local to a module (when declared as above) or exported when
declared as

:- export struct(...).

in the module.

5.2 Loop/Iterator Constructs

Many types of simple iterations are inconvenient to write in the form of recursive predicates.
ECLiPSe therefore provides a logical iteration construct do/2, which can be understood either
by itself or by its translation to an equivalent recursion. More background can be found in [13].
A simple example is the traversal of a list

main :-

write_list([1,2,3]).

write_list([]).

write_list([X|Xs]) :-

writeln(X),

write_list(Xs).
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which can be written as follows without the need for an auxiliary predicate:

main :-

( foreach(X, [1,2,3]) do

writeln(X)

).

This looks very much like a loop in a procedural language. However, due to the relational nature
of logic programming, the same foreach construct can be used not only to control iteration over
an existing list, but also to build a new list during an iteration. For example

main :-

( foreach(X, [1,2,3]), foreach(Y, Negatives) do

Y is -X

),

writeln(Negatives).

will print [-1, -2, -3].
The general form of a do-loop is

( IterationSpecs do Goals )

and it corresponds to a call to an auxiliary recursive predicate of the form

do__n(...) :- !.

do__n(...) :- Goals, do__n(...).

The IterationSpecs determine the number of times the loop is executed (i.e., the termination
condition), and the way information is passed into the loop, from one iteration to the next, and
out of the loop.
IterationSpecs is one (or a combination) of the following:

fromto(First, In, Out, Last)
iterate Goals starting with In=First until Out=Last. In and Out are local loop
variables. For all but the first iteration, the value of In is the same as the value
of Out in the previous iteration.

foreach(X, List)
iterate Goals with X ranging over all elements of List. X is a local loop variable.
Can also be used for constructing a list.

foreacharg(X, Struct)
iterate Goals with X ranging over all elements of Struct. X is a local loop
variable. Cannot be used for constructing a term.

foreacharg(X, Struct, Idx)
same as before, but Idx is set to the argument position of X in Struct. (In other
words, arg(Idx, Struct, X) is true.) X and Idx are local loop variables.

foreachelem(X, Array)
like foreacharg/2, but iterates over all elements of an array of arbitrary di-
mension. The order is the natural order, i.e., if

Array = []([](a, b, c), [](d, e, f)),
then for successive iterations X is bound in turn to a, b, c, d, e and f. X is a
local loop variable. Cannot be used for constructing a term.
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foreachelem(X, Array, Idx)
same as before, but Idx is set to the index position of X in Array. (In other
words, subscript(Array, Idx, X) is true.) X and Idx are local loop variables.

foreachindex(Idx, Array)
like foreachelem/3, but returns just the index position and not the element.

for(I, MinExpr, MaxExpr)
iterate Goals with I ranging over integers from MinExpr to MaxExpr. I is a
local loop variable. MinExpr and MaxExpr can be arithmetic expressions. Can
be used only for controlling iteration, i.e., MaxExpr cannot be uninstantiated.

for(I, MinExpr, MaxExpr, Increment)
same as before, but Increment can be specified (it defaults to 1).

multifor(List, MinList, MaxList)
like for/3, but allows iteration over multiple indices (saves writing nested
loops). Each element of List takes a value between the corresponding elements
in MinList and MaxList. Successive iterations go through the possible combi-
nations of values for List in lexicographic order. List is a local loop variable.
MinList and MaxList must be either lists of arithmetic expressions evaluating
to integers, or arithmetic expressions evaluating to integers (in the latter case
they are treated as lists containing the (evaluated) integer repeated an appro-
priate number of times). At least one of List, MinList and MaxList must be a
list of fixed length at call time so that it is known how many indices are to be
iterated.

multifor(List, MinList, MaxList, IncrementList)
same as before, but IncrementList can be specified (i.e., how much to increment
each element of List by). IncrementList must be either a list of arithmetic
expressions evaluating to non-zero integers, or an arithmetic expression evalu-
ating to a non-zero integer (in which case all elements are incremented by this
amount). IncrementList defaults to 1.

count(I, Min, Max)
iterate Goals with I ranging over integers from Min up to Max. I is a local loop
variable. Can be used for controlling iteration as well as counting, i.e., Max can
be a variable.

param(Var1, Var2, ...)
for declaring variables in Goals as global, i.e., as shared with the loop context,
and shared among all iterations of the loop.

CAUTION: By default, variables in Goals have local scope. This
means that, in every iteration, these variables are new (even if a variable
of the same name occurs outside the do-construct).

Note that fromto/4 is the most general specifier (all the others could be implemented on
top of it), while foreach/2, foreacharg/2,3, foreachelem/2,3, foreachindex/2, count/3,
for/3,4, multifor/3,4 and param/N are convenient shorthands.
There are three ways to combine the above specifiers in a single do loop:

IterSpec1, IterSpec2 (“synchronous iteration”)
This is the normal way to combine iteration specifiers: simply provide a comma-
separated sequence of them. The specifiers are iterated synchronously; that is,
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they all take their first “value” for the first execution of Goals, their second
“value” for the second execution of Goals, etc. The order in which they are
written does not matter, and the set of local loop variables is the union of those
of IterSpec1 and IterSpec2.

When multiple iteration specifiers are given in this way, typically not all of
them will impose a termination condition on the loop (e.g., foreach with an
uninstantiated list and count with an uninstantiated maximum do not impose
a termination condition), but at least one of them should do so. If several
specifiers impose termination conditions, then these conditions must coincide,
i.e., specify the same number of iterations.

IterSpec1 * IterSpec2 (“cross product”)
This iterates over the cross product of IterSpec1 and IterSpec2. The sequence
of iteration is to iterate IterSpec2 completely for a given “value” of IterSpec1
before doing the same with the next “value” of IterSpec1, and so on. The set of
local loop variables is the union of those of IterSpec1 and IterSpec2.

IterSpec1 >> IterSpec2 (“nested iteration”)
Like ( IterSpec1 do ( IterSpec2 do Goals ) ), including with respect to
scoping. The local loop variables are those of IterSpec2 ; in particular, those
of IterSpec1 are not available unless IterSpec2 passes them through, e.g., using
param. Similarly, the only “external” variables available as inputs to IterSpec2
are the locals of IterSpec1 ; variables from outside the loop are not available
unless passed through by IterSpec1, e.g., using param.

Syntactically, the do-operator binds like the semicolon, i.e., less than comma. That means that
the whole do-construct should always be enclosed in parentheses (see examples).
Unless you use :-pragma(noexpand) or the compiler’s expand_goals:off option, the do-construct
is compiled into an efficient auxiliary predicate named do nnn, where nnn is a unique integer.
This will be visible during debugging. To make debugging easier, it is possible to give the loop
a user-defined name by adding loop_name(Name) to the iteration specifiers. Name must be
an atom, and is used as the name of the auxiliary predicate into which the loop is compiled
(instead of do nnn). The name should therefore not clash with other predicate names in the
same module.
Finally, do-loops can be used as a control structure in grammar rules as well: A do-loop in a
grammar rule context will generate (or parse) the concatenation of the lists of symbols generated
(or parsed) by each loop iteration (the grammar rule transformation effectively adds a hidden
fromto-iterator to a do-loop). The following rule will generate (or parse) a list of integers from
1 to N

intlist(N) --> ( for(I,1,N) do [I] ).

5.2.1 Examples

Iterate over a list:

foreach(X,[1,2,3]) do writeln(X).

Map a list (construct a new list from an existing list):

(foreach(X,[1,2,3]), foreach(Y,List) do Y is X+3).
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Compute the sum of a list of numbers:

(foreach(X,[1,2,3]), fromto(0,In,Out,Sum) do Out is In+X).

Reverse a list:

(foreach(X,[1,2,3]), fromto([],In,Out, Rev) do Out=[X|In]). % or:

(foreach(X,[1,2,3]), fromto([],In,[X|In],Rev) do true).

Iterate over integers from 1 up to 5:

for(I,1,5) do writeln(I). % or:

count(I,1,5) do writeln(I).

Iterate over integers from 5 down to 1:

(for(I,5,1,-1) do writeln(I)).

Make the list of integers [1,2,3,4,5]:

(for(I,1,5), foreach(I,List) do true). % or:

(count(I,1,5), foreach(I,List) do true).

Make a list of length 3:

(foreach(_,List), for(_,1,3) do true). % or:

(foreach(_,List), count(_,1,3) do true).

Get the length of a list:

(foreach(_,[a,b,c]), count(_,1,N) do true).

Actually, the length/2 built-in is (almost)

length(List, N) :- (foreach(_,List), count(_,1,N) do true).

Iterate [I,J] over [1,1], [1,2], [1,3], [2,1], ..., [3,3]:

(multifor([I,J],1,3) do writeln([I,J])).

Similar, but have different start/stop values for I and J :

(multifor([I,J], [2,1], [4,5]) do writeln([I,J])).

Similar, but only do odd values for the second variable:

(multifor(List, [2,1], [4,5], [1,2]) do writeln(List)).

Filter the elements of a list:

(foreach(X,[5,3,8,1,4,6]), fromto(List,Out,In,[]) do

X>3 -> Out=[X|In] ; Out=In).

Iterate over the arguments of a structure:

(foreacharg(X,s(a,b,c,d,e)) do writeln(X)).
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Collect arguments in a list (in practice you would use =.. to do this):

(foreacharg(X,s(a,b,c,d,e)), foreach(X,List) do true).

Collect arguments in reverse order:

(foreacharg(X,s(a,b,c,d,e)), fromto([],In,[X|In],List) do true).

or like this:

S = s(a,b,c,d,e), functor(S, _, N),

(for(I,N,1,-1), foreach(A,List), param(S) do arg(I,S,A)).

Rotate the arguments of a structure:

S0 = s(a,b,c,d,e), functor(S0, F, N), functor(S1, F, N),

(foreacharg(X,S0,I), param(S1, N) do I1 is (I mod N)+1, arg(I1,S1,X)).

Flatten an array into a list:

(foreachelem(X,[]([](5,1,2),[](3,3,2))), foreach(X,List) do true).

Transpose a 2D array:

A = []([](5,1,2),[](3,3,2)), dim(A, [R,C]), dim(T, [C,R]),

(foreachelem(X,A,[I,J]), param(T) do X is T[J,I]).

Same, using foreachindex:

A = []([](5,1,2),[](3,3,2)), dim(A, [R,C]), dim(T, [C,R]),

(foreachindex([I,J],A), param(A, T) do

subscript(A, [I,J], X), subscript(T, [J,I], X)).

The following two are equivalent:

foreach(X,[1,2,3]) do writeln(X).

fromto([1,2,3],In,Out,[]) do In=[X|Out], writeln(X).

The following two are equivalent:

count(I,1,5) do writeln(I).

fromto(0,I0,I,5) do I is I0+1, writeln(I).

Now for some examples of nested loops.
Print all pairs of list elements:

Xs = [1,2,3,4],

( foreach(X, Xs), param(Xs) do

( foreach(Y,Xs), param(X) do

writeln(X-Y)

)

).

% or

Xs = [1,2,3,4],

( foreach(X, Xs) * foreach(Y, Xs) do

writeln(X-Y)

).
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and the same without symmetries:

Xs = [1,2,3,4],

( fromto(Xs, [X|Xs1], Xs1, []) do

( foreach(Y,Xs1), param(X) do

writeln(X-Y)

)

).

or

Xs = [1,2,3,4],

( fromto(Xs, [X|Xs1], Xs1, []) >> ( foreach(Y,Xs1), param(X) ) do

writeln(X-Y)

).

Find all pairs of list elements and collect them in a result list:

pairs(Xs, Ys, Zs) :-

(

foreach(X,Xs),

fromto(Zs, Zs4, Zs1, []),

param(Ys)

do

(

foreach(Y,Ys),

fromto(Zs4, Zs3, Zs2, Zs1),

param(X)

do

Zs3 = [X-Y|Zs2]

)

).

or

pairs(Xs, Ys, Zs) :-

(

foreach(X, Xs) * foreach(Y, Ys),

foreach(Z, Zs)

do

Z = X-Y

).

Flatten a 2-dimensional matrix into a list:

flatten_matrix(Mat, Xs) :-

dim(Mat, [M,N]),

(

for(I,1,M),

fromto(Xs, Xs4, Xs1, []),
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param(Mat,N)

do

(

for(J,1,N),

fromto(Xs4, [X|Xs2], Xs2, Xs1),

param(Mat,I)

do

subscript(Mat, [I,J], X)

)

).

Same using * to avoid nesting:

flatten_matrix(Mat, Xs) :-

dim(Mat, [M,N]),

(

for(I, 1, M) * for(J, 1, N),

foreach(X, Xs),

param(Mat)

do

subscript(Mat, [I,J], X)

).

Same using multifor to avoid nesting:

flatten_matrix(Mat, Xs) :-

dim(Mat, [M,N]),

(

multifor([I,J], 1, [M,N]),

foreach(X, Xs),

param(Mat)

do

subscript(Mat, [I,J], X)

).

Same for an array of arbitrary dimension:

flatten_array(Array, Xs) :-

dim(Array, Dims),

(

multifor(Idx, 1, Dims),

foreach(X, Xs),

param(Array)

do

subscript(Array, Idx, X)

).

Same but returns the elements in the reverse order:
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flatten_array(Array, Xs) :-

dim(Array, Dims),

(

multifor(Idx, Dims, 1, -1),

foreach(X, Xs),

param(Array)

do

subscript(Array, Idx, X)

).

Flatten nested lists one level (cf. flatten/2 which flattens completely):

List = [[a,b],[[c,d,e],[f]],[g]],

(foreach(Xs,List) >> foreach(X,Xs), foreach(X,Ys) do true).

Iterate over all ordered pairs of integers 1..4 (param(I) required to make I available in body of
loop):

(for(I,1,4) >> (for(J,I+1,4), param(I)) do writeln(I-J)).

Same for general 1..N (param(N) required to make N available to second for):

N=4,

((for(I,1,N), param(N)) >> (for(J,I+1,N), param(I)) do writeln(I-J)).

5.3 Array Notation

Since our language has no type declarations, there is really no difference between a structure
and an array. In fact, a structure can always be used as an array, creating it with functor/3
and accessing elements with arg/3. However, this can look clumsy, especially in arithmetic
expressions.
ECLiPSe therefore provides array syntax which enables the programmer to write code like

[eclipse 1]: Prime = a(2,3,5,7,11), X is Prime[2] + Prime[4].

X = 10

Prime = a(2, 3, 5, 7, 11)

yes.

Within expressions, array elements can be written as variable-indexlist or structure-indexlist
sequences, e.g.,

X[3] + M[3,4] + s(4,5,6)[3]

Indices run from 1 up to the arity of the array-structure. The number of array dimensions is
not limited.
To create multi-dimensional arrays conveniently, the built-in dim/2 is provided (it can also be
used backwards to access the array dimensions):

[eclipse]: dim(M,[3,4]), dim(M,D).

M = []([](_131, _132, _133, _134),

[](_126, _127, _128, _129),
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[](_121, _122, _123, _124))

D = [3, 4]

yes.

Although dim/2 creates all structures with the functor [ ], this has no significance other than
reminding the programmer that these structures are intended to represent arrays.

Array notation is especially useful within loops. Here is the code for a matrix multiplication
routine:

matmult(M1, M2, M3) :-

dim(M1, [MaxIJ,MaxK]),

dim(M2, [MaxK,MaxIJ]),

dim(M3, [MaxIJ,MaxIJ]),

(

for(I,1,MaxIJ),

param(M1,M2,M3,MaxIJ,MaxK)

do

(

for(J,1,MaxIJ),

param(M1,M2,M3,I,MaxK)

do

(

for(K,1,MaxK),

fromto(0,Sum0,Sum1,Sum),

param(M1,M2,I,J)

do

Sum1 is Sum0 + M1[I,K] * M2[K,J]

),

subscript(M3, [I,J], Sum)

)

).

5.3.1 Implementation Note

Array syntax is implemented by parsing variable-list and structure-list sequences as terms with
the functor subscript/2. For example:

X[3] ---> subscript(X, [3])

M[3,4] ---> subscript(M, [3,4])

s(4,5,6)[3] ---> subscript(s(4,5,6), [3])

If such a term is then used within an arithmetic expression, a result argument is added and the
built-in predicate subscript/3 is called, which is a generalised form of arg/3 and extracts the
indicated array element.

When printed, subscript/2 terms are again printed in array notation, unless the print-option
to suppress operator notation (O) is used.
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5.4 The String Data Type

In the Prolog community there are ongoing discussions about the need to have a special string
data type. The main argument against strings is that everything that can be done with strings
can as well be done with atoms or with lists, depending on the application. Nevertheless,
ECLiPSe provides and heavily uses the string data type. It is familiar from other programming
languages, and facilitates interfacing. It also offers programmers who are aware of the character-
istics of the different data types a choice of most appropriate one. The system provides efficient
built-ins for converting from one data type to another.

5.4.1 Choosing The Appropriate Data Type

Strings, atoms and character lists are written in similar ways, just distinguished by the type of
quote:

"abc" is a string

’abc’ is an atom

‘abc‘ is a character code list, equivalent to [97,98,99]

They differ in space consumption and in the time needed for performing operations on the data.

Strings vs. Character Lists

Let us first compare strings with character lists. Maybe the main disadvantage of a character
code list in an untyped language is that it is indistinguishable from a general list of small integers.
This implies, for example, that the system cannot reliably decide whether to pretty-print a code
list as a quoted string.

The space consumption of a string is always less than that of the corresponding list. For long
strings, it is asymptotically 16 times more compact. Items of both types are allocated on the
global stack, which means that the space is reclaimed on failure and on garbage collection.

For the complexity of operations it must be kept in mind that the string type is essentially
an array representation, i.e., every character in the string can be immediately accessed via its
index. The list representation allows only sequential access. The time complexity for extracting
a substring when the position is given is therefore only dependent on the size of the substring
for strings, while for lists it is also dependent on the position of the substring. Comparing two
strings is of the same order as comparing two lists, but faster by a constant factor. If a string
is to be processed character by character, this is easier to do using the list representation, since
using strings involves keeping index counters and calling the string code/3 predicate.

The higher memory consumption of lists is sometimes compensated by the property that when
two lists are concatenated, only the first one needs to be copied, while the list that makes up
the tail of the concatenated list can be shared. When two string are concatenated, both strings
must be copied to form the new one.

Strings vs. Atoms

At a first glance, an atom does not look too different from a string. In ECLiPSe, many predicates
accept both strings and atoms (e.g., the file name in open/3) and some predicates are provided in
two versions, one for atoms and one for strings (e.g., concat atoms/3 and concat strings/3).
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However, internally these data types are quite different. While a string is simply stored as a
character sequence, an atom is mapped into an internal constant. This mapping is done via a
table called the dictionary. A consequence of this representation is that copying and comparing
atoms is a unit time operation, while for strings both are proportional to the string length.
On the other hand, each time an atom is read into the system, it has to be looked up and
possibly entered into the dictionary, which implies some overhead. The dictionary is a much less
dynamic memory area than the global stack. That means that once an atom has been entered
there, this space will only be reclaimed by a relatively expensive dictionary garbage collection.
It is therefore in general not a good idea to have a program creating new atoms dynamically at
runtime.

Atoms should always be preferred when they are involved in unification and matching. As
opposed to strings, they can be used to index clauses of predicates. Consider the following
example:

[eclipse 1]: [user].

afather(mary, george).

afather(john, george).

afather(sue, harry).

afather(george, edward).

sfather("mary", "george").

sfather("john", "george").

sfather("sue", "harry").

sfather("george", "edward").

user compiled 676 bytes in 0.00 seconds

yes.

[eclipse 2]: afather(sue,X).

X = harry

yes.

[eclipse 3]: sfather("sue",X).

X = "harry" More? (;)

no (more) solution.

The predicate with atoms is indexed: the matching clause is selected directly and the deter-
minacy of the call is recognised (the system does not prompt for more solutions). When the
names are instead written as strings, the system attempts to unify the call with the first clause,
then the second and so on until a match is found. This is much slower than the indexed access.
Moreover the call leaves a choicepoint behind (as shown by the More? prompt).

Conclusion

Atoms should be used for representing (naming) the items that a program reasons about, much
like enumeration constants in other languages. If used like this, an atom is in fact indivisible
and there should be no need to ever consider the atom name as a sequence of characters.
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When a program deals with text processing, it should choose between string and list represen-
tation. When there is a lot of manipulation on the single character level, it is probably best to
use the character list representation, since this makes it very easy to write recursive predicates
walking through the text, and lends itself to the use of Definite Clause Grammars (see 13.3).

The string type can be viewed as being a compromise between atoms and lists. It should be
used when handling large amounts of input, when the extreme flexibility of lists is not needed,
when space is a problem or when handling very temporary data.

5.4.2 Built-in Support for Strings

Most ECLiPSe built-ins that deliver text objects (like getcwd/1, read string/3,4,5 and many
others) return strings.

By means of the built-ins atom string/2, string list/2,3, string chars/2, number string/2,
term string/2, text to string/2, atomics to string/2,3, strings can easily be converted to
and from other data types.

String manipulation is provided by builtins like string concat/3, string code/3, string codes/2,
string char/3, string chars/2, split string/4, and substring/5. The regular expression li-
brary library(regex) also operates on strings.

The string stream feature (cf. section 11.3.1) allows strings to be opened like I/O streams, thus
providing another way of creating or analysing strings.

5.5 Matching Clauses

When Prolog systems look for clauses that match a given call, they use full unification of the goal
with the clause head (but usually without the occur check). Sometimes it is useful or necessary
to use pattern matching instead of full unification, i.e., during the matching only variables in
the clause head can be bound, the call variables must not be changed. This means that the call
must be an instance of the clause head.

The operator -?-> at the beginning of the clause body specifies that one-way matching should
be used instead of full unification in the clause head:

p(f(X)) :-

-?->

q(X).

Using the ?- operator in the neck of the clause (instead of :-) is an alternative way of expressing
the same, so the following is equivalent to the above:

p(f(X)) ?-

q(X).

Matching clauses are not supported in dynamic clauses. A runtime error (calling an undefined
procedure -?->/1) will be raised when executing dynamic code that has a matching clause head.

Pattern matching can be used for several purposes:

• Generic pattern matching when looking for clauses whose heads are more general than the
call.
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• Decomposing attributed variables [5]. When an attributed variable occurs in the head
of a matching clause, it is not unified with the call argument (which would trigger the
unification handlers) but instead, the call argument is decomposed into the variable and
its attribute(s):

get_attr(X{A}, Attr) :-

-?->

A = Attr.

This predicate can be used to return the attribute of a given attributed variable and fail
if it is not one.

• Replacing other metalogical operations, e.g., var/1 test. Since a nonvariable in the head
of a matching clause matches only a nonvariable, explicit variable tests and/or cuts may
become obsolete.

5.6 Soft Cut

Sometimes it is useful to be able to remove a choice point which is not the last one and to keep
the following ones, for example when defining an if-then-else construct which backtracks also
into the condition. This functionality is usually called soft cut in the Prolog folklore.
Softcuts are written as:

A *-> B ; C

If A succeeds, B is executed and on backtracking subsequent solutions of A followed by B are
returned, but C is never executed. If A fails straight away, C is executed. The behaviour of
*->/2 is similar to ->/2, with the exception that ->/2 cuts both A and the disjunction if A
succeeds, whereas *->/2 cuts only the disjunction.
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Chapter 6

The Compiler

6.1 Summary

The ECLiPSe compiler compiles ECLiPSe source (or Prolog source in various dialects) into the
instructions of an abstract machine, which are then executed by an emulator.

Program source can be read in text form from files, console, strings and general input streams.
Alternatively, it can be provided in the form of a data structure (list of clause terms).

The smallest program unit the compiler can meaningfully process is a predicate. In practice it
is best to compile modules as a whole, since this allows for better consistency checks.

Usually, the generated code is immediately loaded into main memory and ready for execution.
This method is the most convenient during program development. In addition, compiled code
can be output to a file (ECLiPSe object format, or eco), from which it can later be loaded more
quickly.

Compiled code optionally contains debugging information, allowing a source-oriented trace of
program execution.

6.2 Compiler Invocation

The compiler is usually invoked by calling one of the following built-in predicates:

compile(Source) This is the standard compiler predicate. Source is usually a file
name, other forms are detailed below. The contents of the file is compiled with
the default compiler options.

compile(Source, Options) This is the standard compiler predicate. Source is
usually a file name, other forms are detailed below. Options is a list of options
to control the compilation process, see details below.

[File1,...,FileN ] This predicate can be used as a shorthand for the compile/1
predicate. It accepts a list of files, which can be source files or precompiled
files.

compile stream(Stream) This predicate compiles a given, open stream up to its
end or to the end_of_file clause. It can be used when the input file is already
open, e.g., when the beginning of the file does not contain compiler input.

compile stream(Stream, Options) Like compile stream/1 but with options list.
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compile term(Clauses) This predicate is used to compile a given term, usually a
list of clauses and directives. Unlike assert/1 it compiles a static procedure,
and so it can be used to compile a procedure which is dynamically created and
then used as a static one.

compile term(Clauses, Options) Like compile term/2 but with options list.

When using a development environment like TkEclipse or Saros, the compiler is usually invoked
implicitly via menu options or buttons.

6.2.1 Source Files

Program source is usually contained in files. The recommended file name suffixes (extensions)
are

• .ecl for ECLiPSe specific source

• .pl for Prolog source

To compile a source files solver.ecl, any of the following forms is acceptable:

?- compile(’solver.ecl’).

?- compile("solver.ecl").

?- compile("/home/joe/solver.ecl").

?- compile("/home/joe/solver").

?- compile(solver).

File names must be single quoted (atom) or double quoted (string) if they contain punctuation,
blank space, or start with an upper case letter. The .ecl extension can be omitted as long as
no file without extension is present. A .pl extension can be omitted as long as no file without
extension and no file with .ecl extension is present. The list of accepted suffixes and their
precedence is given by the global flag prolog_suffix, see get flag/3.

The following shorthands can be used, but note that the last two forms will load precompiled
.eco files by preference, should they be present:

?- [’solver.ecl’].

?- ["solver.ecl"].

?- ["/home/joe/solver.ecl"].

?- ["/home/joe/solver"].

?- [solver].

If the source is given as library(Name), the predicates looks for the file in the directories from
the global flag library_path.

If File is the special atom ’user’, the source will be taken from the current ’input’ stream, i.e.,
will usually generate a prompt at which clauses can be typed in. In this case, input must be
terminated either by typing CTRL-D (on Unix), CTRL-Z + RETURN (on Windows), or with the
single atom end_of_file, followed by a fullstop (period).

?- [user].

main :- writeln(hello).

^D
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tty compiled 72 bytes in 0.01 seconds

Yes (0.01 cpu)

?- main.

hello

Yes (0.00s cpu)

If File is the special form stream(Stream), then the source is taken from the given stream (which
must be already opened). The stream content is compiled until the end of stream (or the
end_of_file marker). Using this feature, any ECLiPSe stream (file, socket, tty, string, queue,
pipe) can be used as the source for program text.

6.2.2 Main Compiler Options

The following compiler options affect the generated code:

debug: This option (off/on) determines whether the resulting code contains debug-
ging information. If off, subgoals of the compiled predicates will not be visible
to the debugger, the code will be significantly smaller, and slightly faster. The
default value is taken from the global flag debug_compile. The setting can be
changed via a pragma (debug/nodebug) in the code.

opt level: Currently the integer 0 or 1, with 1 the default. Setting this to 0 will
disable certain compiler optimizations and usually reduce performance. The
setting can be changed via an opt_level(Level) pragma in the code.

The following options determine what is being done with the compilation result:

load: Determines whether the generated code is immediately loaded into memory,
ready for execution. Values for the load option are:

all (This is the default.) Load and replace code in memory, create/re-create all
modules, interpret pragmas, and execute all directives and queries.

none Do not load any code into memory, do not execute queries, but interpret
pragmas and execute directives. Do not re-create modules, but create new
ones and erase them again after compilation.

new Do not overwrite any code in memory, but load new predicates. Do not
execute queries, but interpret pragmas and execute directives. Do not re-
create modules, but create new ones and erase them again after compilation.
For existing modules, erase pragmas.

output: The abstract machine code which is the result of the compilation can be
output in various forms. Possible values are:

none (This is the default). No output (but code may be loaded, see load

option).

eco output compiled code in eco format to a file whose suffix is .eco. This
format can be loaded using ensure loaded/1 or the compiler itself.

eco(File) output compiled code in eco format to File.

asm output compiled code in asm format to a file whose suffix is .asm. This
format represents the code as WAM code that can be loaded back into
ECLiPSe using the assembler (lib(asm)).
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asm(File) output compiled code in asm format to File.

outdir: Value is the destination directory for all output files. The default is the
empty string "", meaning that all output files go into the same directory as the
corresponding input file.

For other options see compile/2.
For example, to compile a program without debugging support directly into memory, use

?- compile(myprogram, [debug:off]).

The following command will create a precompiled file myprogram.eco from a source file called
myprogram.ecl (or myprogram.pl):

?- compile(myprogram, [output:eco]).

6.3 Source Structure

The compiler normally reads files from beginning to end, but the file end can also be simulated
with a clause

end_of_file.

When reading from a terminal/console, the end of the input can be marked by CTRL-D (in
Unix-like systems) or CTRL-Z+RETURN on Windows.
When reading program source, the compiler distinguishes clauses, directives and file queries.
Directives are terms with main functor :-/1 while file queries have the main functor ?-/1.
Everything else is a program clause (see Appendix A).
The differences between a directive and a file query are as follows:

• File queries are general goals, and are executed when the program is loaded, i.e., when
compiling with the load-option set to all, or when loading a compiled file. When compiling
without loading, they are ignored.

• Directives can be general goals, in which case they are executed while the program is being
compiled, and also when a compiled program is loaded.

• Some directives are not goals, but are interpreted by the compiler (or other source process-
ing tool), e.g., module-directives or pragmas. These should not be combined with general
goals in the same directive.

Directives and file queries should succeed and should only have a single solution. No results are
printed by the system, failure leads to a warning, and an error condition will cause compilation
to abort.

6.3.1 Clauses and Predicates

All other input terms are interpreted as clauses to be compiled. A sequence of consecutive
clauses whose heads have the same functor is interpreted as one predicate. Normally, all clauses
for one predicate should be consecutive in the source. If this is not the case, the compiler issues
a warning and ignores the new clauses.
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To change this behaviour, a discontiguous/1 declaration must be used. The clauses are then
collected and compiled as a whole once the end of the source unit (file or module) has been
reached.
To add clauses for a predicate incrementally though several independent compiler invocations is
only possible by declaring the corresponding predicate as dynamic/1, see Chapter 12.

6.3.2 Compilation and Modules

In the absence of module-directives (module/1, module/3) within the file, the file content
is compiled into the module from which compile/1,2 itself was called. This context module
may be modified using the @/2 notation, i.e., compile(File, Options)@Module. Existing static
predicates will be redefined, and clauses for dynamic predicates appended to the existing ones
(unless the ’load’ option requests otherwise).
If the compiled file contains module directives (module/1,3), these specify to which module(s)
the subsequent code belongs. Module directives are effective from the point where they occur
until the next module directive, or until the end of file. If a module directive refers to a mod-
ule that already exists, this module is erased and redefined (unless the ’load’ option requests
otherwise).
It is generally recommended to follow the one file – one module convention, and to make the
base name of the file identical to the module name. In rare cases, it may make sense to have an
auxiliary module in the same file as the main module. This is allowed, and every new module
directive terminates the previous module.
To spread the code for one module over several files, use a top-level file containing the module
directive plus one or more include-directives (section 6.4.3) for the component files.

6.3.3 Incrementality

When it encounters a module/1 or module/3 directive the compiler first erases previous
contents of this module, if there was any, before starting to compile predicates into it. This
means that in order to incrementally add predicates to a module, the module directive cannot
be used because the previous contents of the module would be destroyed. Instead, the construct
compile(File)@Module must be used.

6.4 Directives

6.4.1 Modules and Declarations

The following is a list of the directives most commonly used in source files:

:- module(Name). Beginning of a module.

:- module(Name, Exports, Dialect). Beginning of a module in a given dialect.

:- local Specs. Declaration of local items, e.g., syntax settings, operators, global
storage, etc.

:- export Specs. Declaration of exported items, e.g., predicates, syntax settings,
operators, etc.

:- reexport Specs. Declaration of reexported items.

:- import Specs. Declaration of imported modules or predicates.
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:- use module(Mods). Loading and importing of modules or libraries.

:- lib(Libs). Loading and importing of libraries.

:- meta attribute(Name, Handlers) Declare a variable attribute.

:- comment(Type, Info) Structured program documentation.

6.4.2 Conditional Compilation

The compiler and other source-processing tools recognise the conditional compilation directives
if/1, elif/1, else/0 and endif/0. The first two take a goal as their argument, and parts of
the program source can be included or excluded depending of the satisfiability of that goal. For
example,

:- if(get_flag(hostarch, "i386_nt")).

...Windows-specific code...

:- elif( (get_flag(version_as_list,Version), Version @>= [6,0]) ).

...code for version 6.0 and later...

:- else.

...alternative code...

:- endif.

Note however, that only complete clauses or directives can be conditionally included.

6.4.3 Include Directives

Generally, it is best to use the module system to structure ECLiPSe applications, and to use one
module per file. The modules then refer to each other via use module/1, lib/1, or import/1
directives. In rare cases it can make sense to split a single module into several files, which can
then be pulled together using the following include directives:

:- include(Files). The contents of the given Files are treated as if they occurred in
place of the include directive. Files is a single file name or a list of them.

:- [Files]. A synonym for the include/1 directive. Note that the semantics of this
construct when used as a directive (include semantics) differs slightly from its
use as a goal or query (compiler/loader invocation).

Included files can contain clauses, directives and queries, but should not contain module/1,3
directives, since they would be interpreted as occurring within the including file, and the included
module would not end at the end of the included file.

6.4.4 Compiler Pragmas

Compiler pragmas are compiler directives which instruct the compiler to emit a particular code
type, overriding the options given to the compiler. Their syntax is similar to directives:

:- pragma(Option).

It is not possible to have several pragmas grouped together and separated by commas, every
pragma must be specified separately. Option can be one of the following:
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debug - generate code which can be inspected with the debugger. This overrides
the global setting of the debug_compile flag, and any debug-option given to
the compiler.

nodebug - generate optimized code with no debugger support. This overrides the
global setting of the debug_compile flag, and any debug-option given to the
compiler.

expand - do in-line expansion of built-ins like is/2 and user-defined inline pred-
icates. This code can still be inspected with the debugger but the expanded
subgoals look differently than in the normal debugged code, or their arguments
cannot be seen. This pragma overrides the global setting of the goal_expansion
flag, and any expand-option given to the compiler.

noexpand - inhibit the in-line goal expansion. This pragma overrides the global
setting of the goal_expansion flag, and any expand-option given to the com-
piler.

opt level(Level) - override the opt_level option given to the compiler. Level is an
integer greater or equal to 0. A zero setting disables all optional optimization.

skip - set the skip flag of all following predicates to on.

noskip - set the skip flag of all following predicates to off.

system - set the type flag of all following predicates to built_in. Moreover, all
following predicates will have unspecified source_file and source_line flags.

warnings - enable compiler warnings, overriding any warnings-option given to the
compiler.

nowarnings - disable compiler warnings, overriding any warnings-option given to
the compiler.

A pragma is active from its specification in the file until the file end or until it is disabled by
another pragma. Recursive compilations or calls to other compiling predicates are not affected
by the pragma.
The pragmas are useful mainly for libraries and other programs that should be always compiled
in a particular mode independently of the global flags or compiler option settings.

6.5 Precompiled (ECO) Files

6.5.1 Making Precompiled Files

ECLiPSe source files can be compiled into ECLiPSe object files, for subsequent loading. These
files have the .eco suffix by default. This facility is mainly intended for module files. To create
such a file, call the compiler with the appropriate output-option, e.g.,

?- compile(myprogram, [output:eco]).

This creates a precompiled file myprogram.eco from a source file called myprogram.ecl (or
myprogram.pl). If the source file contained include directives, the result will be a single object
file containing the compiled code of all included files. In earlier releases of ECLiPSe this was
done using the fcompile/1 predicate from the fcompile library, which is still supported for
compatibility.
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Loading of ECLiPSe object files is significantly faster than compilation from source. In ECLiPSe

6.0, ECLiPSe object files are text files containing a representation of the compiled abstract
machine code, and can be used to deploy application code without revealing the source. The
precompiled code is hardware and operating system independent. It may however not be portable
between different versions of ECLiPSe if details of the abstract machine were modified between
releases.
The global flag eclipse_object_suffix determines the file suffix used for ECLiPSe object files.

6.5.2 Restrictions

Currently, the compiler generates the auxiliary predicates for the do iterator using a module-
wide counter to name the predicates. Unfortunately this means that if an object file with
auxiliary predicates is loaded into a module that already has existing code that contains auxiliary
predicates, naming conflict can occur and the old auxiliaries may be replaced. It is thus strongly
recommended that object files should not be loaded into an existing module. This will only be
a problem if the file does not contain any module declarations that redefine the module (i.e.,
module/1), as these redefinition will erase the old copy of the module.
One restriction does apply between platforms of different word sizes: integers which fit in the
word size of one platform but not the other are represented differently internally in ECLiPSe.
Specifically, integers which takes between 32 and 64 bits to represent are treated as normal
integers on a 64 bit machine, but as bignums (see section 9.2.1) on 32 bit machines. This
difference is normally invisible, but if such numbers occur as constants in the program code (i.e.,
their values appear textually), they can lead to different low-level compiled abstract code on
the different platforms. Avoid using such constants if you want the object code to be portable
across different word sizes (they can always be computed at run-time, e.g., writing 2^34 instead
of 17179869184).

6.5.3 Loading Precompiled Files

The following predicates either invoke the compiler or load precompiled.eco files. If the source
specification does not specify the file type, precompiled files are preferred if they can be found
in the search path:

[File1,...,FileN ] This predicate can be used as a shorthand for the compile pred-
icate, usually in the interactive toplevel. It accepts a list of files, which can be
source files or precompiled files.

ensure loaded(Files) This predicate compiles the specified file if it has not been
compiled yet or if it has been modified since the last compilation. It can be
used to load application code or system libraries.

use module(Files) A combination of ensure loaded/1 and import/1.

lib(Lib) This predicate is used to ensure that a specified library file is loaded. It is
equivalent to ensure_loaded(library(Lib)). If this library is not yet com-
piled or loaded, the system will look in all directories in the library_path flag
for a file with this name, which is either a source file or a precompiled file, and
compile or load it.

make This predicate recompiles or reloads all files that have been modified since
their last compilation or loading.
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To implement reloading/recompiling when needed, the system keeps track of when a particular
source files was compiled or precompiled file was loaded into memory. This information can be
accessed explicitly through current compiled file/3.

6.5.4 Using the Compiler with a Makefile

To generate .eco file from source files, the compiler can be run from the command line using the
-e option. To invoke it from a makefile, use the following suffix rule

.SUFFIXES: $(SUFFIXES) .ecl .eco

.ecl.eco:

eclipse -e "compile(\"$<\",[output:eco])"

or a pattern rule for Gnu make:

%.eco: %.ecl

eclipse -e "compile(\"$<\",[output:eco])"

6.6 Special Compiler Features

6.6.1 Compiling Non-Textual Source

A characteristic feature of Prolog and ECLiPSe is, that programs can be represented as data
structures in a straightforward way. The compiler therefore provides the compile term/1 and
compile term/2 interface predicates, which allow one to compile a list of terms. The compiler
interprets these as clauses, directives and queries, similarly to what happens when the program
source is being read from a file. For program generators, it is therefore not necessary to create
a textual representation of generated code - the data structures can be compiled directly.
There are the following minor differences between compilation from textual sources and term
compilation:

• Module directives are not supported - to compile code into a certain module, use the
construct compile term(Clauses,Options)@Module, and use create module/1 to create
modules beforehand if necessary.

• Include directives do not make sense and are not supported.

• No end-of-compilation events are raised—compile term/1 behaves more like the compi-
lation of an included file in this respect. This implies that discontiguous predicates are not
supported.

A variant of compile term/2 is compile term annotated/3 which takes source terms with
source position annotations. This can be used when compiling auxiliary code within inlining/goal
expansions transformations, without losing the source position information which is needed by
the debugger.

6.6.2 Mode Declarations

Mode declarations are a way for the user to give some additional information to the compiler,
thus enabling it to do a better job. The ECLiPSe compiler makes use of the mode information
mainly to improve indexing and to reduce code size.
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Mode declarations are optional. They specify the argument instantiation patterns that a predi-
cate will be called with at runtime, for example:

:- mode p(+), q(-), r(++, ?).

The possible argument modes and their meaning are:

+ the argument is instantiated, i.e., it is not a variable;
++ the argument is ground;
- the argument is not instantiated, it must be a free variable without any

constraints, especially it must not occur in any other argument and it cannot
be a suspending variable;

? the mode is not known or it is neither of the above ones.

Note that, if the actual instantiation of a predicate call violates its mode declaration, the be-
haviour is undefined. Usually, an unexpected failure occurs in this case.

6.6.3 Inlining

To improve efficiency, calls to user-defined predicates can be preprocessed and transformed at
compile time. The directive inline/2, e.g.,

:- inline(mypred/1, mytranspred/2).

arranges for mytranspred/2 to be invoked at compile time for each call to the predicate
mypred/1 before this call is being compiled.
The transformation predicate receives the original call to mypred/1 as its first argument, and
is expected to return a replacement goal in its second argument. This replacement goal replaces
the original call in the compiled code. Usually, the replacement goal would be semantically
equivalent, but more efficient than the original goal. When the transformation predicate fails,
the original goal is not replaced.
Typically, a predicate would be defined together with the corresponding inlining transformation
predicate, e.g.,

:- inline(double/2, trans_double/2).

double(X, Y) :-

Y is 2*X.

trans_double(double(X, Y), Y=Result) :-

not nonground(X), % if X already known at compile time:

Result is 2*X. % do calculation at compile time!

All compiled calls to double/2 will now be preprocessed by being passed to trans double/2.
For example, if we now compile the following predicate involving double/2:

sample :-

double(12, Y), ..., double(Y, Z).

then the first call to double will be replaced by Y = 24 while the second one will be unaffected.
The code that the compiler sees and compiles is therefore
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sample :-

Y = 24, ..., double(Y, Z).

Note that meta-calls (e.g., via call/1) are never preprocessed, they always go directly to the
definition of double/2.

Transformation can be disabled for debugging purposes by adding

:- pragma(noexpand).

to the compiled file, or by setting the global flag

:- set_flag(goal_expansion, off).

6.6.4 Clause Expansion

Before compilation, the compiler also performs clause macro expansion (macro/3). This in-
cludes the DCG grammar rule expansion (section 13.3).

6.7 Writing Efficient Code

Even with a declarative language, there are certain constructs which can be compiled more
efficiently than others. It is however not recommended to write unreadable code with the aim
of achieving faster execution - intuition is often wrong about which particular construct will
execute more efficiently in the end. The advice is therefore

Try the simple and straightforward solution first!

This will keep code maintainable, and will often be as fast or marginally slower than elaborate
tricks. The second rule is to keep this original program even if you try to optimise it. You may
find out that the optimisation was not worth the effort. ECLiPSe provides some support for
finding those program parts that are worth optimizing.

To achieve the maximum speed of your programs, choose the following compiler options:

• debug:off ;

• opt_level:1 (the default);

• expand:on (the default).

Some programs spend a lot of time in the garbage collection, collecting the stacks and/or the
dictionary. If the space is known to be deallocated anyway, e.g., on failure, the programs
can be often sped up considerably by switching the garbage collector off or by increasing the
gc_interval flag. As the global stack expands automatically, this does not cause any stack
overflow, but it may of course exhaust the machine memory.

When the program is running and its speed is still not satisfactory, use the profiling tools. The
profiler can tell you which predicates are the most expensive ones, and the statistics tool tells
you why. A program may spend its time in a predicate because the predicate itself is very
time consuming, or because it was frequently executed. The port profiling tool gives you this
information. It can also tell whether the predicate was slow because it has created a choice point
or because there was too much backtracking due to bad indexing.
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One of the very important points is the selection of the clause that matches the current call. If
there is only one clause that can potentially match, the compiler is expected to recognise this
and generate code that will directly execute the right clause instead of trying several subsequent
clauses until the matching one is found. Unlike most of the current Prolog compilers, the
ECLiPSe compiler tries to base this selection (indexing) on the most suitable argument of the
predicate.1 It is therefore not necessary to reorder the predicate arguments so that the first one
is the crucial argument for indexing. For example, in a predicate like

p(a, a) :- a.

p(b, a) :- b.

p(a, b) :- c.

p(d, b) :- d.

p(b, c) :- e.

calls where the first argument is instantiated, like p(d,Y), will be indexed on the first argument,
while calls where the second argument is instantiated, like p(X,b), will be indexed on the second.

However, the decision is still based on only one argument at a time: a call like p(d,b) will be
indexed on the first argument only (not because it is the first, but because it is more discrim-
inating than the second). If it is crucial that such a procedure is executed as fast as possible
with such a calling pattern, it can help to define an auxiliary procedure which will be indexed
on the other argument:

p(X, a) :- pa(X).

p(X, b) :- pb(X).

p(b, c) :- e.

pa(a) :- a. pa(b) :- b.

pb(a) :- c. pb(d) :- d.

The compiler also tries to use for indexing all type-testing information that appears at the
beginning of the clause body (or beginning of a disjunction):

• Type testing predicates, i.e., free/1, var/1, meta/1, atom/1, integer/1, rational/1,
float/1, breal/1, real/1, number/1, string/1, atomic/1, compound/1, nonvar/1
and nonground/1.

• Explicit unification and value testing =/2, ==/2, \==/2 and \=/2.

• Combinations of tests with ,/2, ;/2, not/1, − >/2.

• A cut after the type tests.

If the compiler can decide about the clause selection at compile time, the type tests are never
executed and thus they incur no overhead. When the clauses are not disjoint because of the type
tests, either a cut after the test or more tests into the other clauses can be added. For example,
the following procedure will be recognised as deterministic and all tests are optimised away:

1The standard approach is to index only on the first argument.
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% a procedure without cuts

p(X) :- var(X), ...

p(X) :- (atom(X); integer(X)), X \= [], ...

p(X) :- nonvar(X), X = [_|_], ...

p(X) :- nonvar(X), X = [], ...

Another example:

% A procedure with cuts

p(X{_}) ?- !, ...

p(X) :- var(X), !, ...

p(X) :- integer(X), ...

p(X) :- real(X), ...

p([H|T]) :- ...

p([]) :- ...

Here are some more hints for efficient coding with ECLiPSe:

• Arguments which are repeated in the clause head and in the first regular goal in the body
do not require any data moving and thus they do not cost anything. For example,

p(X, Y, Z, T, U) :- q(X, Y, Z, T, U).

is just as cheap as

p :- q.

On the other hand, switching arguments requires data moves and so

p(A, B, C) :- q(B, C, A).

is somewhat more expensive.

• When accessing an argument of a structure whose functor is known, unification and arg/3
are both similarly efficient, so the question of whether to write Struct = emp(_, X, _)

or arg(2, Struct, X) is just a matter of taste and style.

We recommend that the structure notation (see section 5.1) be used, as it improves read-
ability without adding any overhead. So, for example, use Struct = emp{salary:X} or
arg(salary of emp, Struct, X).

• Tests are generally rather slow unless they can be compiled away (see indexing).

• Waking is more expensive (due to the priority mechanism) than metacalling which is more
expensive than compiled calls. Metacalls however do not carry as heavy a penalty as in
some other Prolog systems.

• Sorting using sort/2 is very efficient and it does not use much space. Using setof/3,
findall/3 etc. is also efficient enough to be used every time a list of all solutions is needed.

• =/2 and ==/2 are faster than =:=/2.

• :/2 is optimised away by the compiler if both arguments are known.
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• Starting from ECLiPSe 6.0, there is no performance difference between using multiple
clauses or using disjunction or if-then-else cascades. In fact, the compiler normalises mul-
tiple clause predicates into a single-clause representation with inline disjunctions. Disjunc-
tions are indexed.

• Conditionals (i.e., . . .->. . .;. . .) are compiled more efficiently if the condition is an indexable
built-in test.

6.8 Implementation Notes

The ECLiPSe compiler is actually contained in the eclipse library lib(ecl_compiler) which
relies on a number of auxiliary modules. It uses lib(source processor) to read programs, and
produces abstract machine code that is assembled using lib(asm).
The built-in predicate als/1 or asm:wam/1 lists the abstract code of the given predicate and
it can thus be used by experts to check if the predicate was compiled as expected.
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Chapter 7

Engines and Threads

Starting with release 7.0, ECLiPSe supports multiple engines and multi-threaded execution.
An engine is an entity with its own data areas and potentially independent control flow. This
implies:

• engines can execute queries independently of each other

• each engine has its own search tree, backtracking in one engine does not affect others

• engines can operate in a concurrent or interleaved fashion

• communication between engines is explicit

• data transferred between engines is copied, variables cannot be shared

On the other hand, engines share or can share the following:

• loaded modules and predicates

• non-logical storage such as global variables, records, stores, shelves

• global settings (set flag/2,3)

• streams

An engine can optionally be associated with a thread, allowing it to execute concurrently with
other engines.
For more details, see the Reference Manual Section on Engines.
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Chapter 8

The Module System

8.1 Basics

8.1.1 Purpose of Modules

The purpose of the module system is to provide a way to package a piece of code in such a way
that

• internals are hidden;

• it has a clearly defined interface;

• naming conflicts are avoided.

In particular, this helps with

• Structuring of large applications: Modules should be used to break application programs
into natural components and to define the interfaces between them.

• Provision of libraries: All ECLiPSe libraries are modules. Their interfaces are defined in
terms of what the module makes visible to the world.

• Different implementations of the same predicate: In constraint programming it is quite
common to have different implementations of a constraint, which all have the same declar-
ative meaning but different operational behaviour (e.g., different amount of propagation,
using different algorithms, exhibiting different performance characteristics). The module
system supports that by allowing users to specify easily which version(s) of a predicate
should be used in a particular context.

8.1.2 What is under Visibility Control?

The ECLiPSe module system governs the visibility of the following entities:

Predicate names Predicates can always be used in the module where they are
defined and optionally in other modules when they are made available.

Structure names Structure declarations can be valid only locally within a module,
or shared between several modules.
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Syntax settings These include operator declarations (see op/3), syntax options
and character classes. This means in particular that different modules can use
different language dialects (e.g., ECLiPSe vs. ISO-Prolog).

Container names These include the names of record keys, non-logical variables
and references. They are always local to the module where they are declared.

Initialization and finalization goals Modules can have initialization and final-
ization goals attached, see section 8.4.3.

Note that every definition (predicate, structure etc.) is in some module, there is no space
outside the modules. When you don’t explicitly specify a module, you inherit the module from
the context in which you do an operation. When you are using an interactive ECLiPSe toplevel,
a prompt will tell you in which module your input is read and interpreted.

8.1.3 What Modules are There?

The module system is flat, i.e., no module is part of another module, and module names must
be unique. There are

• a few basic modules that are part of the ECLiPSe runtime system and are always there.
The most important one is called eclipse_language and is by default imported into all
other modules.

• the library modules: every library consists of at least one module. By convention, that
module name is the library name and same as the base part of the library file name.

• the application-defined modules: these are created by the application programmer.

• in an interactive ECLiPSe toplevel there is one module in which queries entered by the
user are read and executed. That module name is displayed in a prompt.

8.2 Getting Started

8.2.1 Creating a Module

You create a module simply by starting your program code with a module/1 directive. This
should usually be placed at the beginning of the source file and looks like

:- module(mymodule).

As a rule, the module name should be chosen to be the same as the file’s base name (the file
name without directory/folder and suffix/extension part). For example, the module mymodule

might be contained in a file mymodule.ecl.
Anything you define in your module is by default local to that module.

8.2.2 Exporting

A definition is made available to the outside world by exporting it. All the exports of a module
together form the module’s interface. Exporting is done with the export/1 directive, which
can take different forms depending on the kind of the exported item.
Predicates are exported as follows:
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:- export p/2.

p(X,Y) :-

...

Structures are exported by defining them with an export/1 instead of a local/1 directive, e.g.,

:- export struct(book(author,title,publisher)).

And the same holds for operators and other syntax settings:

:- export op(500, xfx, before).

:- export chtab(0’$, lower_case).

:- export syntax_option(no_array_subscripts).

:- export macro(pretty/1, tr_pretty/2, []).

All these declarations are valid locally in the module where they appear and in every module
that imports them.
Initialization goals are exported as follows:

:- export initialization(writeln("I have been imported")).

Unlike the other declarations above, an exported initialization/1 directive is not executed
locally in they module where it appears, but only in the context of the module where it gets
imported.1

8.2.3 Importing

In order to use a definition that has been exported elsewhere, it has to be imported. Often it
is desirable to import another module’s interface as a whole, i.e., everything it exports. This is
achieved by an import/1 directive of the form

:- import amodule.

If the module is in a file and has to be compiled first, then use module/1 can be used, which
is a combination of ensure loaded/1 (see chapter 6) and import/1:

:- use_module("/home/util/amodule").

If the module is a library in one of ECLiPSe’s library directories, then it can be loaded and
imported by

:- use_module(library(hash)).

or simply using lib/1 as in

:- lib(hash).

It is also possible to import only a part of another module’s interface, using an import-from
directive

:- import p/2 from amodule.

Note that this is the only form of import that can refer to a module that has not yet been loaded,
and therefore allows a restricted form of circularity in the import structure.

1For local initialization use :- local initialization(...).
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8.2.4 Definitions, Visibility and Accessibility

For a given predicate name and arity the following rules hold:

• Every module can contain at most one definition:

– this definition may be local or exported.

• In every module, at most one definition is visible:

– if there is a definition in the module itself, this is also the visible one in the module;

– otherwise, if there is an (unambiguous) import or reexport, this is the visible one;

– otherwise no definition is visible.

• All exported definitions are accessible everywhere:

– this might require explicit module qualification (see 8.3.2).

8.3 Advanced Topics

8.3.1 Solving Name Conflicts

Name conflicts occur in two flavours:

Import/Import conflict: this is the case when two or more imported modules
provide a predicate of the same name.

Import/Local conflict: this is the case when a local (or exported) predicate has
the same name as a predicate provided from an imported module.

Conflicts of the first type are accepted silently by the system as long as there is no reference to
the conflict predicate. Only when an attempt is made to access the conflict predicate is an error
raised. The conflict can be resolved by explicitly importing one of the versions, e.g.,

:- lib(ria). % exports #>= / 2

:- lib(eplex). % exports #>= / 2

:- import (#>=)/2 from ria. % resolves the conflict

Alternatively, the conflict can remain unresolved and qualified access can be used whenever the
predicates are referred to (see 8.3.2).

Conflicts of the second type give rise to an error or warning message when the compiler en-
counters the local (re)definition. To avoid that, an explicit local/1 declaration has to be used:

:- local write/1.

write(X) :- % my own version of write/1

...

Note that the local/1-declaration must occur textually before any use of the predicate inside
the module.
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8.3.2 Qualified Access via :/2

Normally, it is convenient to import predicates which are needed. By importing, they become
visible and can be used within the module in the same way as local definitions. However,
sometimes it is preferable to explicitly specify from which module a definition is meant to be
taken. This is the case for example when multiple versions of the predicate are needed, or when
the presence of a local definition makes it impossible to import a predicate of the same name
from elsewhere. A call with explicit module qualification is done using :/2 and looks like this:

lists:print_list([1,2,3])

Here, the module where the definition of print list/1 is looked up (the lookup module) is
explicitly specified. To call print list/1 like this, it is not necessary to make print list/1
visible. The only requirement is that it is exported (or reexported) from the module lists.
Note that, if the called predicate is in operator notation, it will often be necessary to use brackets,
e.g., in

..., ria:(X #>= Y), ...

The :/2 primitive can be used to resolve import conflicts, i.e., the case where the same name is
exported from more than one module and both are needed. In this case, none of the conflicting
predicates is imported - an attempt to call the unqualified predicate raises an error. The solution
is to qualify every reference with the module name:

:- lib(ria). % exports #>= / 2

:- lib(eplex). % exports #>= / 2

..., ria:(X #>= Y), ...

..., eplex:(X #>= Y), ...

Another case is the situation that a module wants to define a predicate of a given name but
at the same time use a predicate of the same name from another module. It is not possible to
import the predicate because of the name conflict with the local definition. Explicit qualification
must be used instead:

:- lib(lists).

print_list(List) :-

writeln("This is the list"),

lists:print_list(List).

A more unusual feature, which is however very appropriate for constraint programming, is the
possibility to call several versions of the same predicate by specifying several lookup modules:

..., [ria,eplex]:(X #>= Y), ...

which has exactly the same meaning as

..., ria:(X #>= Y), eplex:(X #>= Y), ...

Note that the modules do not have to be known at compile time, i.e., it is allowed to write code
like

after(X, Y, Solver) :-

Solver:(X #>= Y).

However, this is likely to be less efficient because it prevents compile-time optimizations.
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8.3.3 Reexport - Making Modules from Modules

To allow more flexibility in the design of module interfaces, and to avoid duplication of defini-
tions, it is possible to re-export definitions. A reexport is an import combined with an export.
That means that a reexported definition becomes visible inside the reexporting module and is at
the same time exported again. The only difference between exported and reexported definitions
is that reexported predicates retain their original definition module.
There are 3 forms of the reexport/1 directive. To reexport the complete module interface of
another module, use

:- reexport amodule.

To reexport only an explicitly enumerated selection, use

:- reexport p/1,q/2 from amodule.

To reexport everything except some explicitly enumerated items, use

:- reexport amodule except p/2,q/3.

These facilities make it possible to extend, modify, restrict or combine modules into new modules,
as illustrated in figure 8.1.

Restrict:

Modify:

Extend:

m1 interface

m3 interface

m2 interface

m1 interface

m1
interface

m2
interface

reexportreexport

reexport exceptexport

define

reexport

m2 interface

m1 interface

reexport except

m2 interface

export

(re)define

Combine:

Figure 8.1: Making modules from modules with reexport

8.3.4 Modules and Source Files

When a source file contains no module directives, it becomes part of the module from which its
compilation was invoked. This makes it possible to write small programs without caring about
modules. However, serious applications should be structured into modules.
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Often it is the most appropriate to have one file per module and to have the file name match
the module name.

It is however possible to have several modules in one file, e.g., a main module and one or more
auxiliary modules - in that case the name of the main module should match the file name. Every
module-directive in the file marks the end of the previous module and the start of the next one.

It is also possible to spread the contents of a module over several files. In this case, there should
be a main file whose file name matches the module name, and the other files should be referenced
from the main file using the include/1 directive, e.g.,

:- module(bigmodule).

:- include(part1).

:- include(part2).

8.3.5 Tools and Caller Modules

Tools

There are predicates in a modular system that must be able to determine from which module
they were called (since this may be different from the module in which they were defined). The
most common case is where a predicate is a meta-predicate, i.e., a predicate that has another
goal or predicate name as an argument. Other cases are I/O predicates—they must be executed
in a certain module context in order to obey the correct syntax of this module. In ECLiPSe,
predicates that must be able to determine their caller module are called tool predicates.2

Tool predicates must be declared. As a consequence, the system will automatically add a caller
module argument whenever such a tool predicate is called.

Consider for example a predicate that calls another predicate twice. The naive version of this
predicate looks like

twice(Goal) :-

call(Goal),

call(Goal).

As long as no modules are involved, this works fine. Now consider the situation where the
definition of twice/1 and a call of twice/1 are in two different modules:

:- module(stuff).

:- export twice/1.

twice(Goal) :-

call(Goal),

call(Goal).

:- module(main).

:- import stuff.

top :- twice(hello).

hello :- writeln(hi).

2 Many Prolog systems call them meta-predicates.
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This will not work because hello/0 is only visible in module main and an attempt to call it
from within twice/1 in module stuff will raise an error. The solution is to declare twice/1 as
a tool and change the code as follows:

:- module(stuff).

:- export twice/1.

:- tool(twice/1, twice/2).

twice(Goal, Module) :-

call(Goal)@Module,

call(Goal)@Module.

What happens now is that the call to twice/1 in module main

..., twice(hello), ...

is effectively replaced by the system with a call to twice/2 where the additional argument is
the module in which the call occurs:

..., twice(hello, main), ...

This caller module is then used by twice/2 to execute

..., call(hello)@main, ...

The call(Goal)@Module construct means that the call is supposed to happen in the context
of module main.
The debugger trace shows what happens:

[main 5]: top.

(1) 1 CALL top

(2) 2 CALL twice(hello)

(3) 3 CALL twice(hello, main)

(4) 4 CALL call(hello) @ main

(5) 5 CALL call(hello)

(6) 6 CALL hello

S (7) 7 CALL writeln(hi)

hi

S (7) 7 EXIT writeln(hi)

(6) 6 EXIT hello

...

One complication that can arise when you use tools is that the compiler must know that a
predicate is a tool in order to properly compile a call to the tool. If the call occurs textually
before the tool declaration, this will therefore give rise to an inconsistent tool redefinition error.
The tool/2 declaration must therefore occur before any call to the tool.

System Tools

Many of the system built-in predicates are in fact tools, e.g., read/1, write/1, record/2,
compile/1, etc. All predicates which handle modular items must be tools so that they know
from which module they have been called. In case that the built-in predicate has to be executed
in a different module (this is very often the case inside user tool predicates), the @/2 construct
must be used, e.g.,

current_predicate(P) @ SomeModule
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8.3.6 Lookup Module vs Caller Module

The following table summarises the different call patterns with and without module specifica-
tions. There are only two basic rules to remember:

• :/2 specifies the lookup module (to find the definition)

• @/2 specifies the caller module (to know the context)

Call inside module (m) Module where definition
of twice/1 is looked up

Caller module argument
added to twice/1

..., twice(X), ... m m

..., lm : twice(X), ... lm m

..., twice(X) @ cm, ... m cm

..., lm : twice(X) @ cm, ... lm cm

..., call(twice(X)) @ cm, ... cm cm

8.3.7 The Module Interface

The primitive current module/1 can be used to check for the existence of a module, or to
enumerate all currently defined modules.
Further details about existing modules can be retrieved using get module info/3, in particular
information about the module’s interface, what other modules it uses and whether it is locked
(see 8.4.4).

8.3.8 Module-related Predicate Properties

Information about a predicate’s properties can be retrieved using the get flag/3 primitive or
printed using pred/1. The module-related predicate properties are:

defined (on/off) indicates whether code for the predicate has already been com-
piled. If not, only a declaration was encountered.

definition module (an atom) the module where the predicate is defined.

visibility (local/exported/reexported/imported) indicates the visibility of the
predicate in the caller module.

tool (on/off) indicates whether the predicate has been declared a tool.

For tool predicates, tool body/3 can be used to retrieve the predicate it maps to when the
module argument is added.
To get information about a predicate visible in a different module, use for instance

get_flag(p/3, visibility, V) @ othermodule

8.4 Less Common Topics

8.4.1 Modules That Use Other Languages

Modules created with module/1 automatically import the module eclipse_language, which
provides the standard set of ECLiPSe built-in predicates. To create a module that uses a different
language dialect, use module/3. For instance
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:- module(mystdcode, [], iso).

creates a module in which you can use ISO Standard Prolog,3 but not all of ECLiPSe’s usual
language features. Note that the third argument (here iso) simply specifies a library which
implements the desired language, so new languages can be added easily.

8.4.2 Creating and Erasing Modules at Runtime

A module can also be created explicitly by a running program with create module/1 or cre-
ate module/3 and erased with erase module/1. The latter should be used with care, erasing
a module while a predicate defined in that module is being executed can provoke unpredictable
results. The same holds for trying to erase essential system modules.

8.4.3 Initialization and Finalization

Sometimes modules have global state which must be initialised or finalised. For this purpose,
modules can have

Local Initialization Goals: these are specified as

:- local initialization(Goal).

and are executed just after the module containing them has been loaded.

Exported Initialization Goals: these are specified as

:- export initialization(Goal).

and are executed whenever the module containing the declaration gets imported into an-
other module. The call will happen in the context of the importing module.

Finalization Goals: these are specified as

:- local finalization(Goal).

and are executed just before the module containing them gets erased. Modules can get
erased either explicitly through erase module/1 or implicitly when the module is re-
compiled, or when the ECLiPSe session is exited. Finalization goals should not do any
I/O because in the case of an embedded ECLiPSe, I/O may no longer be available at
finalization time.

8.4.4 Locking Modules

By default, ECLiPSe does not strictly enforce the hiding of module internals. This facilitates
program development, as it allows the user to inspect and trace without being too concerned
about module boundaries. For example, you can set a spy point on a local predicate p/3 in
module othermod by calling:

:- spy(p/3)@othermod.

3To the extent implemented by ECLiPSe’s compatibility library.
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Once a module implementation is stable and there is a need for privacy, it is possible to lock a
module. Locking makes it impossible to access internal, local items from outside the module.
Of course, the module can still be used though its interface. The built-in predicates related to
locking are lock/0 which provides a definitive lock, lock pass/1 which allows subsequent un-
locking using a password ( unlock/2), and get module info/3 which allows to check whether
a module is locked. lock/0 and lock pass/1 are usually used as a directive in the source file
of the module to be locked.
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Chapter 9

Arithmetic Evaluation

9.1 Built-Ins to Evaluate Arithmetic Expressions

Unlike other languages, Prolog usually interprets an arithmetic expression like 3 + 4 as a com-
pound term with functor + and two arguments. Therefore a query like 3 + 4 = 7 fails because
a compound term does not unify with a number. The evaluation of an arithmetic expression
has to be explicitly requested by using one of the built-ins described below.

The basic predicate for evaluating an arithmetic expression is is/2. Apart from that only the 6
arithmetic comparison predicates evaluate arithmetic expressions automatically.

Result is Expression Expression is a valid arithmetic expression and Result is an
uninstantiated variable or a number. The system evaluates Expression which
yields a numeric result. This result is then unified with Result. An error occurs
if Expression is not a valid arithmetic expression or if the evaluated value and
Result are of different types.

Expr1 < Expr2 succeeds if (after evaluation and type coercion) Expr1 is less than
Expr2.

Expr1 >= Expr2 succeeds if (after evaluation and type coercion) Expr1 is greater
or equal to Expr2.

Expr1 > Expr2 succeeds if (after evaluation and type coercion) Expr1 is greater
than Expr2.

Expr1 =< Expr2 succeeds if (after evaluation and type coercion) Expr1 is less or
equal to Expr2.

Expr1 =:= Expr2 succeeds if (after evaluation and type coercion) Expr1 is equal
to Expr2.

Expr1 =\= Expr2 succeeds if (after evaluation and type coercion) Expr1 is not
equal to Expr2.

9.1.1 Arithmetic Evaluation vs Arithmetic Constraint Solving

This chapter deals purely with the evaluation of arithmetic expressions containing numbers. No
uninstantiated variables must occur within the expressions at the time they are evaluated. This
is exactly like arithmetic evaluation in procedural languages.
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As opposed to that, in arithmetic constraint solving one can state equalities and inequalities
involving variables, and a constraint solver tries to find values for these variables which satisfy
these constraints. Note that ECLiPSe uses the same syntax in both cases, but different imple-
mentations providing different solving capabilities. See the chapter Common Solver Interface in
the Constraint Library Manual for an overview.

9.2 Numeric Types and Type Conversions

ECLiPSe distinguishes four types of numbers: integers, rationals, floats and bounded reals.

9.2.1 Integers

The magnitude of integers is only limited by your available memory. However, integers that fit
into the word size of your computer are represented more efficiently (this distinction is invisible
to the user). Integers are written in decimal notation or in base notation, for example:

0 3 -5 1024 16’f3ae 0’a 15511210043330985984000000

Note that integer range is unlimited if ECLiPSe was compiled with bignum support. Other-
wise, integers are restricted to that representable in a machine word, and max_integer flag of
get flag/2 returns the maximum integer value.

9.2.2 Rationals

Rational numbers implement the corresponding mathematical domain, i.e., ratios of two integers
(numerator and denominator). ECLiPSe represents rationals in a canonical form where the
greatest common divisor of numerator and denominator is 1 and the denominator is positive.
Rational constants are written as numerator and denominator separated by an underscore, e.g.,

1_3 -30517578125_32768 0_1

Rational arithmetic is arbitrarily precise. When the global flag prefer_rationals is set, the
system uses rational arithmetic wherever possible. In particular, dividing two integers then
yields a precise rational rather than a float result.
Rationals are supported if ECLiPSe is compiled with bignum support. If rationals are not
supported, a type error will be raised when a rational is required.

9.2.3 Floating Point Numbers

Floating point numbers conceptually correspond to the mathematical domain of real numbers,
but are not precisely represented. Floats are written with decimal point and/or an exponent,
e.g.,

0.0 3.141592653589793 6.02e23 -35e-12 -1.0Inf

ECLiPSe uses IEEE double precision floats with the following conventions:

• overflows always produce infinity results, never overflow exceptions.

• invalid operations always produce arithemtic exceptions, never NaNs.

• positive (0.0) and negative zero (-0.0) are distinct and do not unify.
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9.2.4 Bounded Real Numbers

It is a well known problem that floating point arithmetic suffers from rounding errors. To provide
safe arithmetic over the real numbers, ECLiPSe also implements bounded reals1. A bounded
real consists of a pair of floating point numbers which constitute a safe lower and upper bound
for the real number that is being represented. Bounded reals are written as two floating point
numbers separated by two underscores, e.g.,

-0.001__0.001 3.141592653__3.141592654 1e308__1.0Inf

A bounded real is a representation for a real number that definitely lies somewhere between the
two bounds, but the exact value cannot be determined 2. Bounded reals are usually not typed
in by the user, they are normally the result of a computation or type coercion.
All computations with bounded reals give safe results, taking rounding errors into account. This
is achieved by doing interval arithmetic on the bounds and rounding the results outwards. The
resulting bounded real is then guaranteed to enclose the true real result.
Computations with floating point values result in uncertainties about the correct result. Bounded
reals make this uncertainty explicit. A consequence of this is that sometimes it is conceptually
not possible to decide whether two bounded reals are identical or not. This occurs when the
bounds of the compared intervals overlap. In this case, the arithmetic comparisons leave a
(ground) delayed goal behind which can then be inspected by the user to decide whether the
match is considered close enough. The syntactical comparisons like =/2 and ==/2 treat
bounded reals simply as a pair of bounds, and consider them equal when the bounds are equal.

9.2.5 Type Conversions

Note that numbers of different types never unify, e.g., 3, 3 1, 3.0 and 3.0 3.0 are all different.
Use the arithmetic comparison predicates when you want to compare numeric values. When
numbers of different types occur as arguments of an arithmetic operation or comparison, the
types are first made equal by converting to the more general of the two types, i.e., the rightmost
one in the sequence

integer → rational → float → bounded real

The operation or comparison is then carried out with this type and the result is of this type as
well, unless otherwise specified. Beware of the potential loss of precision in the rational → float
conversion! Note that the system never does automatic conversions in the opposite direction.
Such conversion must be programmed explicitly using the integer, rational, float and breal
functions.

9.3 Arithmetic Functions

9.3.1 Predefined Arithmetic Functions

The following predefined arithmetic functions are available. E, E1 and E2 stand for arbitrary
arithmetic expressions.

1We have chosen to use the term bounded real rather than interval in order to avoid confusion with interval
variables as used in the interval arithmetic constraint solvers

2This is in contrast to a floating point number, which represents a real number which lies somewhere in the
vicinity of the float
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Function Description Argument Types Result Type
+ E unary plus number number
– E unary minus number number
abs(E) absolute value number number
sgn(E) sign value number integer
floor(E) round down to integral value number number
ceiling(E) round up to integral value number number
round(E) round to nearest integral value number number
truncate(E) truncate to integral value number number
E1 + E2 addition number × number number
E1 – E2 subtraction number × number number
E1 * E2 multiplication number × number number
E1 / E2 division number × number see below
E1 // E2 integer division (truncate) integer × integer integer
E1 rem E2 integer remainder integer × integer integer
E1 div E2 integer division (floor) integer × integer integer
E1 mod E2 integer modulus integer × integer integer
gcd(E1,E2) greatest common divisor integer × integer integer
lcm(E1,E2) least common multiple integer × integer integer
E1 ˆ E2 power operation number × number number
min(E1,E2) minimum of 2 values number × number number
max(E1,E2) maximum of 2 values number × number number
copysign(E1,E2) combine value and sign number × number number
nexttoward(E1,E2) next representable number number × number number
\ E bitwise complement integer integer
E1 /\ E2 bitwise conjunction integer × integer integer
E1 \/ E2 bitwise disjunction integer × integer integer
xor(E1,E2) bitwise exclusive disjunction integer × integer integer
E1 >> E2 shift E1 right by E2 bits integer × integer integer
E1 << E2 shift E1 left by E2 bits integer × integer integer
sin(E) trigonometric function number real
cos(E) trigonometric function number real
tan(E) trigonometric function number real
asin(E) trigonometric function number real
acos(E) trigonometric function number real
atan(E) trigonometric function number real
atan(E1,E1) trigonometric function number × number real
exp(E) exponential function ex number real
ln(E) natural logarithm number real
sqrt(E) square root number real
pi the constant pi = 3.1415926... — float
e the constant e = 2.7182818... — float
fix(E) convert to integer (truncate) number integer
integer(E) convert to integer (exact) number integer
float(E) convert to float number float
breal(E) convert to bounded real number breal
rational(E) convert to rational number rational
rationalize(E) convert to rational number rational
numerator(E) extract numerator of a rational integer or rational integer
denominator(E) extract denominator of a rational integer or rational integer
sum(Es) sum of elements vector number
sum(Es*Es) scalar product vector*vector number
min(Es) minimum of list elements vector number
max(Es) maximum of list elements vector number
eval(E) evaluate runtime expression term number
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Argument types other than specified yield a type error. As an argument type, number stands
for integer, rational, float or breal with the type conversions as specified above. As a result type,
number stands for the more general of the argument types, and real stands for float or breal.
The division operator / yields either a rational or a float result, depending on the value of the
global flag prefer_rationals. The same is true for the result of ˆ if an integer is raised to a
negative integral power.

The integer division // rounds the result towards zero (truncates), while the div division rounds
towards negative infinity (floor). Each division function is paired with a corresponding remainder
function: (rem computes the remainder corresponding to //, and mod computes the remainder
corresponding to div 3. The remainder results differ only in the case where the two arguments
have opposite signs. The relationship between them is as follows:

X =:= (X rem Y) + (X // Y) * Y

X =:= (X mod Y) + (X div Y) * Y

This table gives an overview:

10 x 3 -10 x 3 10 x -3 -10 x -3

// 3 -3 -3 3

rem 1 -1 1 -1

div 3 -4 -4 3

mod 1 2 -2 -1

9.3.2 Evaluation Mechanism

An arithmetic expression is a Prolog term that is made up of variables, numbers, atoms and
compound terms, e.g.,

3 * 1.5 + Y / sqrt(pi)

Compound terms are evaluated by first evaluating their arguments and then calling the cor-
responding evaluation predicate. The evaluation predicate associated with a compound term
func(a_1,..,a_n) is the predicate func/(n+ 1). It receives a_1,..,a_n as its first n arguments
and returns a numeric result as its last argument. This result is then used in the arithmetic
computation. For instance, the expression above would be evaluated by the goal sequence

*(3,1.5,T1), sqrt(3.14159,T2), /(Y,T2,T3), +(T1,T3,T4)

where T1, T2 etc. are auxiliary variables created by the system to hold intermediate results.

Although this evaluation mechanism is usually transparent to the user, it becomes visible when
errors occur, when subgoals are delayed, or when inline-expanded code is traced.

9.3.3 User Defined Arithmetic Functions

This evaluation mechanism outlined above is not restricted to the predefined arithmetic functions
shown in the table. In fact it works for all atoms and compound terms. It is therefore possible
to define a new arithmetic operation by just defining an evaluating predicate:

3Caution: In ECLiPSe versions up to 5.8, mod was the remainder corresponding to //, i.e., behaved like rem
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[eclipse 1]: [user].

:- op(200, yf, !). % let’s have some syntaxtic sugar

!(N, F) :- fac(N, 1, F).

fac(0, F0, F) :- !, F=F0.

fac(N, F0, F) :- N1 is N-1, F1 is F0*N, fac(N1, F1, F).

user compiled traceable 504 bytes in 0.00 seconds

yes.

[eclipse 2]: X is 23!. % calls !/2

X = 25852016738884976640000

yes.

Note that this mechanism is not only useful for user-defined predicates, but can also be used to
call ECLiPSe built-ins inside arithmetic expressions, e.g.,

T is cputime - T0.

L is string_length("abcde") - 1.

which call cputime/1 and string length/2 respectively. Any predicate that returns a number
as its last argument can be used in a similar manner.
However there is a difference compared to the evaluation of the predefined arithmetic functions
(as listed in the table above): The arguments of the user-defined arithmetic expression are
not evaluated but passed unchanged to the evaluating predicate. For example, the expression
twice(3+4) is transformed into the goal twice(3+4, Result) rather than twice(7, Result).
This makes sense because otherwise it would not be possible to pass any compound term to
the predicate. If evaluation is wanted, the user-defined predicate can explicitly call is/2 or use
eval/1.

9.3.4 Runtime Expressions

In order to enable efficient compilation of arithmetic expressions, ECLiPSe requires that vari-
ables in compiled arithmetic expressions must be bound to numbers at runtime, not symbolic
expressions. For example, in the following code p/1 will only work when called with a numerical
argument, else it will raise error 24:

p(Number) :- Res is 1 + Number, ...

To make it work even when the argument gets bound to a symbolic expression at runtime, use
eval/1 as in the following example:

p(Expr) :- Res is 1 + eval(Expr), ...

If the expression is the only argument of is/2, the eval/1 may be omitted.

9.4 Low Level Arithmetic Builtins

The low level builtins (like +/3, sin/2 etc.) which are used to evaluate the predefined arith-
metic functions can also be called directly, but this is not recommended for portability reasons.
Moreover, there is no need to use them directly since the ECLiPSe compiler will transform all
arithmetic expressions into calls to the corresponding low level builtins.
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9.5 The Multi-Directional Arithmetic Predicates

A drawback of arithmetic using is/2 is that the right hand side must be fully instantiated
at evaluation time. Often it is desirable to have predicates that define true logic relationships
between their arguments like “Z is the sum of X and Y ”. For integer addition and multiplication
this is provided as:

succ(X, Y) True if X and Y are natural numbers, and Y is one greater than X. At
most one of X, Y can be a variable.

plus(X, Y, Z) True if the sum of X and Y is Z. At most one of X, Y, Z can be a
variable.

times(X, Y, Z) True if the product of X and Y is Z. At most one of X, Y, Z can
be a variable.

These predicates work only with integer arguments but any single argument can be a variable
which is then instantiated so that the relation holds. If more than one argument is uninstantiated,
an instantiation fault is produced.
Note that if one of the first two arguments is a variable, a solution doesn’t necessarily exist. For
example, the following goal has no integer solution :

[eclipse 1]: times(2, X, 3).

no (more) solution.

Since any one of the arguments of these two predicates can be a variable, it does not make much
sense to use them in arithmetic expressions where always the first arguments are taken as input
and the last one as output.

9.6 Arithmetic and Coroutining

Arithmetic comparisons can be delayed until their arguments are instantiated instead of gener-
ating an instantiation fault by passing the comparison to the suspend solver (see section 18.3).
This gives a form of coroutining.
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Chapter 10

Non-logical Storage and References

10.1 Introduction

This chapter describes primitives that allow one to break the normal logic programming rules
in two ways:

• information can be saved across logical failures and backtracking;

• information can be accessed by naming rather than by argument passing.

Obviously, these facilities must be used with care and should always be encapsulated in an
interface that provides logical semantics.
ECLiPSe provides several facilities to store information across backtracking. The following table
gives an overview. If at all possible, the handle-based facilities (bags, record, shelves and stores)
should be preferred because they lead to cleaner, reentrant code (without global state) and
reduce the risk of memory leaks.

Facility Type Access See

bags unordered bag by handle bag create/1
records ordered list by handle record create/1
shelves array by handle shelf create/2,3
stores hash table by handle store create/1
named records ordered list by name record/1,2
named shelves array by name shelf/2
named stores hash table by name store/1
non-logical variables single cell by name variable/1
non-logical arrays array by name array/1,2
dynamic predicates ordered list by name dynamic/1, assert/1

The other facility described here, Global References, does not store information across failure,
but provides a means to give a name to an otherwise logical data structure. See section 10.8.

10.2 Bags

A bag is an anonymous object which can be used to store information across failures. A bag
is unordered and untyped. Any ECLiPSe term can be stored in a bag. Bags are referred
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to by a handle. An empty bag is created using bag create/1, data is stored in the bag by
invoking bag enter/2, and the stored data can be retrieved as a list with bag retrieve/2 or
bag dissolve/2.
A typical application is the implementation of the findall/3 predicate or similar functionality.
As opposed to the use of record/2 or assert/1, the solution using bags is more efficient, more
robust, and trivially reentrant.

simple_findall(Goal, Solutions) :-

bag_create(Bag),

(

call(Goal),

bag_enter(Bag, Goal),

fail

;

true

),

bag_dissolve(Bag, Solutions).

10.3 Records

A record is an anonymous or named object which can be used to store information across fail-
ures. A typical application is the collection of multiples solutions during backtracking. Another
application is communication between engines/threads.
A record is a list of (copies of) arbitrary terms. New terms can be added at either end
of the list (recorda/2, recordz/2), and list elements can be removed from any position
in the list (erase/2). Elements can be retrieved individually (recorded/2) or collectively
(recorded list/2).
Records come in two flavours: anonymous records are created with record create/1 and re-
ferred to by handle, while named records are created with a record/1 declaration and referred
to by their name within a module. If possible, anonymous records should be preferred because
they make it easier to write robust, reentrant code. For example, an anonymous record auto-
matically disappears when the system backtracks over its creation, or when the store handle
gets garbage collected. Named records, on the other hand, must be explicitly destroyed in order
to free the associated memory.
A typical application is the implementation of the findall/3 predicate or similar functionality:

simple_findall(Goal, Solutions) :-

record_create(Record),

(

call(Goal),

recordz(Record, Goal),

fail

;

true

),

recorded_list(Record, Solutions).

For an example involving thread communication, see record wait append/4.
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10.4 Shelves

A shelf is an anonymous object which can be used to store information across failures. A typical
application is counting of solutions, keeping track of the best solution, aggregating information
across multiple solutions, etc.

A shelf is an object with multiple slots whose contents survive backtracking. The content of
each slot can be set and retrieved individually, or the whole shelf can be retrieved as a term.

Shelves come in two flavours: anonymous shelves are created with shelf create/2 or shelf create/3
and referred to by handle, while named shelves are created with a shelf/ 2 declaration and re-
ferred to by their name within a module. If possible, anonymous shelves should be preferred
because they make it easier to write robust, reentrant code. For example, an anonymous shelf
automatically disappears when the system backtracks over its creation, or when the store handle
gets garbage collected. Named shelves, on the other hand, must be explicitly destroyed in order
to free the associated memory.

All shelf slots are initialized when the shelf is created. Data is stored in the slots (or the shelf
as a whole) with shelf set/3 and retrieved with shelf get/3.

Example: Counting how many solutions a goal has:

count_solutions(Goal, Total) :-

shelf_create(count(0), Shelf),

(

call(Goal),

shelf_get(Shelf, 1, Old),

New is Old + 1,

shelf_set(Shelf, 1, New),

fail

;

shelf_get(Shelf, 1, Total)

).

In this particular example, we could have used shelf inc/2 to increment the counter.

10.5 Stores

A store is an anonymous object which can be used to store information across failures. A typical
application is aggregating information across multiple solutions. Note that, if it is not necessary
to save information across backtracking, the use of the library(hash) is more appropriate and
efficient than the facilities described here.

A store is a hash table which can store arbitrary terms under arbitrary ground keys. Modifica-
tions of a store, as well as the entries within it, survive backtracking. The basic operations on
stores are entering and looking up information under a key, or retrieving the store contents as a
whole.

Stores come in two flavours: anonymous stores are created with store create/1 and referred
to by handle, while named stores are created with a store/ 1 declaration and referred to by
their name within a module. If possible, anonymous stores should be preferred because they
make it easier to write robust, reentrant code. For example, an anonymous store automatically
disappears when the system backtracks over its creation, or when the store handle gets garbage
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collected. Named stores, on the other hand, must be explicitly destroyed in order to free the
associated memory.

Data is entered into a store using store set/3 and retrieved using store get/3. It is also
possible to retrieve information: either all keys with stored keys/2, or the full contents of
the table with stored keys and values/2. Entries can be deleted via store delete/2 or
store erase/1.

A typical use of stores is for the implementation of memoization. The following is an implemen-
tation of the Fibonacci function, which uses a store to remember previously computed results.
It consists of the declaration of a named store, a wrapper predicate fib/2 that handles storage
and lookup of results, and the standard recursive definition fib naive/2:

:- local store(fib).

fib(N, F) :-

( store_get(fib, N, FN) ->

F = FN % use a stored result

;

fib_naive(N, F),

store_set(fib, N, F) % store computed result

).

fib_naive(0, 0).

fib_naive(1, 1).

fib_naive(N, F) :-

N1 is N-1, N2 is N-2,

fib(N1, F1), fib(N2, F2),

F is F1 + F2.

Using this definition, large function values can be efficiently computed:

?- fib(300, F).

F = 222232244629420445529739893461909967206666939096499764990979600

Yes (0.00s cpu)

The next example shows the use of an anonymous store, for computing how many solutions of
each kind a goal has. The store is used to maintain counter values, using the solution term as
the key to distinguish the different counters:

solutions_profile(Sol, Goal, Profile) :-

store_create(Store),

(

call(Goal),

store_inc(Store, Sol),

fail

;

stored_keys_and_values(Store, Profile)

).

Running this code produces for example:
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?- solutions_profile(X, member(X, [a, b, c, b, a, b]), R).

X = X

R = [a - 2, b - 3, c - 1]

Yes (0.00s cpu)

10.6 Non-logical Variables

Non-logical variables in ECLiPSe are a means of storing a copy of a Prolog term under a name
(an atom). The atom is the name and the associated term is the value of the non-logical
variable. This term may be of any form, whether an integer or a huge compound structure.
Note that the associated term is being copied and so if it is not ground, the retrieved term is not
strictly identical to the stored one but is a variant of it1. There are two fundamental operations
that can be performed on a non-logical variable: setting the variable (giving it a value), and
referencing the variable (finding the value currently associated with it).
The value of a non-logical variable is set using the setval/2 predicate. This has the format

setval(Name, Value)

For instance, the goal

setval(firm, 3)

gives the non-logical variable firm the value 3. The value of a non-logical variable is retrieved
using the getval/2 predicate.
The goal

getval(firm, X)

will unify X to the value of the non-logical variable firm, which has been previously set by
setval/2. If no value has been previously set, the call raises an exception. If the value of a non-
logical variable is an integer, the predicates incval/1 and decval/1 may be used toincrement
and decrement the value of the variable, respectively. The predicates incval/1 and decval/1
may be used e.g., in a failure-driven loop to provide an incremental count across failures as in
the example:

count_solutions(Goal, _) :-

setval(count, 0),

call(Goal),

incval(count),

fail.

count_solutions(_, N) :-

getval(count, N).

However, code like this should be used carefully. Apart from being a non-logical feature, it also
causes the code to be not reentrant. That is, if count solutions/2 were called recursively from
inside Goal, this would smash the counter and yield incorrect results.2

The visibility of a non-logical variable is local to the module where it is first set. It is good style
to declare them using local/1 variable/1 declarations. For example, in the above example one
should use

1Though this feature could be used to make a copy of a term with new variables, it is cleaner and more efficient
to use copy term/2 for that purpose

2A similar problem can occur when the counter is used by an interrupt handler.
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:- local variable(count).

If it is necessary to access the value of a variable in other modules, exported access predicates
should be provided.

10.7 Non-logical Arrays

Non-logical arrays are a generalisation of the non-logical variable, capable of storing multiple
values. An array has to be declared in advance. It has a fixed number of dimensions and a fixed
size in each dimension. Arrays in ECLiPSe are managed solely by special predicates. In these
predicates, arrays are represented by compound terms, e.g., matrix(5, 8) where matrix is the
name of the array, the arity of 2 specifies the number of dimensions, and the integers 5 and 8
specify the size in each dimension. The number of elements this array can hold is thus 5*8 =
40. The elements of this array can be addressed from matrix(0, 0) up to matrix(4, 7).
An array must be explicitly created using a local/1 array/1 declaration, e.g.,

:- local array(matrix(5, 8)).

The array is only accessible from within the module where it was declared. The declaration
will create a two-dimensional, 5-by-8 array with 40 elements matrix(0, 0) to matrix(4, 7).
Arrays can be erased using the predicate erase array/1, e.g.,

erase_array(matrix/2).

The value of an element of the array is set using the setval/2 predicate. The first argument of
setval/2 specifies the element which is to be set, the second specifies the value to assign to it.
The goal

setval(matrix(3, 2), plato)

sets the value of element (3, 2) of array matrix to the atom plato. Similarly, values of array
elements are retrieved by use of the getval/2 predicate. The first argument of getval/2 specifies
the element to be referenced, the second is unified with the value of that element. Thus if the
value of matrix(3, 2) had been set as above, the goal

getval(matrix(3, 2), Val)

would unify Val with the atom plato. Similarly to non-logical variables, the value of integer
array elements can be updated using incval/1 and decval/1.
It is possible to declare arrays whose elements are constrained to belong to certain types. This
allows ECLiPSe to increase time and space efficiency of array element manipulation. Such an
array is created for instance by the predicate

:- local array(primes(100),integer).

The second argument specifies the type of the elements of the array. It takes as value an atom
from the list float (for floating point numbers), integer (for integers), byte (an integer modulo
256), or prolog (any Prolog term—the resulting array is the same as if no type was specified).
When a typed array is created, the value of each element is initialized to zero in the case of
byte, integer and float, and to an uninstantiated variable in the case of prolog. Whenever
a typed array element is set, type checking is carried out.
As an example of the use of a typed array, consider the following goal, which creates a 3-by-3
matrix describing a 90 degree rotation about the x-axis of a Cartesian coordinate system.
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:- local array(rotate(3, 3), integer).

:- setval(rotate(0, 0), 1),

setval(rotate(1, 2), -1),

setval(rotate(2, 1), 1).

(The other elements of the above array are automatically initialized to zero).

The predicate current array/2 is provided to find the size, type and visibility of defined arrays.
of the array and its type to be found:

current array(Array, Props)

where Array is the array specification as in the declaration (but it may be uninstantiated or
partially instantiated), and Props is a list indicating the array’s type and visibility. Non-logical
variables are also returned: Array is then an atom, and the type is prolog.

[eclipse 1]: local(array(pair(2))),

setval(count, 3),

local(array(count(3,4,5), integer)).

yes.

[eclipse 2]: current_array(Array, Props).

Array = pair(2)

Props = [prolog, local] More? (;)

Array = count

Props = [prolog, local] More? (;)

Array = count(3, 4, 5)

Props = [integer, local] More? (;)

no (more) solution.

[eclipse 3]: current_array(count(X,Y,Z), _).

X = 3

Y = 4

Z = 5

yes.

10.8 Global References

Terms stored in non-logical variables and arrays are copies of the setval/2 arguments, and the
terms obtained by getval/2 are thus not identical to the original terms, in particular, their
variables are different. Sometimes it is necessary to be able to access the original term with its
variables, i.e., to have global variables in the meaning of conventional programming languages.
A typical example is global state that a set of predicates wants to share without having to pass
an argument pair through all the predicate invocations.
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ECLiPSe offers the possibility to store references to general terms and to access them even inside
predicates that have no common variables with the predicate that has stored them. They are
stored in so-called references. For example,

:- local reference(p).

or

:- local reference(p, 0).

creates a named reference p (with an initial value of 0) which can be used to store references to
terms. The reference is accessed and modified via setref/2 and getref/23.
The following points are different for references:

• the accessed term is identical to the stored term (with its current substitutions):

[eclipse 1]: local reference(r).

yes.

[eclipse 2]: Term = p(X), setref(r, Term), getref(r, Y), Y == Term.

X = X

Y = p(X)

Term = p(X)

yes.

[eclipse 3]: local variable(v).

yes.

[eclipse 4]: Term = p(X), setval(v, Term), getval(v, Y), Y == Term.

no (more) solution.

• the modifications are backtrackable, when the execution fails over the setref/2 call, the
previous value of the global reference is restored

[eclipse 5]: setref(r, 1), (setref(r, 2), getref(r, X) ; getref(r, Y)).

X = 2

Y = Y More? (;)

X = X

Y = 1

• references (and the associated terms) are private to each engine. This implies that the
referenced terms are not shared between engines, and each engine may have a different
term associated to a particular reference name.

• there are no arrays of references, but the same effect can be achieved by storing a structure
in a reference and using the structure’s arguments. The arguments can then be accessed
and modified using arg/3 and setarg/3 respectively.

The use of references should be considered carefully. Their overuse can lead to programs which
are difficult to understand and difficult to optimize. Typical applications use at most a single
reference per module, for example to hold state that would otherwise have to be passed via
additional arguments through many predicate invocations.

3 For backward compatibility, setval/2 and getval/2 also work on references, but this use is deprecated: use
setref/2 and getref/2 instead.
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Chapter 11

Input and Output

11.1 Streams

Input and output in ECLiPSe is done via communication channels called streams. They are
usually associated with I/O devices (a file, a terminal, a socket, a pipe), or in-memory queues
or buffers.
The streams may be opened for input only (read mode), output only (write mode), or for
both input and output (update mode).

11.1.1 Predefined Streams

Every ECLiPSe session defines the following symbolic stream names, which indicate the current
streams for certain categories of input/output:

input Used by the input predicates that do not have an explicit stream argument,
e.g., read/1. This is by default the same as user input and stdin, but can be
redirected.

output Used by the output predicates that do not have an explicit stream argument,
e.g., write/1. This is by default the same as user output and stdout, but can
be redirected.

error Output for error messages and all messages about exceptional states. This is
by default the same as user error and stderr, but can be redirected.

warning output Used by the system or user programs to output warning messages.
This is by default the same as user output and stdout, but can be redirected.

log output Used by the system for information messages (e.g. garbage collection),
or by user programs for e.g. messages about computational progress. This is
by default the same as user output and stdout, but can be redirected.

The above streams can be freely redirected, but are initially set to one of the following three
default streams, to which they will also be reset whenever a redirection ends:

user input The default input stream. This is initially the same as stdin, but can
be redirected.

user output The default output stream. This is initially the same as stdout, but
can be redirected.
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user error The default error stream. This is initially the same as stderr, but can
be redirected.

Finally, there are the four predefined standard streams, which cannot be closed or redirected.
Apart from the null stream, there is usually no need to refer to them explicitly:

stdin The standard input stream.

stdout The standard output stream.

stderr The standard error stream.

null A dummy stream, output to it is discarded, on input it always gives end of file.

In a stand-alone ECLiPSe stdin, stdout and stderr are connected to the corresponding standard
I/O descriptors of the process. In an embedded ECLiPSe, the meaning of stdin, stdout and
stderr is determined by the ECLiPSe initialization options.

Current Stream Default Stream Standard Stream

input user input stdin

output user output stdout
warning output user output stdout
log output user output stdout

error user error stderr

null
Initial assignment of symbolic stream names

For compatibility with Prolog systems, the system accepts the stream name user in certain
places. Its meaning is identical to stdin and stdout, depending on the context where it is used.

11.1.2 Stream Handles and Aliases

Streams can be identified by anonymous stream handles or by symbolic names.1 Most of the
built-in predicates that require a stream to be specified have a stream argument at the first
position, e.g., write(Stream, Term). This argument can be either a stream handle or a symbolic
stream name.

Streams that are opened by programs should preferably use stream handles, as this allows
the system to better keep track of their lifetime. Nevertheless, alias names can be given, ei-
ther immediately when a stream is newly opened (e.g. with open/4), or later via redirection
(set stream/2). A stream can have more than one symbolic alias.

To obtain a handle when only an alias is known, use get stream/2:

get_stream(StreamOrAlias, Handle)

get stream/2 can also be used to check whether two stream names are aliases of each other.

Note that stream handles are not normal Prolog terms! They can not be assembled, decomposed,
or occur literally in Prolog text.

1Earlier ECLiPSe versions identified streams by small integers, which is now deprecated, except for some
foreign language interfaces. If needed, the number is available as the physical stream stream property.

88



11.1.3 Opening New Streams

Streams provide a uniform interface to a variety of I/O devices and pseudo-devices. The following
table gives an overview of how streams on the different devices are opened.

I/O device How to open

tty implicit (stdin, stdout, stderr) or open/3 of a device file

file open(FileName, Mode, Stream)

string open(string(String), Mode, Stream)

queue open(queue(String), Mode, Stream)

pipe exec/2, exec/3 and exec group/3

socket socket/3 and accept/3

null implicit (null stream)
How to open streams onto the different I/O devices

Most streams are opened for input or output by means of the open/3 or open/4 predicate.
The goals

open(SourceSink, Mode, Stream)

open(SourceSink, Mode, Stream, Options)

open a communication channel with SourceSink.
If SourceSink is an atom or a string, a file is being opened and SourceSink takes the form of
a file name in the host machine environment. ECLiPSe uses an operating system independent
path name syntax, where the components are separated by forward slashes. The following forms
are possible:

• absolute path name, e.g., /usr/peter/prolog/file.pl;

• relative to the current directory, e.g., prolog/file.pl;

• relative to the own home directory, e.g., ~/prolog/file.pl;

• start with an environment variable, e.g., $HOME/prolog/file.pl;

• relative to a user’s home directory, e.g., ~peter/prolog/file.pl (UNIX only);

• specifying a drive name, e.g., //C/prolog/file.pl (Windows only).

Note that path names usually have to be quoted (in single or double quotes) because they contain
non-alphanumeric characters.
If SourceSink is of the form string(InitString) a pseudo-file in memory is opened, see section
11.3.1.
If SourceSink is of the form queue(InitString) a pseudo-pipe in memory is opened, see section
11.3.2.
Mode must be one of the atoms read, write, append or update, which means that the stream
is to be opened for input, output, output at the end of the existing stream, or both input and
output, respectively. Opening a file in write mode will create it if it does not exist, and erase the
previous contents if it does exist. Opening a file in append mode will keep the current contents
of the file and start writing at its end.
Stream is a symbolic stream identifier or an uninstantiated variable. If it is uninstantiated, the
system will bind it to an anonymous stream handle:

89



[eclipse 1]: open(new_file, write, Stream).

Stream = $&(stream,7)

Yes (0.00s cpu)

If the stream argument is an atomic name, this name becomes an alias for the (hidden) stream
number:

[eclipse 1]: open(new_file, write, new_stream).

yes.

This is equivalent to

[eclipse 1]: open(new_file, write, _, [alias(new_stream)]).

yes.

The stream identifier (symbolic or handle) may then be used in predicates which have a named
stream as one of their arguments. For example

open("foo", update, Stream), write(Stream, subject), close(Stream).

will write the atom subject to the file ‘foo’ and close the stream subsequently.

It is recommended style not to use symbolic stream names in code that is meant to be reused.
This is because these stream names are global, there is the possibility of name clashes, and the
code will not be reentrant. It is cleaner to open streams with a variable for the stream identifier
and pass the resulting handle as an argument wherever it is needed.

Socket streams are not opened with open/3, but with the special primitives socket/3 and
accept/3. More details are in chapter 22.

A further group of primitives which open streams implicitly consists of exec/2, exec/3 and
exec group/3. They open pipe streams which connect directly to the I/O channels of the
executed process. See chapter 21 for details.

11.1.4 Closing Streams

A stream lives until it is closed. Streams that are only referenced by handle are closed automat-
ically, either on failure across the open/3,4 predicate, or after all copies of their handle become
unused and garbage collected. This means that no extra precautions have to be taken to ensure
that streams are closed on failure or when aborting. Handle-streams can optionally be closed
explicitly if their lifetime is statically known in the program. Streams that have aliases cannot
be closed automatically: all aliases must be closed explicitly.

The predicates close/1, 2

close(Stream)
close(Stream,Options)

are used to explicitly close an open stream. If a stream has several alias names, closing any of
them will close the actual stream. All the other aliases should be closed as well (or redirected
to streams that are still open), because otherwise they will continue to refer to an identifier of
the already closed stream.

When an attempt is made to close a redirected system stream (e.g., output), the stream is
closed, but the system stream is reset to its default setting.
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11.1.5 Redirecting Streams

The set stream/2 primitive can be used to redirect an already existing symbolic stream to a
new actual stream. This is particularly useful to redirect e.g., the default output stream:

set_stream(output, MyStream)

so that all standard output is redirected to some other destination (e.g., an opened file instead
of the terminal). Note that the stream modes (read/write) must be compatible. The redirection
is terminated by calling

close(output)

which will reestablish the original meaning of the output stream by resetting it to the user output
default stream.

11.1.6 Finding Streams

The predicate

current stream(?Stream)

can be used to backtrack over all the currently opened streams, and obtain handles for them
(but not their aliases).

11.1.7 Stream Properties

A stream’s properties can be accessed using get stream info/3:

get stream info(+Stream, +Property, -Value)

e.g., its mode, line number, file name etc. Some stream properties can be modified using
set stream property/3:

set stream property(+Stream, +Property, +Value)

e.g., the end-of-line sequence used, the flushing behaviour, the event-raising behaviour, the
prompt etc.

11.2 Communication via Streams

The contents of a stream may be interpreted in one of three basic ways. The first one is to
consider it as a sequence of characters, so that the basic unit to be read or written is a character.
The second one interprets the stream as a sequence of tokens, thus providing an interface to the
Prolog lexical analyzer and the third one is to consider a stream as a sequence of Prolog terms.
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11.2.1 Character I/O

The get/1,2 and put/1,2 predicates corresponds to the first way of looking at streams. The
call

get(Char)

takes the next character from the current input stream and matches it as a single character
with Char. Note that a character in ECLiPSe is represented as an integer corresponding to
the ISO-8859-1 (iso latin 1) code of the character. If the end of file has been reached then an
exception is raised and -1 is returned. The call

put(Char)

puts the char Char on to the current output stream. The predicates

get(Stream, Char)

and

put(Stream, Char)

work similarly on the specified stream.
The input and output is normally buffered by ECLiPSe. To make I/O in raw mode, without
buffering, the predicates tyi/1,2 and tyo/1,2 are provided.

11.2.2 Token I/O

The predicates read token/2 and read token/3:

read token(Token, Class)
read token(Stream, Token, Class)

represent the second way of interpreting stream contents. They read the next token from the
current input stream, unify it with Token, and its token class is unified with Class. A token is
either a sequence of characters with the same or compatible character class, e.g., ab 1A, then it is
a Prolog constant or variable, or a single character, e.g., ’)’. The token class represents the type
of the token and its special meaning, e.g., fullstop, comma, open_par, etc. The exact definition
of character classes and tokens can be found in appendices A.2.1 and A.2.3, respectively.
A further, very flexible possibility to read a sequence of characters is provided by the built-in
read string/5

read string(Stream, SepChars, PadChars, Separator, String)

Here, the input is read up to a specified delimiter, and returned as an ECLiPSe string.
In particular, one line of input can be read as follows:

read_line(Stream, String) :-

read_string(Stream, end_of_line, "", _Separator, String).

The SepChar argument allows the specification of padding characters, which will be ignored
before and after separators. Once a string has been read, string manipulation predicates like
split string/4 can be used to break it up into even smaller components.
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11.2.3 Term I/O

The read/1,2 and write/1,2 predicates correspond to the third way of looking at streams. For
input, the goal

read(Term)

reads the next ECLiPSe term from the current input stream and unifies it with Term. The input
term must be followed by a full stop, that is, a ’.’ character followed by a layout character (tab,
space or newline) or by the end of file. The exact definition of the term syntax can be found in
appendix A.

If end of file has been reached then an exception is raised, the default handler causes the atom
end_of_file to be returned. A term may be read from a stream other than the current input
stream by the call

read(Stream, Term)

which reads the term from the named stream.

For additional information about other options for reading terms, in particular for how to get
variable names, refer to readvar/3, read term/2 and read term/3. For reading and pro-
cessing complete ECLiPSe source code files, use the library(source processor).

For output, the goal

write(Term)

writes Term to the current output stream. This is done by taking the current operator declara-
tions into account. Output produced by the write/1,2 predicate is not (necessarily) in a form
suitable for subsequent input to a Prolog program using the read/1 predicate, for this purpose
writeq/1,2 is to be used. The goal

write(Stream, Term)

writes Term to the named output stream. For more details about how to output terms in
different formats, see section 11.4.

When the flag variable_names is switched off, the output predicates are not able to write free
variables in their source form, i.e., with the correct variable names. Then the variables are
output in the form

_N

where N is a number which identifies the variable (but note that these numbers may change on
garbage collection and can therefore not be used to identify the variable in a more permanent
way). Occasionally the number will be prefixed with the lower-case letter l, indicating that the
variable is in a short-lived memory area called the local stack (see 20).

11.2.4 Newlines

Newlines should be output using either nl/0, nl/1, writeln/1, writeln/2, or using the %n

format with printf/2, printf/3. All those will produce a LF or CRLF sequence, depending on
the stream property settings (see set stream property/3).
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11.2.5 General Parsing and Text Generation

Reading and writing of I/O formats that cannot be handled by the methods discussed above are
probably best done using Definite Clause Grammar (DCG) rules. See chapter 13.3 for details.

11.2.6 Flushing

On most devices, output is buffered, i.e., any output does not appear immediately on the file,
pipe or socket, but goes into a buffer first. To make sure the data is actually written to the
device, the stream usually has to be flushed using flush/1. If this is forgotten, the receiving
end of a pipe or socket may hang in a blocking read operation.

It is possible to configure a stream such that it is automatically flushed at every line end (see
set stream property/3).

11.2.7 Prompting

Input streams on terminals can be configured to print a prompt whenever input is required, see
set stream property/3.

11.2.8 Positioning

Streams that are opened on files or strings can be positioned, i.e., the read/write position can
be moved forward or backwards. This is not possible on pipes, sockets, queues and terminals.

To specify a position in the file to write to or read from, the predicate seek/2 is provided. The
call

seek(Stream, Pointer)

moves the current position in the file (the ’file pointer’) to the offset Pointer (a number specifying
the length in bytes) from the start of the file. If Pointer is the atom end_of_file, the current
position is moved to the end of the file. Hence a file could be open in append mode using

open(File, update, Stream), seek(Stream, end_of_file)

The current position in a file may be found by the predicate at/2. The call

at(Stream, Pointer)

unifies Pointer with the current position in the file. The predicate

at_eof(Stream)

succeeds if the current position in the given stream is at the file end.

11.3 In-memory Streams

There are two kinds of in-memory streams, string streams and queues. String streams be-
have much like files, they can be read, written, positioned etc, but they are implemented as
buffer in memory. Queues are intended mainly for message-passing-style communication be-
tween ECLiPSeand a host language, and they are also implemented as memory buffers.
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11.3.1 String Streams

In ECLiPSe it is possible to associate a stream with a Prolog string in its memory, and this
string is then used in the same way as a file for the input and output operations. A string stream
is opened like a file by a call to the open/3 predicate:

open(string(InitString), Mode, Stream)

where InitString can be a ECLiPSe string or a variable and represents the initial contents of the
string stream. If a variable is supplied for InitString, the initial value of the string stream is the
empty string and the variable is bound to this value:

[eclipse 1]: open(string(S), update, s).

S = ""

yes.

Once a string stream is opened, all predicates using streams can take it as argument and perform
I/O on it. In particular the predicates seek/2 and at/2 can be used with them.
While writing into a stream changes the stream contents destructively, the initial string that has
been opened will never be affected. The new stream contents can be retrieved either by reading
from the string stream, or as a whole by using get stream info/3:

[eclipse 1]: S = "abcdef", open(string(S), write, s), write(s, ---).

S = "abcdef"

yes.

[eclipse 2]: get_stream_info(s, name, S).

S = "---def"

yes.

[eclipse 3]: seek(s, 1), write(s, .), get_stream_info(s, name, S).

S = "-.-def"

yes.

[eclipse 4]: seek(s, end_of_file), write(s, ine),

get_stream_info(s, name, S).

S = "-.-define"

yes.

11.3.2 Queue streams

A queue stream is opened by the open/3 predicate:

open(queue(InitString), Mode, Stream)

The initial queue contents is InitString. It can be seen as a string which gets extended at its
end on writing and consumed at its beginning on reading.

[eclipse 11]: open(queue(""), update, q), write(q, hello), write(q," wo").

yes.
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[eclipse 12]: read_string(q, " ", "", _, X).

X = "hello"

yes.

[eclipse 13]: write(q, "rld"), read(q, X).

X = world

yes.

[eclipse 14]: at_eof(q).

yes.

It is not allowed to seek on a queue. Therefore, once something is read from a queue, it is no
longer accessible. A queue is considered to be at its end-of-file position when it is currently
empty, however this is no longer the case when the queue is written again.
A useful feature of queues is that they can raise a synchronous event when data arrives on the
empty queue. To create such an event-raising queue, this has to be specified as an option when
opening the queue with open/4. In the example we have chosen the same name for the stream
and for the event, which is not necessary but convenient when the same handler is going to be
used for different queues:

[eclipse 1]: [user].

handle_queue_event(Q) :-

read_string(Q, "", "", _, Data),

printf("Queue %s received data: %s\n", [Q,Data]).

yes.

[eclipse 2]: set_event_handler(eventq, handle_queue_event/1).

yes.

[eclipse 3]: open(queue(""), update, eventq, [event(eventq)]).

yes.

[eclipse 4]: write(eventq, hello).

Queue eventq received data: hello

yes.

11.4 Term Output Formats

11.4.1 Write term and Printf

The way ECLiPSe terms are printed can be customised in a number of ways. The most flexible
predicates to print terms are write term/3 and printf/3. They both allow all variants of term
output, but the format is specified in a different way. The following figure gives an overview.
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write term/2,3
output option

printf/2,3
%..w

Meaning

as(term) do not assume any particular meaning of the printed term

as(clause) C print the term as a clause (apply clause transformations)

as(goal) G print the term as a goal (apply goal transformations)

attributes(none) do not print any variable attributes

attributes(pretty) m print attributes using the corresponding print handlers

attributes(full) M print the full contents of all variable attributes

compact(false) print blank space around operators, after commas, etc.

compact(true) K don’t print blank space unless necessary

depth(Max) <Max> print the term only up to a maximum nesting depth of Max
(a positive integer)

depth(0) observe the stream-specific or global flag print_depth

depth(full) D print the whole term (may loop when the term is cyclic!)

dotlists(false) write lists in square bracket notation, e.g., [a,b]

dotlists(true) . write lists as terms with functor ./2

newlines(false) print newlines inside quotes as the escape sequence \n

newlines(true) N print newlines as line breaks even inside quotes

nl(false) do not add a newline

nl(true) L print a newline sequence (as with nl/1) after the term.

fullstop(false) do not add a fullstop

fullstop(true) F terminate the term with a fullstop, so it can be read back.

flush(false) do not force a flush after printing the term

flush(true) b flush after printing the term

numbervars(false) do not treat ’$VAR’/1 terms specially

numbervars(true) I print terms of the form ’$VAR’(N) as named variables:
’$VAR’(0) is printed as A, ’$VAR’(25) as Z, ’$VAR’(26)

as A1 and so on. When the argument is an atom or a string,
just this argument is printed.

operators(true) obey operator declarations and print prefix/infix/postfix

operators(false) O ignore operator declarations and print functor notation

portrayed(false) do not use portray/1,2

portrayed(true) P call the user-defined predicate portray/1,2 for printing

precedence(Prec) print assuming given context precedence

quoted(false) do not print quotes around strings or atoms

quoted(true) Q quote strings and atoms if necessary

transform(true) apply portray transformations (write macros)

transform(false) T do not apply portray transformations (write macros).

variable_names(VarNames) use the given variable names when printing the correspond-
ing variables. VarsNames is a list of terms of the form
Name=Var.

variables(default) print variables using their source name (if available)

variables(raw) v print variables using a system-generated name, e.g., _123

variables(full) V print variables as source name plus number, e.g., Alpha_132

variables(anonymous) _ print every variable as a simple underscore
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Overview of term output options (see write term/3 for more details)

The write term/2 and write term/3 predicates print a single ECLiPSe term and accept a
list of output options (first column in the table).
The printf/2 and printf/3 predicates are similar to C’s printf(3) function, but provide ad-
ditional format characters for printing ECLiPSe terms. The basic format string for printing
arbitrary terms is %w. Additional format characters can go between % and w, according to the
second column in the table.
For example, the following pairs of printing goals are equivalent:

printf("%mw", [X]) <-> write_term(X, [attributes(pretty)])

printf("%O.w", [X]) <-> write_term(X, [operators(false),dotlist(true)])

printf("%5_w", [X]) <-> write_term(X, [depth(5),variables(anonymous)])

11.4.2 Other Term Output Predicates

The other term output predicates write/1, writeln/1, writeq/1, write canonical/1, dis-
play/1, print/1 can all be defined in terms of write term/2 (or, similarly in terms of
printf/2) as follows:

write(X) :- write_term(X, [numbervars(true)]).

writeln(X) :- write_term(X, [numbervars(true)]), nl.

writeq(X) :- write_term(X, [variables(raw), attributes(full),

transform(false), quoted(true), depth(full),

numbervars(true)]).

write_canonical(X) :-

write_term(X, [variables(raw), attributes(full),

transform(false), quoted(true), depth(full),

dotlist(true), operators(false)]).

display(X) :- write_term(X, [dotlist(true), operators(false)]).

print(X) :- write_term(X, [portrayed(true), numbervars(true)]).

11.4.3 Default Output Options

It is possible to set default output options for an output stream in order to globally affect all
output to this particular stream. The set stream property/3 predicate can be used to assign
default options (in the same form as accepted by write term/3) to a stream. These options
will then be observed by all output predicates which do not override the particular option.
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Chapter 12

Dynamic Code

Support for dynamic code is provided partly for compatibility with Prolog. It is worth noting
that ECLiPSeprovides much better primitives (see chapter 10) to support the non-logical storage
of information—a major use for dynamic predicates in Prolog.
An ECLiPSe predicate can be made dynamic. That is, it can have clauses added and removed
from its definition at run time. This chapter discusses how to do this, and what the implications
are.

12.1 Compiling Procedures as Dynamic or Static

If it is intended that a procedure be altered through the use of assert/1 and retract/1, the
system should be informed that the procedure will be dynamic, since these predicates are de-
signed to work on dynamic procedures. If assert/1 is applied on a non-existing procedure, an
error is raised, however the default error handler for this error only declares the procedure as
dynamic and then makes the assertion.
A procedure is by default static unless it has been specifically declared as dynamic. Clauses of
static procedures must always be consecutive, they may not be separated in one or more source
files or by the user from the top level. If the static procedure clauses are not consecutive, each of
the consecutive parts is taken as a separate procedure which redefines the previous occurrence of
that procedure, and so only the last one will remain. However, whenever the compiler encounters
nonconsecutive clauses of a static procedure in one file, it raises an exception whose default
handler prints a warning but it continues to compile the rest of the file.
If a procedure is to be dynamic the ECLiPSe system should be given a specific dynamic
declaration. A dynamic declaration takes the form

:- dynamic SpecList.

The predicate is dynamic/1 may be used to check if a procedure is dynamic:

is_dynamic(Name/Arity).

When the goal

compile(Somefile)

is executed, and Somefile contains clauses for procedures that have already been defined in the
Prolog database, each of those procedures are treated in one of two ways. If such a procedure is

99



dynamic, its clauses compiled from Somefile are added to the database (just as would happen
if they were asserted), and the existing clauses are not affected. For example, if the following
clauses have already been compiled:

:- dynamic city/1.

city(london).

city(paris).

and the file Somefile contains the following Prolog code:

city(munich).

city(tokyo).

then compiling Somefile will cause adding the clauses for city/1 to those already compiled, as
city/1 has been declared dynamic. Thus the query city(X) will give:

[eclipse 5]: city(X).

X = london More? (;)

X = paris More? (;)

X = munich More? (;)

X = tokyo

yes.

If, however, the compiled procedure is static, the new clauses in Somefile replace the old proce-
dure. Thus, if the following clauses have been compiled:

city(london).

city(paris).

and the file Somefile contains the following Prolog code:

city(munich).

city(tokyo).

when Somefile is compiled, then the procedure city/1 is redefined. Thus the query city(X) will
give:

[eclipse 5]: city(X).

X = munich More? (;)

X = tokyo

yes.

When the dynamic/1 declaration is used on a procedure that is already dynamic, which may
happen for instance by recompiling a file with this declaration inside, the system raises the error
64 (“procedure already dynamic”). The default handler for this error, however, will only erase all
existing clauses for the specified procedure, so that when such a file is recompiled several times
during its debugging, the system behaves as expected, the existing clauses are always replaced.
The handler for this error can of course be changed if required. If it is set to true/0, for
instance, the dynamic/1 declaration will be just silently accepted without erasing any clauses
and without printing an error message.
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12.2 Altering programs at run time

The Prolog database can be updated during the execution of a program. ECLiPSe allows the
user to modify procedures dynamically by adding new clauses via assert/1 and by removing
some clauses via retract/1.
These predicates operate on dynamic procedures; if it is required that the definition of a proce-
dure be altered through assertion and retraction, the procedure should therefore first be declared
dynamic (see the previous section). The effect of assert/1 and retract/1 on static procedures
is explained below.
The effect of the goal

assert(ProcClause)

where ProcClause1 is a clause of the procedure Proc, is as follows.

1. If Proc has not been previously defined, the assertion raises an exception, however the
default handler for this exception just declares the given procedure silently as dynamic
and executes the assertion.

2. If Proc is already defined as a dynamic procedure, the assertion adds ProcClause to the
database after any clauses already existing for Proc.

3. If Proc is already defined as a static procedure, then the assertion raises an exception.

The goal

retract(Clause)

will unify Clause with a clause on the dynamic database and remove it. If Clause does not
specify a dynamic procedure, an exception is raised.
ECLiPSe’s dynamic database features the so-called logical update semantics. This means
that any change in the database that occurs as a result of executing one of the built-ins of the
abolish, assert or retract family affects only those goals that start executing afterwards. For
every call to a dynamic procedure, the procedure is virtually frozen at call time.

12.3 Differences between static and dynamic code

• Only dynamic procedures can have clauses added or removed at run time.

• Matching clauses (section 5.5) are not supported by dynamic code. A runtime error (about
calling an undefined procedure -?->/1) will be raised when executing dynamic code that
has a matching clause head.

• Clauses for a dynamic procedure need not be consecutive.

• Source tracing is not supported for dynamic procedures.

• assert/1, retract/1 and clause/1 do not perform clause transformation on the clause.
If clause transformation is required, this can be done explicitly with expand clause/2
before.

1It should be remembered that because of the definition of the syntax of a term, to assert a procedure of the
form p :- q,r it is necessary to enclose it in parentheses: assert((p:-q,r)).
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• Internally, dynamic procedures are represented differently from static procedures. The
execution of dynamic procedures will generally be slower than for static procedures.
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Chapter 13

ECLiPSe Macros

13.1 Introduction

ECLiPSe provides a general mechanism to perform macro expansion of Prolog terms. Macro
expansion can be performed in 3 situations:

read macros are expanded just after a Prolog term has been read by the ECLiPSe

parser. Note that the parser is not only used during compilation but by all
term-reading predicates.

compiler macros are expanded only during compilation and only when a term
occurs in a certain context (clause or goal).

write macros are expanded just before a Prolog term is printed by one of the
output predicates

In addition to transforming a term, macros can also be source annotation aware, and provide
source annotation information for the transformed term if supplied with source annotation in-
formation for the orginal term. Source annotation information is about the source and position
of a term, and is provided by the predicate read annotated/3.

Macros are attached to classes of terms specified by their functors or by their type. Macros
obey the module system’s visibility rules. They may be either local or exported. The macro
expansion is performed by a user-defined Prolog predicate.

13.2 Using the macros

The following declarations and built-ins control macro expansion:

local macro(+TermClass, +TransPred, +Options) defines a macro for the
given TermClass. The transformation itself will be performed by the predi-
cate TransPred.

export macro(+TermClass, +TransPred, +Options) as above, except that
the macro is available to other modules.

erase macro(+TermClass, +Options) erases the macro that is currently de-
fined for TermClass. Note that this can only be done in the module where
the definition was made.
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current macro(?TermClass, ?TransPred, ?Options, ?Module) can be used
to get information about currently defined visible macros.

Macros are selectively applied only to terms of the specified class. TermClass can take two
forms:

Name/Arity transform all terms with the specified functor

type(Type) transform all terms of the specified type, where Type is one of the
following: compound, string, integer, rational, float, breal, atom, goal.1

The +TransPred argument specifies the predicate that will perform the transformation. It has
to be either of arity 2 or 3 and should have the form:

trans_function(OldTerm, NewTerm [, Module]) :- ... .

or it can be source annotation aware, and be of arity 4 or 5, as follows:

trans_function(OldTerm, NewTerm, OldAnn, NewAnn [, Module]) :- ... .

At transformation time, the system will call TransPred in the module where macro/3 was
invoked. The term to transform is passed as the first argument, the second is a free variable
which the transformation predicate should bind to the transformed term. In the case of the
source annotation aware version of TransPred, if the term was read in by read annotated/2,3,
the annotated version of the term to transformed is passed in the third argument, and the
transformation should bind the fourth argument to the annotated transformed term; otherwise,
if no source annotation information is available, the third argument is passed in as a free variable,
and the transformation should not bind the fourth argument. In both TransPred cases, the
optional last argument is the module where the term was being read in. See section 13.2.1 for
more details on annotated terms.

Options is a list which may be empty (in this case the macro defaults to a local read term macro)
or contain specifications from the following categories:

• mode:

read: This is a read macro and shall be applied after reading a term (default).

write: This is a write macro and shall be applied before printing a term.

• type:

term: Transform all terms (default).

clause: Transform only if the term is a program clause, i.e., inside compile/1,
etc.2 Write macros are applied using the C option in the printf/2 predicate.

goal: Goal-read-macros are transformed only if the term is a subgoal in the
body of a program clause. Goal-write macros are applied using the G option
in the printf/2 predicate.

• additional specification:

1type(goal) stands for suspensions.
2Note that clause transformation is not performed with assert/1, retract/1 and clause/1. This is a change

from previous versions of ECLiPSe.
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protect arg: Disable transformation of subterms (optional).

top only: Consider only the whole term, not subterms (optional).

The following shorthands exist:

local/export portray(+TermClass, +TransPred, +Options): portray/3 is
like macro/3, but the write-option is implied.

inline(+PredSpec, +TransPred): inline/2 is the same as a goal-read-macro.
The visibility is inherited from the transformed predicate.

Here is an example of a conditional read macro:

[eclipse 1]: [user].

trans_a(a(X,Y), b(Y)) :- % transform a/2 into b/1,

number(X), % but only under these

X > 0. % conditions

:- local macro(a/2, trans_a/2, []).

user compiled traceable 204 bytes in 0.00 seconds

yes.

[eclipse 2]: read(X).

a(1, hello).

X = b(hello) % transformed

yes.

[eclipse 3]: read(X).

a(-1, bye).

X = a(-1, bye) % not transformed

yes.

If the transformation function fails, the term is not transformed. Thus, a(1, zzz) is transformed
into b(zzz) but a(-1, zzz) is not transformed. The arguments are transformed bottom-up. It
is possible to protect the subterms of a transformed term by specifying the flag protect_arg.
A term can be protected against transformation by quoting it with the “protecting functor” (by
default it is no macro expansion/1):

[eclipse 4]: read(X).

a(1, no_macro_expansion(a(1, zzz))).

X = b(a(1, zzz)).

Note that the protecting functor is itself defined as a macro:

trprotect(no_macro_expansion(X), X).

:- export macro(no_macro_expansion/1, trprotect/2, [protect_arg]).

A local macro is only visible in the module where it has been defined. When it is defined as
exported, then it is copied to all other modules that contain a use module/1 or import/1 for
this module. The transformation function should also be exported in this case. There are a few
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global macros predefined by the system, e.g., for -->/2 (grammar rules, see below) or with/2
and of/2 (structure syntax, see section 5.1). These predefined macros can be hidden by local
macro definitions.
The global flag macro_expansion can be used to disable macro expansion globally, e.g., for
debugging purposes. Use set_flag(macro_expansion, off) to do so.
The next example shows the use of a type macro. Suppose we want to represent integers as s/1
terms:

[eclipse 1]: [user].

tr_int(0, 0).

tr_int(N, s(S)) :- N > 0, N1 is N-1, tr_int(N1, S).

:- local macro(type(integer), tr_int/2, []).

yes.

[eclipse 2]: read(X).

3.

X = s(s(s(0)))

yes.

When we want to convert the s/1 terms back to normal integers so that they are printed in the
familiar form, we can use a write macro. Note that we first erase the read macro for integers,
otherwise we would get unexpected effects since all integers occurring in the definition of tr s/2
would turn into s/1 structures:

[eclipse 3]: erase_macro(type(integer)).

yes.

[eclipse 4]: [user].

tr_s(0, 0).

tr_s(s(S), N) :- tr_s(S, N1), N is N1+1.

:- local macro(s/1, tr_s/2, [write]).

yes.

[eclipse 2]: write(s(s(s(0)))).

3

yes.

13.2.1 Source annotation aware macro transformations

When the macro transformation predicate has 4 or 5 arguments, it is termed source annotation
aware, and the extra arguments are used to specify how source information from the original
term should be mapped to the transformed term.
An annotated term provides the source information about a term. It is structurally similar to
the original term and contains all information about the term, plus additional type information,
variable names, and source position annotations for all subterms.
The structure of the descriptive terms is as follows:
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:- export struct(annotated_term(

term, % var, atomic or compound

type, % term type (see below)

file, % source file name (atom)

line, % source line (integer)

from, to % source position (integers)

...

)).

The type-field describes the type of the original term and provide type information similar to
those used in type of/2, except that they convey additional information about variables and
end_of_file.
In the case of atomic terms and variables, the term-field simply contains the plain original term.
For compound terms, the term-field contains a structure whose functor is the functor of the
plain term, but whose arguments are annotated versions of the plain term arguments.
For example, the annotated term representing the source term foo(bar, X, _, 3) is:

annotated_term(foo(

annotated_term(bar, atom, ...),

annotated_term(X, var(’X’), ...),

annotated_term(_, anonymous, ...),

annotated_term(3, integer, ...)

),

compound,

...

)

The file/line/from/to-fields of an annotated term describe the ”source position” of the term, as
follows:

file The canonical file name of the source file (an atom), or the empty atom ’’ if the source is
not a file or is not known.

line The line number in the source stream (positive integer).

from, to The exact term position as integer offsets in the source stream, starting at from and
ending at to − 1.

The extra arguments for the transformation predicate are a pair of annotated terms for the
original and transformed term. The predicate will be supplied with the annotated term for the
original term if available, and the predicate is responsible for specifying the annotated term
for the transformed term—the structure of the transformed annotated term must match the
annotated term structure expected for the transformed term. If no annotated information is
available, the original annotated term will be a variable, and the predicate must not bind the
transformed annotated term.
For an example, here is a source annotation aware version of the previous trans a/2 example:

[eclipse 1]: [user].

...
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trans_a(a(X,Y), b(Y), AnnA, AnnTrans) :-

number(X),

X > 0,

( var(AnnA) ->

true % no source information, leave AnnTrans as var

;

AnnA = annotated_term{term:a(_AnnX, AnnY),

file:File, line:Line,

from:From,to:To},

AnnTrans = annotated_term{term:b(AnnY),

type: compound,

file:File, line:Line,

from:From,to:To}

).

:- local macro(a/2, trans_a/4, []).

Yes (0.23s cpu)

[eclipse 2]: read_annotated(user, X, Y).

a(3,bar(X)).

X = b(bar(X))

Y = annotated_term(b(annotated_term(bar(annotated_term(X, var(’X’), user, 18,

654, 655)), compound, user, 18, 650, 654)), compound, user, 18, 646, 648)

In the example, the main functor of the transformed predicate, b/1, inherits the annotation
information for the original term’s principal functor, a/2. The argument Y in the transformed
term takes the annotation information from the corresponding argument in the original term.
The source annotation aware transformation predicate facility is provided to allow the user to
access the details of how the subterms of the original term are mapped to the transformed
term. Without this extra information, the whole of the transformed term is given the source
information (source position, source file etc.) of the original source term. This extra information
is useful when the subterms are goals, because without the extra information, source tracing of
these goals during debugging will not be done.

13.3 Definite Clause Grammars — DCGs

Grammar rules are described in many standard Prolog texts ([3]). In ECLiPSe they are provided
by a predefined global3 macro for -->/2. When the parser reads a clause whose main functor is
-->/2, it transforms it according to the standard rules. The syntax for DCGs is as follows:

grammar_rule --> grammar_head, [’-->’], grammar_body.

grammar_head --> non_terminal.

3So that the user can redefine it with a local one.
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grammar_head --> non_terminal, [’,’], terminal.

grammar_body --> grammar_body, [’,’], grammar_body.

grammar_body --> grammar_body, [’;’], grammar_body.

grammar_body --> grammar_body, [’->’], grammar_body.

grammar_body --> grammar_body, [’|’], grammar_body.

grammar_body --> iteration_spec, [’do’], grammar_body.

grammar_body --> [’-?->’], grammar_body.

grammar_body --> grammar_body_item.

grammar_body_item --> [’!’].

grammar_body_item --> [’{’], Prolog_goals, [’}’].

grammar_body_item --> non_terminal.

grammar_body_item --> terminal.

The non-terminals are syntactically identical to prolog goals (atom, compound term or variable),
the terminals are lists of prolog terms (typically characters or tokens). Every term is transformed,
unless it is enclosed in curly brackets. The control constructs like conjunction ,/2, disjunction
(;/2 or |/2), the cut (!/0), the condition (->/1) and do-loops need not be enclosed in curly
brackets.
The grammar can be accessed with the built-in phrase/3. The first argument of phrase/3 is
the name of the grammar to be used, the second argument is a list containing the input to be
parsed. If the parsing is successful the built-in will succeed. For instance, with the grammar

a --> [] | [z], a.

phrase(a, X, []) will give on backtracking

X = [z] ; X = [z, z] ; X = [z, z, z] ; ....

13.3.1 Simple DCG example

The following example illustrates a simple grammar declared using the DCGs.

sentence --> imperative, noun_phrase(Number), verb_phrase(Number).

imperative, [you] --> [].

imperative --> [].

noun_phrase(Number) --> determiner, noun(Number).

noun_phrase(Number) --> pronoun(Number).

verb_phrase(Number) --> verb(Number).

verb_phrase(Number) --> verb(Number), noun_phrase(_).

determiner --> [the].

noun(singular) --> [man].

noun(singular) --> [apple].
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noun(plural) --> [men].

noun(plural) --> [apples].

verb(singular) --> [eats].

verb(singular) --> [sings].

verb(plural) --> [eat].

verb(plural) --> [sing].

pronoun(plural) --> [you].

The above grammar may be applied by using phrase/3. If the predicate succeeds then the
input has been parsed successfully.

[eclipse 1]: phrase(sentence, [the,man,eats,the,apple], []).

yes.

[eclipse 2]: phrase(sentence, [the,men,eat], []).

yes.

[eclipse 3]: phrase(sentence, [the,men,eats], []).

no.

[eclipse 4]: phrase(sentence, [eat,the,apples], []).

yes.

[eclipse 5]: phrase(sentence, [you,eat,the,man], []).

yes.

The predicate phrase/3 may be used to return the point at which parsing of input fails—if the
returned list is empty then the input has been successfully parsed.

[eclipse 1]: phrase(sentence, [the,man,eats,something,nasty],X).

X = [something, nasty] More? (;)

no (more) solution.

[eclipse 2]: phrase(sentence, [eat,the,apples],X).

X = [the, apples] More? (;)

X = [] More? (;)

no (more) solution.

[eclipse 3]: phrase(sentence, [hello,there],X).

no (more) solution.
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13.3.2 Mapping to Prolog clauses

A grammar rule is translated to a Prolog clause by adding two arguments which represent the
input before and after the nonterminal which is represented by the rule. The effect of the
transformation can be observed, e.g., by calling expand clause/2:

[eclipse 1]: expand_clause(p(X) --> q(X), Expanded).

X = X

Expanded = p(X, _250, _243) :- q(X, _250, _243)

Yes (0.00s cpu)

[eclipse 2]: expand_clause(p(X) --> [a], Expanded).

X = X

Expanded = p(X, _251, _244) :- ’C’(_251, a, _244)

Yes (0.00s cpu)

13.3.3 Parsing other data structures

DCGs are in principle not limited to the parsing of lists. The predicate ’C’/3 is responsible for
reading resp. generating the input tokens. The default definition is

’C’([Token|Rest], Token, Rest).

The first argument represents the parsing input before consuming Token and Rest is the input
after consuming Token.

By redefining ’C’/3, it is possible to apply a DCG to input sources other than a list, e.g., to
parse directly from an I/O stream:

:- local ’C’/3.

’C’(Stream-Pos0, Token, Stream-Pos1) :-

seek(Stream, Pos0),

read_string(Stream, " ", _, TokenString),

atom_string(Token, TokenString),

at(Stream, Pos1).

sentence --> noun, [is], adjective.

noun --> [prolog] ; [lisp].

adjective --> [boring] ; [great].

This can then be applied to a string as follows:

[eclipse 1]: String = "prolog is great", open(String, string, S),

phrase(sentence, S-0, S-End).

...

End = 15

yes.

Here is another redefinition of ’C’/3, using a similar idea, which allows direct parsing of ECLiPSe

strings as sequences of characters:
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:- local ’C’/3.

’C’(String-Pos0, Char, String-Pos1) :-

Pos0 =< string_length(String),

string_code(String, Pos0, Char),

Pos1 is Pos0+1.

anagram --> [].

anagram --> [_].

anagram --> [C], anagram, [C].

This can then be applied to a string as follows:

[eclipse 1]: phrase(anagram, "abba"-1, "abba"-5).

yes.

[eclipse 2]: phrase(anagram, "abca"-1, "abca"-5).

no (more) solution.

Unlike the default definition, these redefinitions of ’C’/3 are not bi-directional. Consequently,
the grammar rules using them can only be used for parsing, not for generating sentences.
Note that every grammar rule uses that definition of ’C’/3 which is visible in the module where
the grammar rule itself is defined.
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Chapter 14

Events and Interrupts

The normal execution of a Prolog program may be interrupted by events and interrupts:

Events
Events have the following properties:

• they may occur asynchronously (when posted by the environment) or syn-
chronously (when raised by the program itself);

• they are handled synchronously by a handler goal that is inserted into the
resolvent;

• the handler can cause the interrupted execution to fail or to abort;

• the handler can interact with the interrupted execution only via non-logical
features (e.g., global variable or references);

• the handler can cause waking of delayed goals via symbolic triggers.

Errors
Errors can be viewed as a special case of events. They are raised by built-in
predicates (e.g., when the arguments are of the wrong type) and usually pass
the culprit goal to the error handler.

Interrupts
Interrupts usually originate from the operating system, e.g., on a Unix host,
signals are mapped to ECLiPSe interrupts.

• they occur asynchronously, but may be mapped into a sychronous event;

• certain predefined actions (like aborting) can be performed asynchronously.

14.1 Events

14.1.1 Event Identifiers and Event Handling

Events are identified by names (atoms) or by anonymous handles.

When an event is raised, a call to the appropriate handler is inserted into the resolvent (the
sequence of executing goals). The handler will be executed as soon as possible, which means at
the next synchronous point in execution, which is usually just before the next regular predicate
is invoked. Note that there are a few built-in predicates that can run for a long time and will
not allow handlers to be executed until they return (e.g., read/1, sort/4).
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Creating Named Events

A named event is created by defining a handler for it using set event handler/2:

:- set_event_handler(hello, my_handler/1).

my_handler(Event) :-

<code to deal with Event>

A handler for a named event can have zero or one arguments. When invoked, the first argument
is the event identifier, in this case the atom hello. It is not possible to pass other information
to the handler.

The handler for a defined event can be queried using get event handler/3.

Creating Anonymous Events

An anonymous event is created with the built-in event create/3:

..., event_create(my_other_handler(...), [], Event), ...

The built-in takes a handler goal and creates an anonymous event handle Event. This handle is
the only way to identify the event, and therefore must be passed to any program location that
wants to raise the event. The handler goal can be of any arity and can take arbitrary arguments.
Typically, these arguments would include the Event handle itself and other ground arguments
(variables should not be passed because when the event is raised, a copy of the handler goal
with fresh variables will be executed).

14.1.2 Raising Events

Events can be raised in the following different ways:

• Explicitly by the ECLiPSe program itself, using event/1.

• By foreign code (C/C++) using the ec_post_event() function.

• Via signals/interrupts by setting the interrupt handler to event/1.

• Via I/O streams (e.g., queues can be configured to raise an event when they get written
into).

• Via timers, so-called after-events

Raising Events Explicitly

To raise an event from within ECLiPSe code, call event/1 with the event identifier as its
argument. If no handler has been defined, a warning will be raised:

?- event(hello).

WARNING: no handler for event in hello

Yes (0.00s cpu)

The event can be an anonymous event handle, e.g.,
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?- event_create(writeln(handling(E)), [], E), event(E).

handling($&(event,"371bqz"))

E = $&(event,"371bqz")

Yes (0.00s cpu)

Raising events explicitly is mainly useful for test purposes, since it is almost the same as calling
the handler directly.

Raising Events from Foreign Code

To raise an event from within foreign C/C++ code, call

ec_post_event(ec_atom(ec_did("hello",0)));

This works both when the foreign code is called from ECLiPSe or when ECLiPSe is embedded
into a foreign code host program.

Timed Events (“after” events)

An event can be triggered after a specified amount of elapsed time. The event is then handled
sychronously by ECLiPSe. These events are known as “after” events, as they are set up so that
the event occurs after a certain amount of elapsed time. They are setup by one of the following
predicates:

event after(+EventId, +Time) This sets up an event EventId so that the event
is raised once after Time seconds of elapsed time from when the predicate is
executed. EventId is an event identifier and Time is a positive number.

event after every(+EventId, +Time) This sets up an event EventId so that
the event is raised repeatedly every Time seconds: first Time seconds after the
invocation of the predicate, then Time seconds after that event was raised, and
so on.

events after(+EventList) This sets up a series of after events specified in the
list EventList, which contains events of the form EventId-Time, or EventId-
every(Time) (specifying a single event or a repeated event respectively).

The Time parameter is actually the minimum of elapsed time before the event
is raised. Factors constraining the actual time of raising of the event include the
granularity of the system clock, and also that ECLiPSe must be in a state where
it can synchronously process the event, i.e., where it can make a procedure call.

Once an after event has been set up, it is pending until it is raised. In the case of
events caused by an invocation of event after every/2, the event will always
be pending because it is raised repeatedly. A pending event can be cancelled so
that it will not be raised.

cancel after event(+EventId, -Cancelled) This finds and cancels all pending
after events with name EventId and returns the actually cancelled ones in a
list.

current after events(-Events) This returns a list of all pending after events.

115



The after event mechanism allows multiple events to make use of the timing mechanism in-
dependently of each other. The same event can be setup multiple times with multiple calls to
event after/2 and event after every/2. The cancel after event/2 predicate will cancel all
instances of an event.
By default, the after event feature uses the real timer. The timer can be switched to the
virtual timer, in which case the elapsed time measured is user CPU time.1 This setting is
specified by the ECLiPSe environment flag after_event_timer (see get flag/2, set flag/2).
Note that if the timer is changed while some after event is still pending, these events will no
longer be processed. The timer should therefore not be changed once after events are initiated.
Currently, the virtual timer is not available on the Windows platform. In addition, the users
should not make use of these timers for their own purposes if they plan to use the after event
mechanism.

14.1.3 Events and Waking

Using the suspension and event handling mechanisms together, a goal can be added to the
resolvent and executed after a defined elapsed time. To achieve this, the goal is suspended and
attached to a symbolic trigger, which is triggered by an afer-event handler. The goal behaves
“logically”, in that if the execution backtracks pass the point in which the suspended goal is
created, the goal will disappear from the resolvent as expected and thus not be executed. The
event will still be raised, but there will not be a suspended goal to wake up. Note that if the
execution finishes before the suspended goal is due to be woken up, it will also not enter the
resolvent and will thus not be executed.
The following is an example of waking a goal with a timed event. Once monitor(X) is called,
the current value of X will be printed every second until the query finishes or is backtracked
over:

:- set_event_handler(monvar, trigger/1).

monitor(Var) :-

suspend(m(Var), 3, trigger(monvar)),

event_after_every(monvar, 1).

:- demon m/1.

m(Var) :- writeln(Var).

:- monitor(Var), <do_something>.

Note the need to declare m/1 as a demon: otherwise, once m/1 is woken up once, it will
disappear from the resolvent and the next monvar event will not have a suspended m/1 to wake
up. Note also that it is necessary to connect the event machanism to the waking mechanism by
setting the event handler to trigger/1.

14.1.4 Aborting an Execution with Events

Typically, event handlers would perform some action and then succeed, letting the interrupted
exectuion continue unharmed. Event handlers for asynchronous events should never fail, be-
cause the failure will be inserted in a random place in the resolvent, and the effect will be

1This is time that the CPU spends on executing user code, i.e., the ECLiPSe program.
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unpredictable. It is however sometimes useful to allow an asynchronous event to abort an exe-
cution (via throw/1), e.g., to implement timeouts.2

When dealing with events that occur asynchronously (in particular after-events), and event
handlers that cause the execution to abort, it is often a problem that event handlers may be
interrupted or preempted by other event handlers. This can be avoided by use of the event-defer
mechanism. An event can be declared with the defer-property, which means that all further
event handling is temporarily suppressed as soon as the handling of this event begins. In this
case, the event handler is responsible for reenabling event handling explicitly before returning
by calling events nodefer/0. For instance:

:- set_event_handler(my_event, defers(my_handler/0)).

my_after_handler :- % event handling is deferred at this point

<deal with event>,

events_nodefer. % allow other events to be handled again

In the presence of other event handlers which can cause aborts, this will protect the handler
code from being preempted.

14.2 Errors

Error handling is one particular use of events. The main property of error events is that they
have a culprit goal, i.e., the goal that detected or caused the error. The error handler obtains
that goal as an argument.
The errors that the system raises have numerical identifiers, as documented in appendix C.
User-defined errors have atomic names, they are the same as events. Whenever an error occurs,
the ECLiPSe system identifies the type of error, and calls the appropriate handler. For each
type of error, it is possible for the user to define a separate handler. This definition will replace
the default error handling routine for that particular error—all other errors will still be handled
by their respective handlers. It is of course possible to associate the same user defined error
handler to more than one error type.
When a goal is called and produces an error, execution of the goal is aborted and the appropriate
error handler is invoked. This invocation of the error handler is seen as replacing the invocation
of the erroneous goal:

• if the error handler fails it has the same effect as if the erroneous goal failed;

• if the error handler succeeds, possibly binding some variables, the execution continues at
the point behind the call of the erroneous goal;

• if the handler calls throw/1, it has the same effect as if this was done by the erroneous
goal itself.

For errors that are classified as warnings the second point is somewhat different: if the handler
succeeds, the goal that raised the warning is allowed to continue execution.
Apart from binding variables in the erroneous goal, error handlers can also leave backtrack
points. However, if the error was raised by an external or a built-in that is implemented as an
external, these choicepoints are discarded.3

2Since implementing reliable timeouts is a nontrivial task, we recommend the use of lib(timeout) for this
purpose.

3This is necessary because the compiler recognises simple predicates as deterministic at compile time and so
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14.2.1 Error Handlers

The predicate set event handler/2 is used to assign a procedure as an error handler. The call

set_event_handler(ErrorId, PredSpec)

sets the event handler for error type ErrorId to the procedure specified by PredSpec, which must
be of the form Name/Arity.
The corresponding predicate get event handler/3 may be used to identify the current handler
for a particular error. The call

get_event_handler(ErrorId, PredSpec, HomeModule)

will, provided ErrorId is a valid error identifier, unify PredSpec with the specification of the
current handler for error ErrorId in the form Name/Arity, and HomeModule will be unified
with the module where the error handler has been defined. Note that this error handler might
not be visible from every module and therefore may not be callable.
To re-install the system’s error handler in case the user error handler is no longer needed,
reset event handler/1 should be used. reset error handlers/0 resets all error handlers to
their default values.
To enable the user to conveniently write predicates with error checking the built-ins

error(ErrorId, Goal)

error(ErrorId, Goal, Module)

are provided to raise the error ErrorId (an error number or a name atom) with the culprit Goal.
Inside tool procedures it is usually necessary to use error/3 in order to pass the caller module
to the error handler. Typical error checking code looks like this

increment(X, X1) :-

( integer(X) ->

X1 is X + 1

;

error(5, increment(X, X1))

).

The predicate current error/1 can be used to yield all valid error numbers, a valid error is that
one to which an error message and an error handler are associated. The predicate error id/2
gives the corresponding error message to the specified error number. To ease the search for the
appropriate error number, the library util contains the predicate

util:list_error(Text, N, Message)

which returns on backtracking all the errors whose error message contains the string Text.
The ability to define any Prolog predicate as the error handler permits a great deal of flexibility
in error handling. However, this flexibility should be used with caution. The action of an
error handler could have side effects altering the correctness of a program; indeed it could be
responsible for further errors being introduced. One particular area of danger is in the use of
input and output streams by error handlers.

if a simple predicate were to cause the invocation of a non-deterministic error handler, the generated code might
no longer be correct.
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14.2.2 Arguments of Error Handlers

An error handler has four optional arguments:

1. The first argument is the number or atom that identifies the error.

2. The second argument is the culprit (a structure corresponding to the call which caused
the error). For instance, if, say, a type error occurs upon calling the second goal of the
procedure p(2, Z):

p(X, Y) :- a(X), b(X, Y), c(Y).

the structure given to the error handler is b(2, Y). Note that the handler could bind Y
which would have the same effect as if b/2 had done the binding.

3. The third argument is only defined for a subset of the existing errors. If the error oc-
curred inside a tool body, it holds the caller module, otherwise it is identical to the fourth
argument.4

4. The fourth argument is the lookup module for the culprit goal. This is needed for example
when the handler wants to call the culprit reliably, using a qualified call via :/2.

The error handler is free to ignore some of these arguments, i.e., it can have any arity from 0 to
4. The first argument is provided for the case that the same procedure serves as the handler for
several error types—then it can distinguish which is the actual error type. An error handler is
just an ordinary Prolog procedure and thus within it a call may be made to any other procedure,
or any built in predicate; this in particular means that a call to throw/1 may be made (see the
section on the catch/3 predicate). This will work “through” the call to the error handler, and
so an exit may be made from within the handler out of the current catch-block (i.e., back to
the corresponding call of the catch/3 predicate). Specifying the predicates true/0 or fail/0 as
error handlers will make the erroneous predicate succeed (without binding any further variables)
or fail respectively.

The following two templates are the most common for error handlers. The first simply prints
an error message and aborts:

my_error_handler(ErrorId, Goal, ContextModule) :-

printf(error, "Error %w in %w in module %w%n",

[ErrorId,Goal,ContextModule]),

abort.

The following handler tries to repair the error and call the goal again:

my_error_repair_handler(ErrorId, Goal, ContextModule, LookupModule) :-

% repair the error

... some code to repair the cause for the error ...

% try call the erroneous goal again

LookupModule : Goal @ ContextModule.

4Note that some events are not errors but are used for different purposes. In those cases the second and third
argument are sometimes used differently. See Appendix C for details.
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14.2.3 User Defined Errors

The following example illustrates the use of a user-defined error. We declare a handler for the
event Invalid command and raise the new error in the application code.

% Command error handler - output invalid command, sound bell and abort

command_error_handler(_, Command) :-

printf("\007\nInvalid command: %w\n", [Command]),

abort.

% Activate the handler

:- set_event_handler(’Invalid command’, command_error_handler/2).

% top command processing loop

go :-

writeln("Enter command."),

read(Command),

( valid_command(Command)->

process_command(Command),

go

;

error(’Invalid command’,Command) % Call the error handler

).

% Some valid commands

valid_command(start).

valid_command(stop).

14.3 Interrupts

Operating systems such as Unix provide a notion of asynchronous interrupts or signals. In a
standalone ECLiPSe system, the signals can be handled by defining interrupt handlers for them.
In fact, a set of default handlers is already predefined in this case.
In an embedded ECLiPSe, signals are usually handled by the host application, and it is recom-
mended to use the event mechanism described above (the ec_post_event() library function)
to communicate between the host application and the ECLiPSe code. However, even in this set-
ting, ECLiPSe can also handle signals directly, provided the programmer sets up a corresponding
interrupt handler.

14.3.1 Interrupt Identifiers

Interrupts are identified either by their signal number (Unix) or by a name which is derived from
the name the signal has in the operating system. Most built-ins understand both identifiers.
It is usually more portable to use the symbolic name. The built-in current interrupt/2 is
provided to check and/or generate the valid interrupt numbers and their mnemonic names.

120



14.3.2 Asynchronous handling

When an interrupt happens, the ECLiPSe system calls an interrupt handling routine in a manner
very similar to the case of event handling. The only argument to the handler is the interrupt
number. Just as event handlers may be user defined, so it is possible to define interrupt handlers.
The goal

set interrupt handler(N, PredSpec)

assigns the procedure specified by PredSpec as the interrupt handler for the interrupt identified
by N (a number or a name). Some interrupts cannot be caught by the user (e.g., the kill signal),
trying to establish a handler for them yields an error message. Note that PredSpec should be
one of the predefined handlers. The use of general user defined predicates is deprecated because
of portability considerations.

To test interrupt handlers, the built-in kill/2 may be used to send a signal to the own process.

The predicate get interrupt handler/3 may be used to find the current interrupt handler for
an interrupt N, in the same manner as get event handler:

get interrupt handler(N, PredSpec, HomeModule)

An interrupt handler has one optional argument, which is the interrupt number. There is no
argument corresponding to the error culprit, since the interrupt has no relation to the currently
executed predicate. A handler may be defined which takes no argument (such as when the
handler is defined for only one interrupt type). If the handler has one argument, the identifier
of the interrupt is passed to the handler when it is called.

The following is the list of predefined interrupt handlers:

default/0
performs the standard UNIX handling of the specified interrupt (signal). Setting
this handler is equivalent to calling signal(N, SIG_DFL) on the C level. Thus
e.g., specifying

?- set_interrupt_handler(int, default/0).

will exit the ECLiPSe system when ^C is pressed.

true/0
This is equivalent to calling signal(N, SIG_IGN) on the C level, i.e., the in-
terrupt is ignored.

throw/1
Invoke throw/1 with the interupt’s symbolic name.

abort/0
Invoke throw(abort).

halt/0
Terminate the ECLiPSe process.

internal/0
Used by ECLiPSe to implement internal functionality like the profiler. This is
not intended to be used by the user.
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event/1
The signal is handled by posting a (synchronous) event. The event name is the
symbolic name of the interrupt.

Apart from these special cases, all other arguments will result in the specified predicate being
called when the appropriate interrupt occurs. This general asynchronous interrupt handling
is not supported on all hardware/platforms, neither in an embedded ECLiPSe (including the
TkECLiPSe development environment), and is therefore deprecated.
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Chapter 15

Debugging

15.1 The Box Model

The ECLiPSe debugger is based on a port model which is an extension of the classical Box
Model commonly used in Prolog debugging.
A procedure invocation (or goal) is represented by a box with entry and exit ports. Each time a
procedure is invoked, a box is created and given a unique invocation number. The invocations
of subgoals of this procedure are seen as boxes inside this procedure box.
Tracing the flow of the execution consists in tracing the crossing of the execution flow through
any of the port of the box.
The five basic ports of the box model of ECLiPSe are the CALL, EXIT, REDO, FAIL and
NEXT ports, the suspension facilities are traced through the DELAY and RESUME ports, and
the exceptional exit is indicated by LEAVE.

CALL: When a procedure is invoked, the flow of the execution enters the procedure box by
its CALL port and enters the first clause box which could (since not all clauses are tried,
some of them being sure to fail, i.e., indexing is shown) unify with the goal. It may happen
that a procedure is called with arguments that make it sure to fail (because of indexing).
In such cases, the flow does not enter any clause box.

For each CALL port a new procedure box is created and is given:

• an invocation number that is one higher than that given for the most recent CALL
port. This allows to uniquely identify a procedure invocation and all its corresponding
ports.

• a level that is one higher than that of its parent goal.

The displayed variable instantiations are the ones at call time, i.e., before the head unifi-
cation of any clause.

EXIT: When a clause of a predicate succeeds (i.e., unification succeeded and all procedures
called by the clause succeeded), the flow gets out of the box by the EXIT port of both
boxes (only the EXIT port of the procedure box is traced).

When a procedure exits non-deterministically (and there are still other clauses to try on
that procedure or one of its children goals has alternatives which could be resatisfied), the
EXIT port is traced with an asterisk (*EXIT). When the last possibly matching clause of
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Figure 15.1: The box model

a procedure is exited, the exit is traced without asterisk. This means that this procedure
box will never be retried as there is no other untried alternative.

The instantiations shown in the EXIT port are the ones at exit time, they result from the
(successful) execution of the procedure.

FAIL: When a clause of a procedure fails (because head unification failed or because a sub-goal
failed), the flow of the execution exits the clause box and leaves the procedure box via
the FAIL port. Note that the debugger cannot display any argument information at FAIL
ports (an ellipsis ... is displayed instead for each argument).

NEXT: If a clause fails and there is another possibly matching clause to try, then that one
is tried for unification. The flow of the execution from the failure of one clause to the
head unification of a following clause is traced as a NEXT port. The displayed variable
instantiations are the same as those of the corresponding CALL or REDO port.

ELSE: This is similar to the NEXT port, but indicates that the next branch of a disjunction
(;/2) it tried after the previous branch failed. The predicate that gets displayed with the
port is the predicate which contains the disjunction (the immediate ancestor).

REDO: When a procedure box is exited trough an *EXIT port, the box can be retried later
to get a new solution. This will happen when a later goal fails. The backtracking will
cause failing of all procedures that do not have any alternative, then the execution flow
will enter a procedure box that an contains alternative through a REDO port.

Two situations may occur: either the last tried clause has called a procedure that has left
a choice point (it has exited through an *EXIT port). In that case the nested procedure
box is re-entered though another REDO-port.
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Otherwise, if the last clause tried does not contain any nondeterministically exited boxes,
but there are other untried clauses in the procedure box, the next possibly matching clause
will be tried.

The last REDO port in such a sequence is the one which contains the actual alternative
that is tried. The variable instantiations for all REDO ports in such a sequence are the
ones corresponding to the call time of the last one.

LEAVE: This port allows to trace the execution of exceptions. Exceptions are either raised
implicitly by built-in predicates (in which case the built-in itself exits via the LEAVE port),
or explicitly through a call to throw/1 (or exit block/1). All ancestors of the predicate
that raised the exception will subsequently exit via a LEAVE port, until a catch/3 (or
block/3) is found, whose second argument matches the exception. This invocation of
catch/3 then passes a NEXT port (at which point the exception has been caught), and
then execution continues via a normal call of the recovery goal (the third argument of the
catch/3).

As with the FAIL port, no argument values are displayed in the LEAVE port.

DELAY: The displayed goal becomes suspended. This is a singleton port, it does not enter
or leave a box. However, a new invocation number is assigned to the delayed goal, and
this number will be used in the matching RESUME port. The DELAY port is caused by
one of the built-in predicates suspend/3, suspend/4, make suspension/3 or a delay
clause. The port is displayed just after the delayed goal has been created.

RESUME: When a waking condition causes the resuming of a delayed goal, the procedure box
is entered through its RESUME port. The box then behaves as if it had been entered
through its CALL port. The invocation number is the same as in its previous DELAY
port. which makes it easy to identify corresponding delay and resume events. However
the depth level of the RESUME corresponds to the waking situation. It is traced like a
subgoal of the goal which has caused the waking.

In the rest of this chapter the user interface to the debugger is described, including the commands
available in the debugger itself as well as built-in predicates which influence it. Some of the
debugger commands are explained using an excerpt of a debugger session. In these examples,
the user input is always underlined (it is in fact not always output as typed) to distinguish it
from the computer output.

15.1.1 Breakpoints

Breakpoints can be set on specific calls to a predicate, i.e., on a specific body goal in the source,
so that the debugger will stop only at a CALL port only when that specific body goal is executed.
A breakpoint is specify by giving the source file and the line number where the body goal is.

For example, if the following predicate is in a file called newtop, with the following line numbers:

243 check_words([],[]).

244 check_words([Word|Words],[RevWord|RevWords]) :-

245 check_words(Words,RevWords).
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The breakpoint for the body goal check_words(Words, RevWords) would be newtop:245. Note
that the file name must be sufficiently specified for ECLiPSe to find the file from your current
working directory.
For a call that has a breakpoint set, the execution will stop when the call is made, i.e., at the
CALL port for that specific body goal.

15.2 Format of the Tracing Messages

All trace messages are output to the debug_output stream.
The format of one trace line is as follows:

S+(4) 2 *EXIT<5> module:foo(one, X, two) %>

12 3 4 5 6 7 8 9 10

1. The first character shows some properties of the displayed procedure. It may be one of

• C - an external procedure, not implemented in Prolog

• S - a skipped procedure, i.e., a procedure whose subgoals are not traced

2. A + displayed here shows that the procedure has a spy point set, and a # shows that the
specific call has a break-point set.

3. The number between parentheses shows the box invocation number of this procedure call.
Since each box has a unique invocation number, it can be used to identify ports that
belong to the same box. It also shows how many procedure redos have been made since
the beginning of the query. Only boxes that can be traced obtain an invocation number,
for instance subgoals of a procedure which is compiled in debug mode or has its skip-flag
set are not numbered.

When a delayed goal is resumed, it keeps the invocation number it was assigned when
it delayed. This makes it easy to follow all ports of a specified call even in data-driven
computation.

4. The second number shows the level or depth of the goal, i.e., the number of its ancestor
boxes. When a subgoal is called, the level increases and after exit it decreases again. The
initial level is 1.

Since a resumed goal is considered to be a descendant of the procedure that woke it, the
level of a resumed goal may be different from the level the goal had when it delayed.

5. An asterisk before an EXIT means that this procedure is nondeterministic and that it might
be resatisfied.

6. The next word is the name of the port. It might be missing if the displayed goal is not the
current position in the execution (e.g., when examining ancestors or delayed goals).

CALL: a procedure is called for the first time concerning a particular invocation;

DELAY: a procedure delays;

EXIT: a procedure succeeds;

FAIL: a procedure fails, there is no (other) solution;
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LEAVE: a procedure is left before having failed or exited because an exception was raised
by either a built-in predicate error condition or a call to throw/1 or exit block/1;

NEXT: the next possibly matching clause of a procedure is tried because unification failed
or a sub-goal failed;

ELSE: the next branch of a disjunction is tried because some goal in the previous branch
failed;

REDO: a procedure that already gave a solution is called again for an alternative;

RESUME: a procedure is woken (the flow enters the procedure box as for a call) because of
a unification of a suspending variable.

7. This only appears if the goal is executing at a different priority than 12, the normal priority.
The number between the angled brackets shows the priority (between 1 and 11) that the
goal is executed at.

8. For the tty debugger, the optional module name followed by a colon. Printing of the
module can be enabled and disabled by the debugger command m. If it is enabled, the
module from where the procedure is called is displayed. By default the module printing
is disabled. With tkeclipse, the module name is not displayed with the traceline, instead,
you can get the information by right holding the mouse button over the trace line in the
call stack window.

9. The goal is printed according to the current instantiations of its variables. Arguments of
the form ... represent subterms that are not printed due to the depth limit in effect. The
depth limit can be changed using the < command.

The goal is printed with the current output_mode settings. which can be changed using
the o command.

10. The prompt of the debugger, which means that it is waiting for a command from the user.
Note there is no prompt when tkeclipse tracer is used.

15.3 Debugging-related Predicate Properties

Predicates have a number of properties which can be listed using the pred/1 built-in. The
following predicate flags and properties affect the way the predicate is traced by the debugger:

debugged
Indicates whether the predicate has been compiled in debug-compile mode. If
on, calls to the predicate’s subgoal will be traced. The value of this property
can only be changed by re-compiling the predicate in a different mode.

leash
If notrace, no port of the predicate will be shown in the trace (but the invo-
cations will be counted nevertheless). If stop, the ports of this predicate will
be shown and the debugger will stop and await new commands. (The print

setting is currently not supported). The value of this property can be changed
with traceable/1, untraceable/1 or set flag/3.
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spy
If on, the predicate has a spy-point and the debugger will stop at its ports when
in leap mode. The value of this property can be changed with spy/1, nospy/1
or set flag/3.

skipped
If on, the predicate’s subgoal will not be traced even if it has been com-
piled in debug-compile mode. The value of this property can be changed with
skipped/1, unskipped/1 or set flag/3.

start tracing
If on, a call to the predicate will activate the debugger if it is not already
running. Only the execution within this predicate’s box will be traced. This is
useful for debugging part of a big program without having to change the source
code. The effect is similar to wrapping all call of the predicate into trace/1.

15.4 Starting the Debugger

Several methods can be used to switch the debugger on. If the textual interactive top-level
is used, the commands trace/0 and debug/0 are used to switch the debugger on for the
following queries typed from the top-level. trace/0 will switch the debugger to creep mode
whereas debug/0 will switch it in leap mode.

For the TkECLiPSe graphical toplevel, the debugger may be switched on by starting the tracer
from the Tools menu before executing the query. This puts the debugger in creep mode.

When the debugger is in creep mode, it will prompt for a command at the crossing of the first
port of a leashed procedure. When the debugger is in leap mode, it will prompt for a command
at the first port of a leashed procedure that has a spy point. The debugger is switched off either
from the toplevel with the commands nodebug/0 or notrace/0, or by typing n or N to the
debugger prompt.

A spy point can be set on a procedure, or a breakpoint on a specific call, using spy/1 (which
will also switch the debugger to leap) and removed with nospy/1. They both accept a SpecList
as argument. Note that set flag/3 can be used to set and reset spy points without switching
the debugger on and without printing messages.

debugging/0 can be used to list the spied predicates and the current debugger mode.

[eclipse 1]: spy writeln/1.

spypoint added to writeln / 1.

yes.

Debugger switched on - leap mode

[eclipse 2]: debugging.

Debug mode is leap

writeln / 1 is being spied

yes.

[eclipse 3]: true, writeln(hello), true.

B+(2) 0 CALL writeln(hello) %> l leap

hello
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B+(2) 0 EXIT writeln(hello) %> c creep

B (3) 0 CALL true %> l leap

yes.

[eclipse 4]: trace.

Debugger switched to creep mode

yes.

[eclipse 5]: true, writeln(hello), true.

B (1) 0 CALL true %> c creep

B (1) 0 EXIT true %> c creep

B+(2) 0 CALL writeln(hello) %> l leap

hello

B+(2) 0 EXIT writeln(hello) %> l leap

yes.

15.5 Debugging Parts of Programs

15.5.1 Mixing debuggable and non-debuggable code

The debugger can trace only procedures which have been compiled in debug mode. The com-
piler debug mode is by default switched on and it can be changed globally by setting the flag
debug_compile with the set flag/2 predicate or using dbgcomp/0 or nodbgcomp/0. The
global compiler debug mode can be overruled on a file-by-file basis using one of the compiler
pragmas

:- pragma(nodebug).

:- pragma(debug).

Once a program (or a part of it) has been debugged, it can be compiled in nodbgcomp mode so
that all optimisations are done by the compiler. The advantages of non-debugged procedures
are

• They run slightly faster than the debugged procedures when the debugger is switched off.
When the debugger is switched on, the non-debugged procedures run considerably faster
than the debugged ones and so the user can selectively influence the speed of the code
which is being traced as well as its space consumption.

• Their code is shorter than that of the debugged procedures.

Although only procedures compiled in the dbgcomp mode can be traced, it is possible to mix the
execution of procedures in both modes. Then, calls of nodbgcomp procedures from dbgcomp ones
are traced, however further execution within nodbgcomp procedures, i.e., the execution of their
subgoals, no matter in which mode, is not traced. In particular, when a nodbgcomp procedure
calls a dbgcomp one, the latter is normally not traced. There are two important exceptions from
this rule:

• When a debuggable procedure has delayed and its DELAY port has been traced, then its
RESUME port is also traced, even when it is woken inside non-debuggable code.
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• When non-debuggable code meta-calls a debuggable procedure (i.e., via call/1), then
this procedure can be traced. This is a useful feature for the implementation of meta-
predicates like setof/3, because it allows to hide the details of the setof-implementation,
while allowing to trace the argument goal.

Setting a procedure to skipped (with set flag/3 or skipped/1 ) is another way to speed up the
execution of procedures that need not be debugged. The debugger will ignore everything that is
called inside the skipped procedure like for a procedure compiled in nodbgcomp mode. However,
the debugger will keep track of the execution of a procedure skipped with the command s of the
debugger so that it will be possible to “creep” in it on later backtracking or switch the debugger
to creep mode while the skip is running (e.g., by interrupting a looping predicate with ^C and
switching to creep mode).

The two predicates trace/1 and debug/1 can be used to switch on the debugger in the middle of
a program. They execute their argument in creep or leap mode respectively. This is particularly
useful when debugging large programs that take too much time (or need a lot of memory) to
run completely with the debugger.

[eclipse 1]: debugging.

Debugger is switched off

yes.

[eclipse 2]: big_goal1, trace(buggy_goal), big_goal2.

Start debugging - creep mode

(1) 0 CALL buggy_goal %> c creep

(1) 0 EXIT buggy_goal %> c creep

Stop debugging.

yes.

It is also possible to enable the debugger in the middle of execution without changing the code.
To do so, use set flag/3 to set the start_tracing flag of the predicate of interest. Tracing will
then start (in leap mode) at every call of this predicate.1 To see the starting predicate itself, set
a spy point in addition to the start_tracing flag:

[eclipse 1]: debugging.

Debugger is switched off

yes.

[eclipse 2]: set_flag(buggy_goal/0, start_tracing, on),

set_flag(buggy_goal/0, spy, on).

yes.

[eclipse 3]: big_goal1, buggy_goal, big_goal2.

+(0) 0 CALL buggy_goal %> creep

+(0) 0 EXIT buggy_goal %> creep

yes.

1Provided the call has been compiled in debug compile mode, or the call is a meta-call.
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In tkeclipse, the debugger can also be started in this way. The tracer tool will popup at the
appropriate predicate if it has not been invoked already. The start_tracing flag can also be
set with the predicate browser tool.

15.6 Using the Debugger via the Command Line Interface

This section describe the commands available at the debugger prompt in the debugger’s com-
mand line interface (for the graphical user interface, please refer to the online documentation).

Commands are entered by typing the corresponding key (without newline), the case of the letters
is significant. The action of some of them is immediate, others require additional parameters
to be typed afterwards. Since the ECLiPSe debugger has the possibility to display not only
the goal that is currently being executed (the current goal or procedure), but also its ancestors,
some of the commands may work on the displayed procedure whatever it is, and others on the
current one.

15.6.1 Counters and Command Arguments

Some debugger commands accept a counter (a small integer number) before the command letter
(e.g., c, i.e., creep). The number is just prefixed to the command and terminated by the
command letter itself. If a counter is given for a command that doesn’t accept a counter, it is
ignored.

When a counter is used and is valid for the command, the command is repeated, decrementing
the counter until zero. When repeating the command, the command and the remaining counter
value is printed after the debugger prompt instead of waiting for user input.

Some commands prompt for a parameter, e.g., the j (jump) command asks for the number of the
level to which to jump. Usually the parameter has a sensible default value (which is printed in
square backets). If just a newline is typed, then the default value is taken. If a valid parameter
value is typed, followed by newline, this value is taken. If an illegal letter is typed, the command
is aborted.

15.6.2 Commands to Continue Execution

All commands in this section continue program execution. They difference between them is the
condition under which execution will stop the next time. When execution stops again, the next
trace line is printed and a new command is accepted.

n c creep
This command allows exhaustive tracing: the execution stops at the next port of any
leashed procedure. No further parameters are required, a counter n will repeat the com-
mand n times. It always applies on the current procedure, even when the displayed pro-
cedure is not the current one (e.g., during term inspection). An alias for the c command
is to just type newline (Return-key).

n s skip
If given at an entry port of a box (CALL, RESUME, REDO), this command skips the
execution until an exit port of this box (EXIT, FAIL, LEAVE). If given in an exit port it
works like creep. (Note that sometimes the i command is more appropriate, since it skips
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to the next port of the current box, no matter which). A counter, if specified, repeats this
command.

n l leap
Continues to the next spy point (any port of a procedure which has its spy flag set). A
counter, if specified, repeats this command.

i par invocation skip
Continue to the next port of the box with the invocation number specified. The default
invocation number is the one of the current box. Common uses for this command are to
skip from CALL to NEXT, from NEXT to NEXT/EXIT/FAIL, from *EXIT to REDO,
or from DELAY to RESUME.

j par jump to level
Continue to the next port with the specified nesting level (which can be higher or lower
than the current one). The default is the parent’s level, i.e., to continue until the current
box is exited, ignoring all the remaining subgoals of the current clause. This is particularly
useful when a c (creep) has been typed where a s (skip) was wanted.

n nodebug
This command switches tracing off for the remainder of the execution. However, the next
top-level query will be traced again. Use N to switch tracing off permanently.

q query the failure culprit
The purpose of this command is to find out why a goal has failed (FAIL) or was aborted
with an exception (LEAVE). It prints the invocation number of the goal which caused the
failure. You can then re-run the program in creep mode and type q at the first command
prompt. This will then offer you to jump to the CALL port of the culprit goal.

[eclipse 3]: p.

(1) 1 CALL p %> skip

(1) 1 FAIL p %> query culprit

failure culprit was (3) - rerun and type q to jump there %> nodebug? [y]

No (0.00s cpu)

[eclipse 4]: p.

(1) 1 CALL p %> query culprit

failure culprit was (3) - jump to invoc: [3]?

(3) 3 CALL r(1) %> creep

(3) 3 FAIL r(...) %> creep

(2) 2 FAIL q %> creep

(1) 1 FAIL p %> creep

No (0.01s cpu)

v var/term modification skip
This command sets up a monitor on the currently displayed term, which will cause a
MODIFY-port to be raised on each modification to any variable in the term. These ports
will all have a unique invocation number which is assigned and printed at the time the
command is issued. This number can then be used with the i command to skip to where
the modifications happen.
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[eclipse 4]: [X, Y] :: 1..9, X #>= Y, Y#>1.

(1) 1 CALL [X, Y] :: 1..9 %> var/term spy? [y]

Var/term spy set up with invocation number (2) %> jump to invoc: [1]? 2

(2) 3 MODIFY [X{[1..9]}, Y{[2..9]}] :: 1..9 %> jump to invoc: [2]?

(2) 4 MODIFY [X{[2..9]}, Y{[2..9]}] :: 1..9 %> jump to invoc: [2]?

Note that these monitors can also be set up from within the program code using one of
the built-ins spy var/1 or spy term/2.

z par zap
This command allows to skip over, or to a specified port. When this command is executed,
the debugger prompts for a port name (e.g., fail) or a negated port name (e.g., ∼exit).
Execution then continues until the specified port appears or, in the negated case, until a
port other than the specified one appears. The default is the negation of the current port,
which is useful when exiting from a deep recursion (a long sequence of EXIT or FAIL
ports).

15.6.3 Commands to Modify Execution

f par fail
Force a failure of the procedure with the specified invocation number. The default is to
force failure of the current procedure.

a abort
Abort the execution of the current query and return to the top-level. The command
prompts for confirmation.

15.6.4 Display Commands

This group of commands cause some useful information to be displayed.

d par delayed goals
Display the currently delayed goals. The optional argument allows to restrict the display
to goal of a certain priority only. The goals are displayed in a format similar to the trace
lines, except that there is no depth level and no port name. Instead, the goal priority is
displayed in angular brackets:

[eclipse 5]: [X, Y] :: 1..9, X #>= Y, Y #>= X.

(1) 1 CALL [X, Y] :: 1..9 %> creep

(1) 1 EXIT [X{[1..9]}, Y{[1..9]}] :: 1..9 %> creep

(2) 1 CALL X{[1..9]} - Y{[1..9]}#>=0 %> creep

(3) 2 DELAY X{[1..9]} - Y{[1..9]}#>=0 %> creep

(2) 1 EXIT X{[1..9]} - Y{[1..9]}#>=0 %> creep

(4) 1 CALL Y{[1..9]} - X{[1..9]}#>=0 %> creep

(5) 2 DELAY Y{[1..9]} - X{[1..9]}#>=0 %> delayed goals

with prio: [all]?

------- delayed goals -------

(3) <2> X{[1..9]} - Y{[1..9]}#>=0

(5) <2> Y{[1..9]} - X{[1..9]}#>=0
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------------ end ------------

(5) 2 DELAY Y{[1..9]} - X{[1..9]}#>=0 %>

u par scheduled goals
Similar to the d command, but displays only those delayed goals that are already scheduled
for execution. The optional argument allows to restrict the display to goal of a certain
priority only. Example:

[eclipse 13]: [X,Y,Z]::1..9, X#>Z, Y#>Z, Z#>1.

(1) 1 CALL [X, Y, Z] :: 1..9 %> creep

(1) 1 EXIT [X{[1..9]}, Y{[1..9]}, Z{[1..9]}] :: 1..9 %> creep

(2) 1 CALL X{[1..9]} - Z{[1..9]}+-1#>=0 %> creep

(3) 2 DELAY X{[2..9]} - Z{[1..8]}#>=1 %> creep

(2) 1 EXIT X{[2..9]} - Z{[1..8]}+-1#>=0 %> creep

(4) 1 CALL Y{[1..9]} - Z{[1..8]}+-1#>=0 %> creep

(5) 2 DELAY Y{[2..9]} - Z{[1..8]}#>=1 %> creep

(4) 1 EXIT Y{[2..9]} - Z{[1..8]}+-1#>=0 %> creep

(6) 1 CALL 0 + Z{[1..8]}+-2#>=0 %> creep

(3) 2 RESUME X{[2..9]} - Z{[2..8]}#>=1 %> scheduled goals

with prio: [all]?

------ scheduled goals ------

(5) <2> Y{[2..9]} - Z{[2..8]}#>=1

------------ end ------------

(3) 2 RESUME X{[2..9]} - Z{[2..8]}#>=1 %>

G all ancestors
Prints all the current goal’s ancestors from the oldest to the newest. The display format
is similar to trace lines, except that .... is displayed in the port field.

. print definition
If given at a trace line, the command displays the source code of the current predicate. If
the predicate is not written in Prolog, or has not been compiled from a file, or the source
file is inaccessible, no information can be displayed.

w write source context for current goal
Lists the source lines around the current goal displayed by the trace line, showing the
context of the goal. For example:

(230) 4 CALL check_word(what, _5824) %> write source lines

Source file: /homes/user/EclipseTests/Chatq/newtop

241 :- mode check_words(+,-).

242

243 check_words([],[]).

244 check_words([Word|Words],[RevWord|RevWords]) :-

245> check_word(Word,RevWord),

245 check_words(Words,RevWords).

246

247 :- mode check_word(+,-).

248
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%>

The listing shows the line numbers for the source lines, with a > marking the line with
the current goal. Note it is the actual body goal that is shown, rather than the predicate
definition as in the . command. An optional numeric argument can be given before the
command, specifying the number of lines surrounding (i.e., before and after) the current
goal that should be listed:

%> 2write source lines

Source file: /homes/user/EclipseTests/Chatq/newtop

243 check_words([],[]).

244 check_words([Word|Words],[RevWord|RevWords]) :-

245> check_word(Word,RevWord),

245 check_words(Words,RevWords).

246

%>

Source is only shown if the source information is available—that is, the code has to be
compiled debuggable from a file, and not all goals have source information; for example,
goals in meta-calls (e.g., those inside a call/1). Also, source context cannot be shown at
a RESUME port.

h help
Print a summary of the debugger commands.

? help
Identical to the h command.

15.6.5 Navigating among Goals

While the debugger waits for commands, program execution is always stopped at some port of
some predicate invocation box, or goal. Apart from this current goal, two types of other goals
are also active. These are the ancestors of the current goal (the enclosing, not yet exited boxes
in the box model) and the delayed goals. The debugger allows to navigate among these goals
and inspect them.

g ancestor
Move to and display the ancestor goal (or parent) of the displayed goal. Repeated appli-
cation of this command allows to go up the call stack.

x par examine goal
Move to and display the goal with the specified invocation number. This must be one of
the active goals, i.e., either an ancestor of the current goal or one of the currently delayed
goals. The default is to return to the current goal, i.e., to the goal at whose port the
execution is currently stopped.
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15.6.6 Inspecting Goals and Data

This family of commands allow the subterms in the goal displayed at the port to be inspected.
The ability to inspect subterms is designed to help overcome two problems when examining a
large goal with the normal display of the goal at a debug port:

1. Some of the subterms may be omitted from the printed goal because of the print-depth;

2. If the user is interested in particular subterms, it may be difficult to precisely locate them
from the surrounding arguments, even if it is printed.

With inspect subterm commands, the user is able to issue commands to navigate through the
subterms of the current goal and examine them. A current subterm of the goal is maintained,
and this is printed after each inspect subterm command, instead of the entire goal. Initially, the
current subterm is set to the goal, but this can then be moved to the subterms of the goal with
navigation commands.
Once inspect subterm is initiated by an inspect subterm command, the debugger enters into the
inspect subterm mode. This is indicated in the trace line by INSPECT instead of the name of the
port, and in addition, the goal is not shown on the trace line:

INSPECT (length/2) %>

Instead of showing the goal, a summary of the current subterm—generally its functor and arity
if the subterm is a structure—is shown in brackets.

# par move down to parth argument
The most basic command of inspect subterm is to move the current subterm to an argu-
ment of the existing current subterm. This is done by typing a number followed by carriage
return, or by typing #, which causes the debugger to prompt for a number. In both cases,
the number specifies the argument number to move down to. In the following example,
the # style of the command is used to move to the first argument, and the number style
of the command to move to the third argument:

(1) 1 CALL foo(a, g(b, [1, 2]), X) %> inspect arg #: 1<NL>

a

INSPECT (atom) %>

(1) 1 CALL foo(a, g(b, [1, 2]), X) %> 3<NL>

X

INSPECT (var) %>

The new current subterm is printed, followed by the INSPECT trace line. Notice that the
summary shows the type of the current subterm, instead of Name/Arity, since in both
cases the subterms are not structures.

If the current subterm itself is a compound term, then it is possible to recursively navigate
into the subterm:

(1) 1 CALL foo(a, g(b, [1, 2]), X) %> 2<NL>

g(b, [1, 2])
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INSPECT (g/2) %> 2<NL>

[1, 2]

INSPECT (list 1-head 2-tail) %> 2<NL>

[2]

INSPECT (list 1-head 2-tail) %>

Notice that lists are treated as a structure with arity 2, although the functor (./2) is not
printed.

In addition to compound terms, it is also possible to navigate into the attributes of at-
tributed variables:

[eclipse 21]: suspend(foo(X), 3, X->inst), foo(X).<NL>

(1) 1 DELAY foo(X) %> <NL>

creep

(2) 1 CALL foo(X) %> 1<NL>

X

INSPECT (attributes 1-suspend 2-fd ) %>1<NL>

suspend([’SUSP-1-susp’|_218] - _218, [], [])

INSPECT (struct suspend/3) %>

The variable X is an attributed variable in this case, and when it is the current subterm,
this is indicated in the trace line. The debugger also shows the user the currently available
attributes, and the user can then select one to navigate into (fd is available in this case
because the finite domain library was loaded earlier in the session. Otherwise, it would
not be available as a choice here).

Note that the suspend/3 summary contains a struct before it. This is because the
suspend/3 is a predefined structure with field names (see section 5.1). It is possible to
view the field names of such structures using the . command in inspect mode.

If the number specified is larger than the number of the arguments of the current subterm,
then an error is reported and no movement is made:

foo(a, g(b, [1, 2]), 3)

INSPECT (foo/3) %> 4<NL>

Out of range.....

foo(a, g(b, [1, 2]), 3)

INSPECT (foo/3) %>

n uparrow key move current subterm up by n levels

n A move current subterm up by n levels
In addition to moving the current subterm down, it can also be moved up from its current
position. This is done by typing the uparrow key. This key is mapped to A by the debugger,
so one can also type A. Typing A may be necessary for some configurations (combination
of keyboards and operating systems) because the uparrow key is not correctly mapped to
A.
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An optional argument can preceded the uparrow keystroke, which indicates the number
of levels to move up. The default is 1:

(1) 1 CALL foo(a, g(b, [1, 2]), 3) %> 2<NL>

g(b, [1, 2])

INSPECT (g/2) %> 1<NL>

b

INSPECT (atom) %> up subterm

g(b, [1, 2])

INSPECT (g/2) %> 1up subterm

foo(a, g(b, [1, 2]), 3)

INSPECT (foo/3) %>

The debugger prints up subterm when the uparrow key is typed. The current subterm
moves back up the structure to its parent for each level it moves up, and the above move
can be done directly by specifying 2 as the levels to move up:

b

INSPECT (atom) %> 2up subterm

foo(a, g(b, [1, 2]), 3)

INSPECT (foo/3) %>

If the number of levels specified is more than the number of levels that can be traversed
up, the current subterm stops at the toplevel:

(1) 1 CALL foo(a, g(b, [1, 2]), 3) %> 2<NL>

g(b, [1, 2])

INSPECT (g/2) %> 2<NL>

[1, 2]

INSPECT (list 1-head 2-tail) %> 5up subterm

foo(a, g(b, [1, 2]), 3)

INSPECT (foo/3) %>

0 move current subterm to toplevel
It is possible to quickly move back to the top of a goal that is being inspected by specifying
0 (zero) as the command:

(1) 1 CALL foo(a, g(b, [1, 2]), 3) %> 2<NL>

g(b, [1, 2])

INSPECT (g/2) %> 2<NL>

[1, 2]

INSPECT (list 1-head 2-tail) %> 2<NL>

[2]

INSPECT (list 1-head 2-tail) %> 2<NL>

[]

INSPECT (atom) %> 0<NL>

foo(a, g(b, [1, 2]), 3)

INSPECT (foo/3) %>
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Moving to the top can also be done by the # command, and not giving any argument (or
notation0) when prompted for the argument.

n leftarrow key move current subterm left by n positions

n D move current subterm left by n positions
The leftarrow key (or the equivalent D) moves the current subterm to a sibling subterm
(i.e., fellow argument of the parent structure) that is to the left of it. Consider the structure
foo(a, g(b, [1, 2]), 3), then for the second argument, g(b, [1, 2]), a is its (only)
left sibling, and 3 its (only) right sibling. For the third argument, 3, both a (distance of 2)
and g(b, [1, 2]) (distance of 1) are its left siblings. The optional numeric argument for
the command specifies the distance to the left that the current subterm should be moved.
It defaults to 1.

foo(a, g(b, [1, 2]), 3)

INSPECT (foo/3) %> 3<NL>

3

INSPECT (integer) %> 2left subterm

a

INSPECT (atom) %>

If the leftward movement specified would move the argument position before the first
argument of the parent term, then the movement will stop at the first argument:

foo(a, g(b, [1, 2]), 3)

INSPECT (foo/3) %> 3<NL>

3

INSPECT (integer) %> 5left subterm

a

INSPECT (atom) %>

In the above example, the current subterm was at the third argument, thus trying to move
left by 5 argument positions is not possible, and the current subterm stopped at leftmost
position—the first argument.

n rightarrow key move current subterm right by n positions

n C move current subterm right by n positions
The rightarrow key (or the equivalent C) moves the current subterm to a sibling subterm
(i.e., fellow argument of the parent structure) that is to the right of it. Consider the
structure foo(a, g(b, [1, 2]), 3), then for the first argument, a, g(b, [1, 2]) is a
right sibling with distance of 1, and 3 is a right sibling with distance of 2. The optional
numeric argument for the command specifies the distance to the left that the current
subterm should be moved. It defaults to 1.

foo(a, g(b, [1, 2]), 3)

INSPECT (integer) %> 2left subterm

a

INSPECT (atom) %>
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If the rightward movement specified would move the argument position beyond the last
argument of the parent term, then the movement will stop at the last argument:

foo(a, g(b, [1, 2]), 3)

INSPECT (foo/3) %> 3<NL>

3

INSPECT (integer) %> right subterm

3

INSPECT (integer) %>

In the above example, the current subterm was at the third (and last) argument, thus
trying to move to the right (by the default 1 position in this case) is not possible, and the
current subterm remains at the third argument.

n downarrow key move current subterm down by n levels

n B move current subterm down by n levels
The down-arrow key moves the current subterm down from its current position. This
command is only valid if the current subterm is a compound term and so has subterms
itself. A structure has in general more than one argument, so there is a choice of which
argument position to move down to. This argument is not directly specified by the user
as part of the command, but is implicitly specified: the argument position selected is the
argument position of the current subterm within its parent:

foo(a, g(b, [1, 2]), 3)

INSPECT (foo/3) %> 2<NL>

g(b, [1, 2])

INSPECT (list 1-head 2-tail) %> 3down subterm 2 for 3 levels

[]

INSPECT (atom) %>

In the above example, the user moves down into the second argument, and then use
the down-arrow key to move down into the second argument for 2 levels—the numeric
argument typed before the arrow key specified the number of levels that the current
subterm was moved down by. The command moves into the second argument because it
was at the second argument position when the command was issue.

However, there is not always an argument position for the current sub-term. For example,
when the current sub-term is at the toplevel of the goal or if it is at an attribute. In these
cases, the default for the argument position to move down into is the first argument:

INSPECT (atom) %> 0<NL>

foo(a, g(b, [1, 2]), 3)

INSPECT (foo/3) %> down subterm 1 for 1 levels

a

INSPECT (atom) %>

In the above example, the down-arrow key is typed at the top-level, and thus the argument
position chosen for moving down is first argument, with the default numeric argument for
the
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If the argument position to move into is beyond the range of the current subterm’s number
of arguments, then no move is performed:

(1) 1 CALL foo(a, b, c(d, e)) %> 3<NL>

c(d, e)

INSPECT (c/2) %> Out of range after traversing down arg...

c(d, e)

INSPECT (c/2) %>

In this case, the down-arrow key was typed in the second trace line, which had the current
subterm at the third argument of its parent term, and thus the command tries to move
the new current subterm to the third argument of the current sub-term, but the structure
does not have a third argument and so no move was made. In the case of moving down
multiple levels, then the movement will stop as soon as the argument position to move
down to goes out of range.

Moving down is particularly useful for traversing lists. As discussed, lists are really struc-
tures with arity two, so the #N command would not move to the N th element of the
list. With the down-arrow command , it is possible to move into the N th position in one
command:

[eclipse 30]: foo([1,2,3,4,5,6,7,8,9]).

(1) 1 CALL foo([1, 2, 3, ...]) %> 1<NL>

[1, 2, 3, 4, ...]

INSPECT (list 1-head 2-tail) %> 2<NL>

[2, 3, 4, 5, ...]

INSPECT (list 1-head 2-tail) %> 6down subterm 2 for 6 levels

[8, 9]

INSPECT (list 1-head 2-tail) %>

In order to move down a list, we repeatedly move into the tail of the list—the second
argument position. In order to do this with the down-arrow command, we must be at
the second argument position first, and this is done in the second trace line. Once this is
done, then it is possible to move arbitrarily far down the list in one go, as is shown in the
example.

. print structure definition
In ECLiPSe, it is possible to define field names for structures (see section 5.1). If the
inspector encounters such structures, then the user can get the debugger to print out the
field names. Note that this functionality only applies within the inspect subterm mode,
as the debugger command “.” normally prints the source for the predicate. The fact that
a structure has defined field names are indicated by a “struct” in the summary:

:- local struct(capital(city,country)).

.....

(1) 1 CALL f(capital(london, C)) %> 1<NL>
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capital(london, C)

INSPECT (struct capital/2) %> structure definition:

1=city 2=country

%>

In this example, a structure definition was made for capital/2. When this structure is
the current subterm in the inspect mode, the struct in the summary for the structure
indicates that it has a structure definition. For such structures, the field names are printed
by the structure definition command.

If the command is issued for a term that does not have a structure definition, an error
would be reported:

INSPECT (f/1) %> structure definition:

No struct definition for term f/1@eclipse.

%>

p show subterm path
As the user navigates into a term, then at each level, a particular argument position (or
attribute, in the case of attributed variables) is selected at each level. The user can view
the position the current subterm is at by the p command. For example,

(1) 1 CALL foo(a, g(b, [1, 2]), 3) %> 2<NL>

g(b, [1, 2])

INSPECT (g/2) %> 2<NL>

[1, 2]

INSPECT (list 1-head 2-tail) %> 1<NL>

1

INSPECT (integer) %> p

Subterm path: 2, 2, 1

%>

The subterm path shows the argument positions taken at each level of the toplevel term
to reach the current subterm, starting from the top.

Extra information (in addition to the numeric argument position) will be printed if the
subterm at a particular level is either a structure with field names or an attributed variable.
For example:

:- local struct(capital(city,country)).

.....

[eclipse 8]: suspend(capital(london, C), 3 ,C -> inst),

f(capital(london, C)).

....

(2) 1 CALL f(capital(london, C)) %> 1<NL>
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capital(london, C)

INSPECT (struct capital/2) %> 2<NL>

C

INSPECT (attributes 1-suspend ) %> 1<NL>

suspend([’SUSP-1-susp’|_244] - _244, [], [])

INSPECT (struct suspend/3) %> 1<NL>

[’SUSP-1-susp’|_244] - _244

INSPECT (-/2) %>

Subterm path: 1, country of capital (2), attr: suspend, inst of

suspend (1) %>

In this example, except for the toplevel argument, all the other positions are either have
field names or are attributes. This is reflected in the path, for example, country of

capital (2) shows that the field name for the selected argument position (2, shown
in brackets) is country, and the structure name is capital. For the “position” of the
selected attribute (suspend) of the attributed variable C, the path position is shown as
attr: suspend.

Interaction between inspect subterm and output modes

The debugger commands that affect the print formats in the debugger also affects the
printed current subterm. Thus, both the print depth and output mode of the printed
subterm can be changed.

The changing of the output modes can have a significant impact on the inspect mode.
This is because for terms which are transformed by write macros before they are printed
(see chapter 13), different terms can be printed depending on the settings of the output
modes. In particular, output transformation is used to hide many of the implementation
related extra fields and even term names of many ECLiPSe data structures (such as those
used in the finite domain library). For the purposes of inspect subterms, the term that is
inspected is always the printed form of the term, and thus changing the output mode can
change the term that is being inspected.

Consider the example of looking at the attribute of a finite domain variable:

A{[4..10000000]}

INSPECT (attributes 1-suspend 2-fd ) %> 2<NL>

[4..10000000]

INSPECT (list 1-head 2-tail) %> 1<NL>

4..10000000

INSPECT (../2) %> 2up subterm

A{[4..10000000]}

INSPECT (attributes 1-suspend 2-fd ) %> <o>

current output mode is "QPm", toggle char: T

new output mode is "TQPm".

A{[4..10000000]}

INSPECT (attributes 1-suspend 2-fd ) %> 2<NL>

fd(dom([4..10000000], 9999997), [], [], [])
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INSPECT (struct fd/4) %> 1<NL>

dom([4..10000000], 9999997)

INSPECT (dom/2) %>

After selecting the output mode T, which turns off any output macros, the internal form of
the attribute is shown. This allows previously hidden fields of the attribute to be examined
by the subterm navigation. Note that if the current subterm is inside a structure which
will be changed by a changed output mode (such as inside the fd attribute), and the output
mode is changed, then until the current subterm is moved out of the structure, the existing
subterm path is still applicable.

Also, after a change in output modes, the current subterm will still be examining the
structure that it obtained from the parent subterm. Consider the finite domain variable
example again:

4..10000000

INSPECT (../2) %> up subterm

[4..10000000] ***** printed structure 1

INSPECT (list 1-head 2-tail) %> <o>

current output mode is "QPm", toggle char: T

new output mode is "TQPm".

[4..10000000]

INSPECT (list 1-head 2-tail) %> up subterm

A{[4..10000000]}

INSPECT (attributes 1-suspend 2-fd ) %> 2

fd(dom([4..10000000], 9999997), [], [], [])

INSPECT (struct fd/4) %> <o>

current output mode is "QPmT", toggle char: T

new output mode is "QPm".

fd(4..10000000, [], [], []) ***** printed structure 2

INSPECT (struct fd/4) %>

Printed structures 1 and 2 in the above example are at the same position (toplevel of the
finite domain structure), and printed with the same output mode (QPm), but are different
because the structure obtained from the parent subterm is different—in printed structure
2, the output mode was not changed until after the fd/4 structure was the current subterm.

15.6.7 Changing the Settings

The following commands allow to change the parameters which influence the way the tracing
information is displayed or processed.

< par set print depth
Allows to modify the print_depth, i.e., the depth up to which nested argument terms are
printed. Everything nested deeper than the specified depth is abbreviated as .... Note
that the debugger has a private print_depth setting with default 5, which is different
from the global setting obtained from get flag/2.
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> par set indentation step width
Allows to specify the number of spaces used to indent trace lines according to their depth
level. The default is 0.

m module
Toggles the module printing in the trace line. If enabled, the module from where the
procedure is called is printed in the trace line:

(1) 1 CALL true %> show module

(1) 1 CALL eclipse : true %>

o output mode
This command allows to modify the options used when printing trace lines. It first prints
the current output_mode string, as obtained by get flag/2, then it prompts for a sequence
of characters. If it contains valid output mode flags, the value of these flags is then inverted.
Typing an invalid character will display a list describing the different options. Note that
this command affects the global setting of output_mode.

(1) 1 CALL X is length([1, 2, ...]) %> current output mode

is "QPm", toggle char: V

new output mode is "VQPm".

(1) 1 CALL X_72 is length([1, 2, ...]) %> current output mode

is "QVPm", toggle char: O

new output mode is "OQVPm".

(1) 1 CALL is(X_72, length([1, 2, ...])) %> current output mode

is "OQVPm", toggle char: .

new output mode is ".OQVPm".

(1) 1 CALL is(X_72, length(.(1, .(2, .(...))))) %>

+ set a spy point
Set a spy point on the displayed procedure, the same as using the spy/1 predicate. It is

possible to set a spy point on any existing procedure, even on a built-in on external one.
If the procedure already has a spy point, an error message is printed and any counter is
ignored.

Note that the debugger does not check for spy points that occur inside skipped procedures
or during the execution of any other skip command than the leap command l.

− remove a spy point
Similarly to the previous command, this one removes a spy point from a procedure, if it

has one.

15.6.8 Environment Commands

b break
This command is identical to the break/0 call. A new top-level loop is started with the
debugger switched off. The state of the database and the global settings is the same as
in the previous top-level loop. After exiting the break level with ^D (i.e., CTRL-D), or
end_of_file the execution returns to the debugger and the last trace line is redisplayed.
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N nodebug permanently
This command switches tracing off for the remainder of the execution as well as for sub-
sequent top-level queries. It affects the global flag debugging, setting it to nodebug.

15.7 Extending the Debugger

15.7.1 User-defined Ports

The standard set of ports in the debugger’s box model can be extended by the programmer.
This facility is not so much intended for applications, but rather for libraries that want to
allow debugging in terms of concepts of the library. Specific ports can be used to identify the
interesting events during execution of the library code (while the standard tracing of the library
internals can be suppressed by compiling the library in nodebug-mode).

The system provides 4 primitives that can generate 4 kinds of box model ports. When inserted
into the code, and when the debugger is on, they will cause execution to stop and enter the
debugger, displaying a trace line with the user-defined port and data:

• trace call port(+Port, ?Invoc, ?Term) is used to create new ports similar to CALL
ports, but the port name can be chosen freely. Such a port creates a new box. There must
be a corresponding trace exit port/0 to exit the box on success.

• trace exit port is used in conjunction with trace call port/3 to exit a box on success.

• trace point port(+Port, ?Invoc, ?Term) is used to create a standalone port, i.e., a
port that causes the tracer to create a trace line, but does not create, enter or leave any
box.

• trace parent port(+Port) is used to create an additional port for the parent box, but
does not enter or leave the box.

For example, trace call port/3 and trace exit port/0 can be used to create a more read-
able trace in the presence of source transformations. Imagine that the goal Y is X*X-1 has
been flattened into the goal sequence *(X,X,T),-(T,1,Y). By inserting the trace primitives the
debugger can still show the original source before transformation:

p(X,Y) :-

trace_call_port(call,_, Y is X*X-1),

*(X,X,T),

-(T,1,Y),

trace_exit_port.

The trace then looks like this:

[eclipse 8]: p(3,Y).

(1) 1 CALL p(3, Y) %> creep

(2) 2 CALL Y is 3 * 3 - 1 %> skip

(2) 2 EXIT 8 is 3 * 3 - 1 %> creep

(1) 1 EXIT p(3, 8) %> creep

Y = 8
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Another example is the insertion of additional ports for existing boxes, in particular the current
parent box:

p :-

trace_parent_port(clause1),

writeln(hello),

fail.

p :-

trace_parent_port(clause2),

writeln(world).

This gives rise to the following trace:

?- p.

(1) 1 CALL p %> creep

(1) 1 CLAUSE1 p %> creep

S (2) 2 CALL writeln(hello) %> creep

hello

S (2) 2 EXIT writeln(hello) %> creep

(3) 2 CALL fail %> creep

(3) 2 FAIL fail %> creep

(1) 1 NEXT p %> creep

(1) 1 CLAUSE2 p %> creep

S (4) 2 CALL writeln(world) %> creep

world

S (4) 2 EXIT writeln(world) %> creep

(1) 1 EXIT p %> creep

Yes (0.00s cpu)

Note that the additional ports share the parent’s invocation number, so the i command can be
used to skip from one to the other.

15.7.2 Attaching a Different User Interface

The tracer consists of a trace generation component (which is part of the ECLiPSe runtime
kernel), and a user interface (which is part of the development system). The standard ECLiPSe

distribution contains two user interfaces, a console-based one, and a graphical one which is part
of TkECLiPSe. A programmable tracer interface (OPIUM/LSD) is under development in the
group of Mireille Ducasse at IRISA/Rennes. Connecting new interfaces is relatively easy, for
more detailed information contact the ECLiPSe development team.

15.8 Switching To Creep Mode With CTRL-C

When the debugger is on and a program is running, typing CTRL-C prompts for input of an option.
The d-option switches the debugger to creep mode and continues executing the interrupted
program. The debugger will then stop at the next port of the running program.

[eclipse 1]: debug.

Debugger switched on - leap mode
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[eclipse 2]: repeat,fail.

^C

interruption: type a, b, c, d, e, or h for help : ? d

(1) 1 *EXIT repeat %>
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Chapter 16

Development Support Tools

This chapter describes some of the tools and libraries provided by ECLiPSe that assist in program
development and the analysis of program runtime behaviour.

16.1 Available Tools and Libraries

ECLiPSe provides a number of different tools and libraries to assist the programmer with pro-
gram development:

Document Tools for generating documentation from ECLiPSe sources.

Lint Generates warning messages for dubious programming constructs and violation
of naming conventions for an ECLiPSe source module or file.

Pretty printer Tools for pretty-printing a file in different formats.

Xref Enables the analysis of an ECLiPSe source module or file for the construction
of a predicate call graph.

In addition, ECLiPSe provides several tools that aid in the understanding of a programs runtime
behaviour:

Coverage Records the frequency at which various parts of the program are exe-
cuted.

Debugger Provides a low level view of program activity. Chapter 15 presents a
comprehensive look at debugging of ECLiPSe programs.

Display matrix Shows the values of given terms in a graphical window. Chapter 4
discusses the use of this tool.

Mode Analyser Collects statistics about the invocation modes of predicates within
a running program in order to assist in the generation of compiler invocation
mode directives.

Port Profiler Collects statistics about the running program in terms of box model
port counters.

Timing Profiler Samples the running program at regular intervals to give a sta-
tistical summary of where the execution time is spent.
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Visualisation framework A graphical environment for the visualisation of search
and propagation in constraint programs. The Visualisation Tools Manual dis-
cusses the use of this environment.

This section focuses on the program development libraries and two complementary runtime
analysis tools, the profiler and the coverage library. Throughout this chapter, the use of each
of the tools is demonstrated on the following n-queens code:

:- module(queen).

:- export queen/2.

queen(Data, Out) :-

qperm(Data, Out),

safe(Out).

qperm([], []).

qperm([X|Y], [U|V]) :-

qdelete(U, X, Y, Z),

qperm(Z, V).

qdelete(A, A, L, L).

qdelete(X, A, [H|T], [A|R]) :-

qdelete(X, H, T, R).

safe([]).

safe([N|L]) :-

nodiag(L, N, 1),

safe(L).

nodiag([], _, _).

nodiag([N|L], B, D) :-

D =\= N - B,

D =\= B - N,

D1 is D + 1,

nodiag(L, B, D1).

16.2 Heuristic Program Checker

The Heuristic Program Checking tool generates warning messages for dubious programming
constructs and violation of naming conventions for an ECLiPSe source module or file. It is
loaded as follows:

:- lib(lint).

The heuristic rules currently enforced are based on the style guide of Appendix E. These rules
are somewhat limited in scope. The library is distributed as source and serves to provide
a framework for the addition of a more comprehensive set of rules that are tailored to each
individual developer.
Consider the following typographic mistakes in the n-queens example:
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queen(Data, Out) :-

qperm(Datas, Out),

safe(Out).

n0diag([], _, _).

The tool is invoked using the lint/1 predicate with the source file specified as an atom or string:

?- lint(queen).

--- File /tmp/queen.ecl, line 4:

Singleton variables: [Data, Datas]

--- File /tmp/queen.ecl, line 22:

Questionable predicate name: n0diag

Yes (0.01s cpu)

The checker identifies Data and Datas as being singleton variables and is dubious of the n0diag

predicate name. Both are the result of programmer error, Datas should read Data and n0diag

as nodiag. The lint/2 predicate allows a list of options to be specified that turn on and off the
heuristic rules.

16.3 Document Generation Tools

The document generation tools library provides a set of predicates for the generation of doc-
umentation from ECLiPSe program sources. The tools generate documentation by processing
the comment/2 directives in each source file. The following is an example comment for the
n-queens example:

% comment for queen/2

:- comment(queen/2, [

summary: "Program that solves the attacking Queens problem for

an arbitrary number of queens.",

index: ["NQueens Problem"],

args: ["Data": "List modelling initial state of queens on board.",

"Args": "Solution list of Y-coordinate of each queen on the

board."],

amode: queen(+,-),

amode: queen(-,+),

amode: queen(+,+),

resat: yes,
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fail_if: "A solution cannot be found where all queens are safe

from attack by every other.",

see_also:

[queens8/1, queensN/1],

desc: html("The problem is to arrange a specified number of queens

on a chessboard such that no queen attacks any other queen

The predicate takes a list representing the initial state

of the queens on the board, with each element representing

a queen and its current Y-coordinate. If a solution is

found, a list is returned specifying the safe Y-coordinate

for each queen.")

]). % end of comment directive for queen/2

There are two pertinent predicates for document generation. The first, icompile/2 generates an
information file (with the extension .eci) by extracting information from a source file (whose
extension is .ecl). The second, eci to html/3, processes this information file to produce
readable HTML and plain text files. By default, these files are placed in a subdirectory with
the same name as the information file, but without the extension. The generated files are
index.html, containing a summary description of the library, plus one HTML and one plain
text file for each predicate that was commented using a comment/2 directive in the source.

The following produces the queen.eci file and a queen directory in the current directory. Within
the queen directory reside index.html, queen-2.html and queen-2.txt:

?- lib(document).

document.ecl compiled traceable 83620 bytes in 0.04 seconds

Yes (0.04s cpu)

?- icompile(queen, ".").

queen.ecl compiled traceable 1432 bytes in 0.01 seconds

/examples/queen.eci generated in 0.00 seconds.

Yes (0.01s cpu)

?- eci_to_html(queen, ".", "").

Yes (0.00s cpu)

16.4 Cross Referencing Tool

The cross referencing library xref analyses an ECLiPSe source module or file and builds its pred-
icate call graph. The graph can either be returned in the format of lib(graph_algorithms),
as text, or as a graphical display.

The xref/2 predicate is invoked as xref(File, Options). This generates a call graph for
the file File according to the Options list. The options specify the format of the graph to be
generated, whether calls to built in predicates are displayed and whether it is a caller or callee
graph:
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?- xref:xref(queen, []).

nodiag / 3 calls:

nodiag / 3

qdelete / 4 calls:

qdelete / 4

qperm / 2 calls:

qdelete / 4

qperm / 2

queen / 2 calls:

qperm / 2

safe / 1

safe / 1 calls:

nodiag / 3

safe / 1

Yes (0.01s cpu)

?- xref:xref(queen,[builtins:on,output:daVinci]).

WARNING: module ’daVinci’ does not exist, loading library...

daVinci.ecl compiled traceable 5644 bytes in 0.01 seconds

The first xref predicate call generates a textual call graph for the queen module, while the
second generates the daVinci graph illustrated in figure 16.1.

16.5 Pretty Printer Tool

The pretty printer library provides a set of predicates for the printing of a file’s contents as
a file in a number of formats. In particular, an ECLiPSe source file can be converted into an
HTML document with proper indentation, syntax colouring, hyperlinks from predicate uses to
definition, and hyperlinks to documentation.
The pretty print/2 predicate is used to print the file, or list of files. A list of options can
be given which modifies the format of the output file, its location, etc. The following creates
subdirectory pretty in the current directory. Within the pretty directory reside index.html

and queen.html, where queen.html is the queen module pretty printed in HTML:

?- pretty_printer:pretty_print(queen).

Writing /examples/pretty/queen.html

153



Figure 16.1: Call graph for queen example with built-in predicates

16.6 Timing Profiler

The profiling tool helps to find hot spots in a program that are worth optimising. To use the pro-
filer, start ECLiPSe or TkECLiPSe with the -P command line option (or use the EC OPTION WITH PROFILER
via the C interface, or the with profiler option via the Tcl interface, see D). It is not necessary
to compile the profiled code in a special way; this profiler works independently of compiler
optimizations and debug mode.
To profile the execution of a particular goal, use profile/1:

?- profile(Goal).

or select the Time Profile option from TkECLiPSe’s Query-menu. The profiler then executes
the Goal in the profiling mode, which means that every 100th of a second the execution is
interrupted and the profiler records the currently executing procedure. For example

?- profile(queen([1,2,3,4,5,6,7,8,9],Out)).

goal succeeded

PROFILING STATISTICS

--------------------

Goal: queen([1, 2, 3, 4, 5, 6, 7, 8, 9], Out)

Result: success

Sampling rate: every 0.01s process_cputime

Samples taken: 2
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Thread cputime: 0.03s

Predicate Module %Time Time %Cum

--------------------------------------------------------

qdelete /4 eclipse 50.0% 0.01s 50.0%

nodiag /3 eclipse 50.0% 0.01s 100.0%

Out = [1, 3, 6, 8, 2, 4, 9, 7, 5]

Yes (0.14s cpu)

The profiler output contains the following information:

1. The line Goal: shows the goal which was profiled.

2. The line Result: indicates whether the specified goal succeeded, failed or aborted. The
profile/1 predicate itself always succeeds.

3. The next lines show the sampling rate and the number of samples taken.

4. The next line shows the time spent in the calling thread.

5. Finally the predicates which were being executed when the profiler sampled, ranked in
decreasing sample count order are shown.

Auxiliary system predicates are printed under a common name without arity, e.g., arithmetic
or all_solutions. Predicates which are local to locked modules are printed together on a
single line that contains only the module name. By default only predicates written in Prolog
are profiled, i.e., if a Prolog predicate calls an external or built-in predicate written in C, the
time will be assigned to the Prolog predicate.
The predicate profile(Goal, Flags) can be used to change the way profiling is made, Flags is a
list of flags. Currently only the flag simple is accepted and it causes separate profiling of simple
predicates, i.e., those written in C.
The problem with the results displayed above is that the sampling frequency is too low when
compared to the total user time spent executing the goal. In fact in the above example the
profiler was only able to take two samples before the goal terminated.
The frequency at which the profiler samples is fixed, so in order to obtain more representative
results one should have an auxiliary predicate which calls the goal a number of times, and
compile and profile a call to this auxiliary predicate. e.g.,

queen_100 :-

(for(_,1,100,1) do queen([1,2,3,4,5,6,7,8,9],_Out)).

Note that, when compiled, the above do/2 loop would be efficiently implemented and not cause
overhead that would distort the measurement. Section 5.2 presents a detailed description of
logical loops.
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?- profile(queen_100).

goal succeeded

PROFILING STATISTICS

--------------------

Goal: queen_100

Result: success

Sampling rate: every 0.01s process_cputime

Samples taken: 319

Thread cputime: 3.19

Predicate Module %Time Time %Cum

--------------------------------------------------------

nodiag /3 eclipse 52.2% 1.67s 52.2%

qdelete /4 eclipse 27.4% 0.87s 79.6%

qperm /2 eclipse 17.0% 0.54s 96.5%

safe /1 eclipse 2.8% 0.09s 99.4%

queen /2 eclipse 0.6% 0.02s 100.0%

Yes (3.33s cpu)

In the above example, the profiler takes over three hundred samples resulting in a more accurate
view of where the time is being spent in the program. In this instance we can see that more
than half of the time is spent in the nodiag/3 predicate, making it an ideal candidate for
optimisation. This is left as an exercise for the reader.
Limitation: in ECLiPSe7.0, only the engine that called profile/1 is profiled.

16.7 Port Profiler

The port profiler is a performance analysis tool based on the idea of counting of events during
program execution. The events that are counted are defined in terms of the “box model” of exe-
cution (the same model that the debugger uses, see chapter 15.1). In this box model, predicates
are entered though call, redo or resume ports, and exited through exit, *exit, fail or leave ports.
Some other interesting events are indicated by ports as well (next, else, delay).
The usage is as follows:

1. Compile your program in debug mode, as you would normally do during program devel-
opment.

2. Load the port profiler library

3. Run the query which you want to examine, using port profile/2:

?- port_profile(queen([1,2,3,4],Out), []).

This will print the results in a table like the following:
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PREDICATE CALLER call exit fail *exit redo

- /3 nodiag /3 46 46 . . .

=\= /2 nodiag /3 46 45 1 . .

qperm /2 qperm /2 30 28 . 16 14

qdelete /4 qperm /2 20 18 . 12 10

nodiag /3 nodiag /3 17 14 3 . .

nodiag /3 safe /1 17 7 10 . .

+ /3 nodiag /3 17 17 . . .

qdelete /4 qdelete /4 10 9 . 3 2

qperm /2 queen /2 1 . . 11 10

safe /1 queen /2 11 1 10 . .

safe /1 safe /1 7 4 3 . .

queen /2 trace_body /2 1 . . 1 .

Each row of the table shows the information for a particular predicate (by default split according
to different caller predicates). The table is sorted according to entry port count (call + redo +
resume). The port counts give information about:

• what are the most frequently called predicates (call ports);

• whether predicates failed unexpectedly (fail ports);

• whether predicates exited nondeterministically (*exit ports), i.e., whether they left behind
any choice-points for backtracking;

• whether nondeterministically exited predicates were ever re-entered to find alternative
solutions (redo ports);

• whether predicates did internal backtracking (next ports) in order to find the right clause
(this may indicate suboptimal indexing);

• how often predicates were delayed and resumed.

For more details about different options and output formats, see the description of port profiler
in the Reference Manual.

16.8 Line coverage

The line coverage library provides a means to ascertain exactly how many times individual
clauses are called during the evaluation of a query.

The library works by placing coverage counters at strategic points throughout the code being
analysed. These counters are incremented each time the evaluation of a query passes them.
There are three locations in which coverage counters can be inserted.

1. At the beginning of a code block.

2. Between predicate calls within a code block.

3. At the end of a code block.
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A code block is defined to be a conjunction of predicate calls, i.e., a sequence of goals separated
by commas.
The counter values do not only show whether all code points were reached but also whether
subgoals failed or aborted (in which case the counter before a subgoal will have a higher value
than the counter after it).

16.8.1 Compilation

In order to add the coverage counters to code, it must be compiled with the ccompile/1
predicate which can be found in the coverage library.
The ccompile/1 predicate (note the initial ‘c’ stands for coverage) can be used in place of the
normal compile/1 predicate to compile a file with coverage counters.
The following shows the results of compiling the n-queens example:

?- coverage:ccompile(queen).

queen.ecl compiled traceable 6016 bytes in 0.01 seconds

coverage: inserted 20 coverage counters into module queen

Yes (0.14s cpu)

Once compiled, predicates can be called as usual and will (by default) have no visible side effects.
Internally however, the counters will be incremented as the execution progresses. The following
demonstrates this for a single solution to the queen/2 predicate:

?- queen:queen([1,2,3,4,5,6,7,8,9], Out).

The counter results are retrieved as demonstrated in the subsequent section. The two argument
predicate ccompile/2 can take a list of name:value pairs which can be used to control the
exact manner in which coverage counters are inserted. The documentation for the ccompile/2
predicate provides for a full list of the available flags.

16.8.2 Results

To generate an HTML file containing the coverage counter results, the result/1 predicate is
used:

?- coverage:result(queen).

Writing /examples/coverage/queen.html

index.pl compiled traceable 335304 bytes in 0.17 seconds

Yes (0.18s cpu)

This creates the result file coverage/queens.html which can be viewed using any browser. It
contains a pretty-printed form of the source, annotated with the values of the code coverage
counters as described above. As a side effect, the coverage counters will be reset.

16.9 Mode analysis

The mode analyser library is a tool that assists in the generation of the mode/1 directive for
predicate definitions. This directive informs the compiler that the arguments of the specified
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predicate will always have the corresponding form when the predicate is called. The compiler
utilises this information during compilation of the predicate in order to generate more compact
and/or faster code. Specifying the mode of a predicate that has already been compiled has
no effect, unless it is recompiled. If the specified procedure does not exist, a local undefined
procedure is created.
The mode analyser inserts instrumentation into the clause definitions of predicates during com-
pilation in order to record mode usage of each predicate argument. The code should then be
run (as many times as is necessary to capture the most common invocations of each predicate
undergoing analysis). Finally, the results of the analysis are requested and the suggested mode
annotations for each predicate are displayed.
The usage is as follows:

1. Load the mode analyser library:

?- lib(mode_analyser).

2. Compile your program with the mode analyser:

?- analyse(queen).

3. Run the query which most accurately exercises the invocation modes of the defined pred-
icates:

?- queen:queen([1,2,3,4],Out).

4. Generate the results for the module into which the program was compiled:

?- result([verbose:on])@queen.

This will print the results as follows:

Mode analysis for queen : qdelete / 4:

Results for argument 1:

-: 23 *: 0 +: 0 ++: 0

Results for argument 2:

-: 0 *: 0 +: 0 ++: 23

Results for argument 3:

-: 0 *: 0 +: 0 ++: 23

Results for argument 4:

-: 0 *: 0 +: 23 ++: 0

qdelete(-, ++, ++, +)

Mode analysis for queen : nodiag / 3:

Results for argument 1:

-: 0 *: 0 +: 0 ++: 62

Results for argument 2:

-: 0 *: 0 +: 0 ++: 62

Results for argument 3:

-: 0 *: 0 +: 0 ++: 62
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nodiag(++, ++, ++)

Mode analysis for queen : qperm / 2:

Results for argument 1:

-: 0 *: 0 +: 0 ++: 41

Results for argument 2:

-: 0 *: 0 +: 41 ++: 0

qperm(++, +)

Mode analysis for queen : queen / 2:

Results for argument 1:

-: 0 *: 0 +: 0 ++: 1

Results for argument 2:

-: 1 *: 0 +: 0 ++: 0

queen(++, -)

Mode analysis for queen : safe / 1:

Results for argument 1:

-: 0 *: 0 +: 0 ++: 38

safe(++)

NOTE: It is imperative to understand that the results of mode analysis are merely suggestions
for the invocation modes of a predicate based on runtime information. If there are potential
predicate invocation modes that were not exercised during runtime, the tool is unable to account
for them in its analysis. For the mode specifier ’-’ the mode analyser does not determine whether
the variable occurs in any other argument (i.e., is aliased), this must be manually verified. In
summary, the programmer must verify that the suggested modes are correct before using the
directive in the code. If the instantiation of the predicate call violates its mode declaration, no
exception is raised and its behaviour is undefined.
For more details about invocation mode analysis see the description of mode analyser in the
Reference Manual.
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Chapter 17

Attributed Variables

17.1 Introduction

The attributed variable is a special ECLiPSedata type which represents a variable together
with attached attributes. In the literature, attributed variables are sometimes referred to as
“metaterms”. The name metaterm originates from its application in meta-programming: for an
object-level program, a metaterm looks like a variable, but for a meta-program the same variable
is just a piece of data which, possibly together with additional meta-level information, forms the
metaterm.
The attributed variable is a powerful means to implement various extensions of the plain Prolog
language. In particular, it allows the system’s behaviour on unification to be customised. In
most situations an attributed variable behaves like a normal variable, e.g., it can be unified with
other terms and var/1 succeeds on it. The differences in comparison to a plain variable are:

• an attributed variable has a number of associated attributes;

• the attributes are included in the module system;

• when an attributed variable occurs in the unification and in some built-in predicates, each
attribute is processed by a user-defined handler.

17.2 Declaration

An attributed variable can have any number of attributes. The attributes are accessed by their
name. Before an attribute can be created and used, it must be declared with the predicate
meta attribute/2. The declaration has the format

meta attribute(Name, HandlerList)

Name is an atom denoting the attribute name and usually it is the name of the module where
this attribute is being created and used. HandlerList is a (possibly empty) list of handler
specifications for this attribute (see Section 17.7).
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17.3 Syntax

The most general attributed variable syntax is

Var{Name 1:Attr 1, Name 2:Attr 2, . . . , Name n:Attr n}
where the syntax of Var is like that of a variable, Name i are attribute names and Attr i
are the values of the corresponding attributes. The expression Var{Attr} is a shorthand for
Var{Module:Attr} where Module is the current module name. The former is called unqualified
and the latter qualified attribute specification. As the attribute name is usually identical
with the source module name, all occurrences of an attributed variable in the source module
may use the unqualified specification.
If there are several occurrences of the same attributed variable in a single term, only one occur-
rence is written with the attribute, the others just refer to the variable’s name, e.g.,

p(X, X{attr:Attr})

or

p(X{attr:Attr}, X)

both describe the same term, which has two occurrences of a single attributed variable with
attribute attr:Attr. The following is a syntax error (even when the attributes are identical):

p(X{attr:Attr}, X{attr:Attr})

17.4 Creating Attributed Variables

A new attribute can be added to a variable using the tool predicate

add attribute(Var, Attr).

An attribute whose name is not the current module name can be added using add attribute/3
which is its tool body predicate (exported in sepia_kernel). If Var is a free variable, it will
be bound to a new attributed variable whose attribute corresponding to the current module is
Attr and all its other attributes are free variables. If Var is already an attributed variable and
its attribute is uninstantiated, it will be bound to Attr, otherwise the effect of this predicate will
be the same as unifying Var with another attributed variable whose attribute corresponding to
the current module is Attr.

17.5 Decomposing Attributed Variables

The attributes of an attributed variable can be accessed using one-way unification in a matching
clause, e.g.,

get_attribute(X{Name:Attribute}, A) :-

-?->

A = Attribute.

This clause succeeds only when the first argument is an attributed variable, and it binds X to
the whole attributed variable and A to the attribute whose name is the instantiation of Name.
Note that a normal (unification) clause can not be used to decompose an attributed variable
(it would create a new attributed variable and unify this with the caller argument, but the
unification is handled by an attributed variable handler, see Section 17.7).
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17.6 Attribute Modification

Often an extension must modify the data stored in the attribute to reflect changes in the compu-
tation. The usual Prolog way to do this is by reserving one argument in the attribute structure
for this next value. before accessing the most recent attribute value this chain of values has to
be dereferenced until a value is found whose link is still free. A perfect compiler should be able
to detect that the older attribute values are no longer accessed and it would compile these modi-
fications using destructive assignment. Current compilers are unfortunately not able to perform
this optimization (some systems can reduce these chains during garbage collection, but until
this occurs, the list has to be dereferenced for each access and update). To avoid performance
loss for both attribute updating and access, ECLiPSe provides a predicate for explicit attribute
update: setarg(I, Term, NewArg) will update the I ’th argument of Term to be NewArg. Its
previous value will be restored on backtracking.

Libraries which define user-programmable extensions like, e.g., fd usually define predicates that
modify the attribute or a part of it, so that an explicit use of the setarg/3 predicate is not
necessary.

17.7 Attributed Variable Handlers

An attributed variable is a variable with some additional information which is ignored by ordi-
nary object level system predicates. Meta level operations on attributed variables are handled by
extensions which know the contents of their attributes and can specify the outcome of each oper-
ation. This mechanism is implemented using attributed variable handlers, which are user-
defined predicates invoked whenever an attributed variable occurs in one of the predefined oper-
ations. The handlers are specified in the attribute declaration meta attribute(Name, Han-
dlerList), the second argument is a list of handlers in the form

[unify:UnifyHandler, test_unify:TUHandler, ...]

Handlers for operations which are not specified or those that are true/0 are ignored and never
invoked. If Name is an existing extension, the specified handlers replace the current ones.

Whenever one of the specified operations detects an attributed variable, it will invoke all handlers
that were declared for it and each of them receives either the whole attributed variable or its
particular attribute as argument. The system does not check if the attribute that corresponds
to a given handler is instantiated or not; this means that the handler must check itself if the
attributed variable contains any attribute information or not. For instance, if an attributed
variable X{a:_, b:_, c:f(a)} is unified with the attributed variable Y{a:_, b:_, c:f(b)},
the handlers for the attributes a and b should treat this as binding of two plain variables because
their attributes were not involved. Only the handler for c has any work to do here. The library
suspend can be used as a template for writing attributed variable handlers.

The following operations invoke attributed variable handlers:

unify: the usual unification. The handler procedure is

unify handler(+Term, ?Attribute [, ?SuspAttr])

The first argument is the term that was unified with the attributed variable, it is either a
non-variable or another attributed variable. The second argument is the contents of the
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attribute slot corresponding to the extension. Note that, at this point in execution, the
orginal attributed variable no longer exists, because it has already been bound to Term.
The optional third argument is the suspend-attribute of the former variable; it may be
needed to wake the variable’s ’constrained’ suspension list.

The handler’s job is to determine whether the binding is allowed with respect to the
attribute. This could for example involve checking whether the bound term is in a domain
described by the attribute. For variable-variable bindings, typically the remaining attribute
must be updated to reflect the intersection of the two individual attributes. In case of
success, suspension lists inside the attributes may need to be scheduled for waking.

If an attributed variable is unified with a standard variable, the variable is bound to the
attributed variable and no handlers are invoked. If an attributed variable is unified with
another attributed variable or a non-variable, the attributed variable is bound (like a
standard variable) to the other term and all handlers for the unify operation are invoked.
Note that several attributed variable bindings can occur simultaneously, e.g. during a head
unification or during the unification of two compound terms. The handlers are only invoked
at certain trigger points (usually before the next regular predicate call). Woken goals will
start executing once all unify-handlers are done.

test unify: a unifiability test which is not supposed to trigger constraints propagation. It is
used by the not unify/2 predicate. The handler procedure is

test unify handler(+Term, ?Attribute)

where the arguments are the same as for the unify handler. The handler’s job is to
determine whether Attribute allows unification with Term (not considering effects of woken
goals). During the execution of the handler, the attributed variable may be bound to Term,
however when all attribute handlers succeed, all bindings are undone again, and no waking
occurs.

compare instances: computation of instance, subsumption and variance relationship, as per-
formed by the built-ins compare instances/3, instance/2 and variant/2. The handler
procedure is

instance handler(-Res, ?TermL, ?TermR)

and its arguments are similar to the ones of the compare instances/3 predicate. The
handler is invoked with one or both of TermL and TermR being attributed variables. The
task of the handler is to examine the two terms, and compute their instance relationship
with respect to the extension attribute in question. The handler must bind Res to = iff the
terms are variants, < iff TermL is a proper instance of TermR, or > iff TermR is a proper
instance of TermL) with respect to the attribute under consideration. If the terms are not
unifiable with respect to this attribute, the handler must fail.

Even though one of TermL and TermR is guaranteed to be an attributed variable, they
might not have the particular attribute that the handler is concerned with. The handler
must therefore be written to correctly deal with all combinations of an attributed (but
potentially uninstantiated attribute) variable with any other term.

copy term: the handler is invoked by either copy term/2 or copy term vars/3. The han-
dler procedure is

164



copy handler(?AttrVar, ?Copy)

AttrVar is the attributed variable encountered in the copied term, Copy is its corresponding
variable in the copy. All extension handlers receive the same arguments. This means that
if the attributed variable should be copied as an attributed variable, the handler must
check if Copy is still a free variable or if it was already bound to an attributed variable by
a previous handler.

suspensions: this handler is invoked by the suspensions/2 predicate to collect all the sus-
pension lists inside the attribute. The handler call pattern is

suspensions handler(?AttrVar, -ListOfSuspLists, -Tail)

AttrVar is an attributed variable. The handler should bind ListOfSuspLists to a list
containing all the attribute’s suspension lists and ending with Tail.

delayed goals number: handler is invoked by the delayed goals number/2 predicate. The
handler call pattern is

delayed goals number handler(?AttrVar, -Number)

AttrVar is the attributed variable encountered in the term, Number is the number of
delayed goals occurring in this attribute. Its main purpose is for the first-fail selection
predicates, i.e., it should return the number of constraints imposed on the variable.

get bounds: This handler is used by the predicate get var bounds/3 to retrieve information
about the lower and upper bound of a numeric variable. The handler should therefore only
be defined if the attribute contains that kind of information. The handler call pattern is

get bounds handler(?AttrVar, -Lwb, -Upb)

The handler is only invoked if the variable has the corresponding (non-empty) attribute.
The handler should bind Lwb and Upb to numbers (any numeric type) reflecting the
attribute’s information about lower and upper bound of the variable, respectively. If
different attributes return different bounds information, get var bounds/3 will return
the intersection of these bounds. This can be empty (Lwb > Upb).

set bounds: This handler is used by the predicate set var bounds/3 to distribute information
about the lower and upper bound of a numeric variable to all its existing attributes. The
handler should therefore only be defined if the attribute can incorporate this kind of
information. The handler call pattern is

set bounds handler(?AttrVar, +Lwb, +Upb)

The handler is only invoked if the variable has the corresponding (non-empty) attribute.
Lwb and Upb are the numbers that were passed to set var bounds/3, and the handler
is expected to update its own bounds representation accordingly.

print: attribute printing in write/1,2, writeln/1,2, printf/2,3 when the m option is specified.
The handler procedure is

print handler(?AttrVar, -PrintAttr)
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AttrVar is the attributed variable being printed, PrintAttr is the term which will be printed
as a value for this attribute, prefixed by the attribute name. If no handler is specified for
an attribute, or the print handler fails, the attribute will not be printed.

The following handlers are still supported for compatibility, but their use is not recommened:

pre unify: this is another handler which can be invoked on normal unification, but it is called
before the unification itself occurs. The handler procedure is

pre unify handler(?AttrVar, +Term [, -Goals])

The first argument is the attributed variable to be unfied, the second argument is the term
it is going to be unified with. The optional third argument can be used to return goals that
will be called after all pre-unify handlers for this variable have finished, and the variable
has been bound. The handlers itself should not bind any variables. If multiple attributed
variables were bound in a single unification, all these bindings are first undone, then the
handlers are called and the variables re-bound one by one. This handler is provided for
compatibility with SICStus Prolog and its use is not recommended. It can be used together
with a unify handler, which is called afterwards.

delayed goals: this handler is superseded by the suspensions-handler, which should be pre-
ferred. If there is no suspensions- handler, this handler is invoked by the obsolete de-
layed goals/2 predicate. The handler procedure is

delayed goals handler(?AttrVar, ?GoalList, -GoalCont)

AttrVar is the attributed variable encountered in the term, GoalList is an open-ended list
of all delayed goals in this attribute and GoalCont is the tail of this list.

17.7.1 Printing Attributed Variables

The different output predicates treat attributed variables differently. The write/1 predicate
prints the attributes using the print-handlers, while writeq/1 prints the whole attribute, so
that the attributed variable can be read back. The printf/2 predicate has two options to be
combined with the w format: M forces the whole attributed variable to be printed together with
all its attributes in the standard format, so that it can be read back in. With the m option the
attributed variable is printed using the handlers defined for the print operation. If there is only
one handled attribute, the attributed variable is printed as

X{Attr}

where Attr is the value obtained from the handler. If there are several handled attributes, all
attributes are qualified like in

X{a:A, b:B, c:C}.

A simple print handler can just return the attribute literally, like

print_attr(_{Attr}, PrintAttr) ?- PrintAttr=Attr.
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An attributed variable X{m:a} with print handler print attr/2 for the m-attribute, can thus
be printed in different ways, e.g., 1

printf("%w", [X{m:a}]) or write(X{m:a}): X

printf("%vMw", [X{m:a}]) or writeq(X{m:a}): _g246{suspend : _g242, m : a}

printf("%mw", [X{m:a}]): X{a}

printf("%Mw", [X{m:a}]): X{suspend : _g251, m : a}

printf("%Vmw", [X{m:a}]): X_g252{a}

Write macros for attributed variables are not allowed because one extension alone should not
decide whether the other attributes will be printed or not.

17.8 Built-Ins and Attributed Variables

free(?Term) This type-checking predicate succeeds iff its argument is an ordinary free variable,
it fails if it is an attributed variable.

meta(?Term) This type-checking predicate succeeds iff its argument is an attributed variable.
For other type testing predicates an attributed variable behaves like a variable.

17.9 Examples of Using Attributed Variables

17.9.1 Variables with Enumerated Domains

As an example, let us implement variables of enumerable types using attributes. We choose to
represent these variable as attributed variables whose attribute is a enum/1 structure with a list
holding the values the variable may take, e.g.,

X{enum([a,b,c])}

We have to specify now what should happen when such a variable is bound. This is done by
writing a handler for the unify operation. The predicate unify enum/2 defined below is this
handler. Its first argument is the value that the attributed variable has been bound to, the
second is the attribute that the bound attributed variable had (keep in mind that the system
has already bound the attributed variable to the new value). We distinguish two cases:

• First, the attributed variable has been bound to another attributed variable (1st clause of
unify enum/2). In this case, we form the intersection between the two lists of admissible
values. If it is empty, we fail. If it contains exactly one value, we can instantiate the
remaining attributed variable with this value. Otherwise, we bind it to a new attributed
variable whose attribute represents the remaining admissible values.

• Second, when the attributed variable has been bound to a non-variable, the task that
remains for the handler is merely to check if this binding was admissible (second clause of
unify enum/2).

1The attribute suspend is always present and defined by system coroutining.
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[eclipse 2]: module(enum).

warning: creating a new module in module(enum)

[enum 3]: [user].

:- meta_attribute(enum, [unify:unify_enum/2, print:print_enum/2]).

:- import setarg/3 from sepia_kernel.

% unify_enum(+Term, Attribute)

unify_enum(_, Attr) :-

/*** ANY + VAR ***/

var(Attr). % Ignore if no attribute for this extension

unify_enum(Term, Attr) :-

compound(Attr),

unify_term_enum(Term, Attr).

unify_term_enum(Value, enum(ListY)) :-

nonvar(Value), % The attributed variable was instantiated

/*** NONVAR + META ***/

memberchk(Value, ListY).

unify_term_enum(Y{AttrY}, AttrX) :-

-?->

unify_enum_enum(Y, AttrX, AttrY).

unify_enum_enum(_, AttrX, AttrY) :-

var(AttrY), % no attribute for this extension

/*** VAR + META ***/

AttrX = AttrY. % share the attribute

unify_enum_enum(Y, enum(ListX), AttrY) :-

nonvar(AttrY),

/*** META + META ***/

AttrY = enum(ListY),

intersection(ListX, ListY, ListXY),

( ListXY = [Val] ->

Y = Val

;

ListXY \= [],

setarg(1, AttrY, ListXY)

).

print_enum(_{enum(List)}, Attr) :-

-?->

Attr = List.

user compiled traceable 1188 bytes in 0.03 seconds

yes.

[enum 4]: A{enum([yellow, blue, white, green])}

= B{enum([orange, blue, red, yellow])}.
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A = B = A{[blue, yellow]}

yes.

[enum 5]: A{enum([yellow, blue, white, green])}

= B{enum([orange, blue, red, black])}.

A = B = blue

yes.

[enum 6]: A{enum([yellow, blue, white, green])} = white.

A = white

yes.

[enum 7]: A{enum([yellow, blue, white, green])} = red.

no (more) solution.

Some further remarks on this code: The second clause of unify term enum/2 is a matching
clause, as indicated by the -?-> guard. A matching clause is the only way to decompose an
attributed variable. Note that this clause matches only calls that have an attributed variable
with nonempty enum attribute on the first argument position.

17.10 Attribute Specification

The structures notation (see section 5.1) is used to define and access variable attributes and
their arguments. This makes the code independent of the number of attributes and positions of
their arguments. Wherever appropriate, the libraries described in this document describe their
attributes in this way, e.g.,

suspend{inst:I, constrained:C, bound:B}

says that the structure name is suspend and that it has (at least) three arguments with the
corresponding names.
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Chapter 18

Advanced Control Features

18.1 Introduction

This chapter introduces the control facilities that distinguish the ECLiPSe language from Prolog
by providing a computation rule that is more flexible than simple left-to-right goal selection.
The core feature is the ability to suspend the execution of a goal at some point during execution,
and resume it under certain conditions at a later stage. Together with attributed variables, these
facilities are the prerequisites for the implementation of constraint propagation and similar data-
driven algorithms.

18.2 Concepts

18.2.1 The Structured Resolvent

The term resolvent originates from Logic Programming. It is the set of all goals that must be
satisfied. The computation typically starts with a resolvent consisting only of the top-level goal
(the initial query). This then gets successively transformed (by substituting goals that match a
clause head with an instance of the clause body, i.e., a sequence of sub-goals), and eventually
terminates with one of the trivial goals true or fail. For example, given the program

p :- q, r. % clause 1

q :- true. % clause 2

r :- q. % clause 3

and the goal p, the resolvent goes through the following states before the goal is proven (by
reduction to true) and the computation terminates:

p --1--> (q,r) --2--> (true,r) ----> (r) --3--> (q) --2--> true

While in Prolog the resolvent is always processed from left to right like in this example, the
resolvent in ECLiPSe is more structured, and can be manipulated in a much more flexible way.
This is achieved by two basic mechanisms, suspension and priorities.

Suspended goals form the part of the resolvent which is currently not being considered. This is
typically done when we know that we cannot currently infer any interesting information from
them.
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Prio 1 Prio 2 Prio 11 Prio 12 Suspended

schedule

suspend

Figure 18.1: Structure of the resolvent

The remaining goals are ordered according to their priority. At any time, the system attempts
to solve the most urgent subgoal first. ECLiPSe currently supports a fixed range of 12 different
priorities, priority 1 being the most urgent and 12 the least urgent.
Figure 18.1 shows the structure of the resolvent. When a toplevel goal is launched, it has
priority 12 and is the only member of the resolvent. As execution proceeds, active goals may be
suspended, and suspended goals may be woken and scheduled with a particular priority.

18.2.2 Floundering

The case that a subgoal remains suspended (delayed) at the end of the computation is sometimes
referred to as floundering. When floundering occurs, it means that the resolvent could not be
reduced to true or fail, and that the answer bindings that have been found are valid only under
the assumption that the remaining delayed goals are in fact true. Since such a conditional
answer is normally not satisfactory (even though it may be correct), it is then necessary to
change the control aspect of the program. The solution would usually be to either make further
variable instantiations or to change control annotations. The aim is to get the delayed goals
out of the suspended state and into the scheduled state, where they will eventually be executed
and reduced. As a rule of thumb, goals will not suspend when all their arguments are fully
instantiated. Therefore, a program that makes sure that all its variables are instantiated at the
end of computation will typically not suffer from floundering.

18.3 Suspending Built-Ins and the Suspend-Library

Basic ECLiPSe has two built-in predicates whose behaviour includes suspending: the sound
negation built-in ∼/1 and the sound disequality predicate ∼=/2. Instead of succeeding or
failing, they will suspend when their arguments are insufficiently instantiated to make a decision.
For example

?- X ~= 3.

X = X

There is 1 delayed goal.

Yes (0.00s cpu)

Here, the system does not have enough information to decide whether the query is true or false.
The goal remains delayed and we have a case of floundering (the ECLiPSe toplevel indicates
this situation by printing a message about delayed goals at the end of the computation).
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However, when the variable which was responsible for the suspension gets instantiated later, the
delayed goal will be resumed (woken) and either succeed, fail, or suspend again. In the following
example, the disequality predicate initially suspends, but wakes up later and succeeds or fails,
respectively:

?- X ~= 3, X = 4.

X = 4

Yes (0.00s cpu)

?- X ~= 3, X = 3.

No (0.00s cpu)

Further predicate implementations with the same behaviour (delay until all arguments are
ground) can be found in the suspend library lib(suspend). In particular, it implements all
common arithmetic predicates plus the constraints defined by the Common Arithmetic Solver
Interface (see Constraint Library Manual), for instance

=:=/2, =\=/2, >=/2, =</2, >/2, </2,

$=/2, $\=/2, $>=/2, $=</2, $>/2, $</2,

#=/2, #\=/2, #>=/2, #=</2, #>/2, #</2,

integers/1, reals/1

The solver will suspend these predicates until all their arguments are ground.1

The suspend library is loaded into ECLiPSe on start-up, but the constraints associated with the
suspend solver are not imported. To use them, either import the suspend library to the current
module, or call the constraint qualified with the module:

suspend:(X > 2), suspend:(X #=< 5)

18.4 Development System Support

As seen in the above example, the top level loop indicates floundering by printing a message
about delayed goals. The command line toplevel then prompts and offers to print a list of all
delayed goals. The Tkeclipse development environment provides better support in the form of
the Delayed Goals Viewer, which can be used to look at all delayed goals or a filtered subset of
them.
The tracer supports advanced control features via the box-model ports DELAY and RESUME.
It also shows goal priorities (if they deviate from the default priority) in angular brackets.

18.5 Declarative Suspension: Delay Clauses

For delaying calls to user-defined Prolog predicates, ECLiPSe provides several alternatives, the
first being delay clauses. Delay clauses are a declarative means (they are in fact meta-clauses)
to specify the conditions under which the predicate should delay. The semantics of delay clauses
is thus cleaner than many alternative approaches to delay primitives.
A delay clause is very similar to a normal Prolog clause. It has the form

delay <Head> if <Body>.

1 Note that more powerful versions of these constraints exist in other solvers such as the interval solver lib(ic).
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A predicate may have one or more delay clauses. They have to be textually before and consecutive
with the normal clauses of the predicate they belong to. The simplest example for a delay clause
is one that checks if a variable is instantiated:

delay report_binding(X) if var(X).

report_binding(X) :-

printf("Variable has been bound to %w\n", [X]).

The operational semantics of the delay clauses is as follows: when a procedure with delay clauses
is called, then the delay clauses are executed before executing the procedure itself. If one of the
delay clauses succeeds, the call is suspended, otherwise they are all tried in sequence and, if all
delay clauses fail, the procedure is executed as usual.

The mechanism of executing a delay clause is similar to normal Prolog clauses with two excep-
tions:

• the unification of the goal with the delay clause head is not the usual Prolog unification,
but rather unidirectional pattern matching (see also section 5.5). This means that the
variables in the call cannot be bound by the matching, if such a binding would be necessary
to perform the unification, it will fail instead. For example, the head of the delay clause

delay p(a, X) if var(X).

does not match the goal p(A, b) but it matches the goal p(a, b).

• the delay clauses are deterministic, they leave no choice points. If one delay clause succeeds,
the call is delayed and the following delay clauses are not executed. As soon as the call is
resumed, all delay clauses that may succeed are re-executed.

The reason for using pattern matching instead of unification is to avoid a possible mixing of
meta-level control with the object level, similarly to [4].

The form of the head of a delay clause is not restricted. For the body, the following conditions
hold:

• the body subgoals must not bind any variable in the call and they must not delay them-
selves. The system does not verify these conditions currently.

• it should contain at least one of the following subgoals:

– var/1

– nonground/1

– nonground/2 (see nonground/3)

– \==/2

If this is not the case, then the predicate may delay without being linked to a variable,
so it delays forever and cannot be woken again. Experience shows that the above four
primitives suffice to express most usual conditions.
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More Examples

• A predicate that checks if its argument is a proper list of integers. The delay conditions
specify that the predicate should delay if the list is not terminated or if it contains variable
elements. This makes sure that it will never generate list elements, but only acts as a test:

delay integer_list(L) if var(L).

delay integer_list([X|_]) if var(X).

integer_list([]).

integer_list([X|T]) :- integer(X), integer_list(T).

• Delay if the first two arguments are identical and the third is a variable:

delay p(X, X, Y) if var(Y).

• Delay if the argument is a structure whose first subterm is not ground:

delay p(X) if compound(X), arg(1, X, Y), nonground(Y).

• Delay if the argument term contains 2 or more variables:

delay p(X) if nonground(2, X).

• The \==/2 predicate as a delaying condition is useful mainly in calls like X + Y = Z

which need not be delayed if X == Z. Y can be directly bound to 0, provided that X is
later bound to a number (or it is not bound at all) The condition X \== Y makes sense
only if X or Y are nonground: a delay clause

delay p(X, Y) if X \== Y.

executed with the call ?- p(a, b) of course succeeds and the call delays forever, since no
variable binding can wake it.

CAUTION: It may happen that the symbol :- is erroneously used instead of if in the delay
clause. To indicate this error, the compiler complains about redefinition of the built-in predicate
delay/1.

18.6 Explicit suspension with suspend/3

While delay-clauses are an elegant, declarative way of specifying how a program should execute,
it is sometimes necessary to be more explicit about suspension and waking conditions. The
built-in predicate suspend/3 is provided for this purpose2. It allows one to explicitly create a
suspended goal, specify its priority and its exact waking conditions.
When

suspend(Goal, Prio, CondList)

is called, Goal will be suspended with priority Prio and it will wake up as soon as one of the
conditions specified in the CondList is satisfied. This list contains specifications of the form

2 suspend/3 is itself based on the lower-level primitives make suspension/3 and insert suspension/4,
which are described below.
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Vars -> Cond

to denote that as soon as one of the variables in the term Vars satisfies the condition Cond,
the suspended goal will be woken and then executed as soon as the program priority allows it.
CondList can also be a single specification.

The condition Cond can be the name of a system-defined waking condition, e.g.,

[X,Y]->inst

means that as soon as one (or both) of the variables X, Y is instantiated, the suspended goal
will be woken. These variables are also called the suspending variables of the goal.

Cond can also be the specification of a suspension list defined in one of currently loaded library
attributes. For example, when the interval solver library lib(ic) is loaded, either of

[A,B]->ic:min

[A,B]->ic:(min of ic)

triggers the suspended goal as soon as the minimum element of the domain of either A or B are
updated (see Constraint Library Manual, IC Library).

Another admissible form of condition Cond is

trigger(Name)

which suspends the goal on the global trigger condition Name (see section 18.7.3).

Using suspend/3, we can rewrite our first delay-clause example from above as follows:

report_binding(X) :-

( var(X) ->

suspend(report_binding(X), 0, X->inst)

;

printf("Variable has been bound to %w\n", [X])

).

Here, when the predicate is called with an uninstantiated argument, we explicitly suspend a goal
with the condition that it be woken as soon as X becomes instantiated. The priority is given
as 0, which indicates the default priority (0 is not a valid priority itself). Running this code
produces the following:

?- report_binding(X).

X = X

There is 1 delayed goal.

Yes (0.00s cpu)

When X is later instantiated, it will wake up and print the message:

?- report_binding(X), writeln(here), X = 99.

here

Variable has been bound to 99

X = 99

Yes (0.00s cpu)
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18.7 Waking conditions

The usual purpose of suspending a goal is to wait and resume it later when more information
about its arguments is available. In Logic Programming, this is usually the case when certain
events related to variables occur. When such an event occurs, the suspended goal is passed to
the waking scheduler which puts it at the appropriate place in the priority queue of woken goals
and as soon as it becomes first in the queue, the suspended goal is executed.

The event which causes a suspended goal to be woken is usually related to one or more variables,
for example variable instantiation, or a modification of a variable’s attribute. However, it is also
possible to trigger suspension with symbolic events not related to any variable.

18.7.1 Standard Waking Conditions on Variables

There are three very general standard waking conditions which can be used with any variable.
They are, in order of increasing generality:

inst: wake when a variable gets instantiated;

bound: wake when a variable gets instantiated or bound to another variable;

constrained: wake when a variable gets instantiated or bound to another variable
or becomes otherwise constrained.

Each condition subsumes the preceding, more specific ones.

Waking on Instantiation: inst

To wake a goal when a variable gets instantiated, the inst condition is used. For example the
following code suspends a goal until variable X is instantiated:

?- suspend(writeln(woken(X)), 0, X->inst).

X = X

There is 1 delayed goal.

Yes (0.00s cpu)

If this variable is later instantiated (bound to a non-variable), the goal executes in a data-driven
way:

?- suspend(writeln(woken(X)), 0, X->inst), X = 99.

woken(99)

X = 99

Yes (0.00s cpu)

If we specify several instantiation conditions for the same goal, the goal will wake up as soon as
the first of them occurs:

?- suspend(writeln(woken(X,Y)), 0, [X,Y]->inst), X = 99.

woken(99, Y)

X = 99

Y = Y

Yes (0.00s cpu)
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It is not possible to specify a conjunction of conditions directly!
Let us now suppose we want to implement a predicate succ/2, such that succ(X, Y) is true
when Y is the next integer after X. If we want the predicate to act as a lazy test, we must let
it suspend until both variables are instantiated. This can be programmed as follows:

succ_lazy(X, Y) :-

( var(X) -> suspend(succ_lazy(X,Y), 0, X->inst)

; var(Y) -> suspend(succ_lazy(X,Y), 0, Y->inst)

; Y =:= X+1

).

The conjunctive condition “wait until X and Y are instantiated” is implemented by first waiting
for X ’s instantiation, then waking up and re-suspending waiting for Y ’s instantiation.
A more eager implementation of succ/2 would delay only until a single variable argument is
left, and then compute the variable from the nonvariable argument:

succ_eager(X, Y) :-

( var(X) ->

( var(Y) ->

suspend(succ_eager(X,Y), 0, [X,Y]->inst)

;

X is Y-1

)

;

Y is X+1

).

Here, we suspend only in the case that both arguments are variables, and wake up as soon as
either of them gets instantiated.
Waiting for groundness of a term can be done in a way similar to the way succ lazy/2 waited
for both arguments to be instantiated: we pick any variable in the nonground term and wait
for its instantiation. If this happens, we check whether other variables remain, and if yes, we
re-suspend on one of the remaining variables. The following predicate waits for a term to become
ground, and then calls arithmetic evaluation on it:

eval_lazy(Expr, Result) :-

( nonground(Expr, Var) ->

suspend(eval_lazy(Expr,Result), 0, Var->inst)

;

Result is Expr

).

We have used the built-in predicate nonground/2 which tests a term for groundness and
returns one of its variables if it is nonground. Note also that in this implementation the same
eval lazy/2 goal gets woken and re-suspended possibly many times. See section 18.9 below for
how to address this inefficiency.

Waking on Binding: bound

Sometimes it is interesting to wake a goal when the number of variables among its arguments
is reduced. This happens not only when a variable disappears due to instantiation, but also
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when two variables get unified (the result being a single variable). Consider the succ eager/2
predicate above: we know that a goal like succ_eager(X,X). must always fail because an integer
cannot be equal to its successor. However, the above implementation does not detect this case
until X gets instantiated.
The bound waking condition subsumes the inst condition, but also wakes when any two of the
variables in the condition specification get unified with each other (aliased). Using this property,
we can improve the implementation of succ eager/2 as follows:

succ_eager1(X, Y) :-

( var(X) ->

( var(Y) ->

X \== Y,

suspend(succ_eager1(X,Y), 0, [X,Y]->bound)

;

X is Y-1

)

;

Y is X+1

).

This gives us the desirable behaviour of failing as soon as possible:

?- succ_eager1(X, Y), X = Y.

No (0.00s cpu)

Note that the built-in predicate ∼=/2 is a similar case and uses the bound waking condition
for the same reason.

Waking on Constraining: constrained

In plain Prolog, variable instantiation is the only way in which a single variable can become
more constrained. In the presence of constraints, there are other ways. The most obvious
example are variable domains: when a variable’s domain gets reduced, the variable becomes
more constrained. This means that a delayed goal that previously still had a chance to succeed,
could now have become impossible to satisfy, and should therefore be checked again.
The purpose of the constrained waking condition is to make it possible to wake a suspended
goal whenever a variable becomes more constrained in a general sense. Having this general
notion of constrained-ness makes it possible to write generic libraries that do interesting things
with constraints and constrained variables without their implementation having to be linked to
a particular constraint-solver3.
The constrained waking condition subsumes the bound condition (which in turn subsumes
the inst condition). While goals suspended on the inst and bound conditions are woken
implicitly by the unification routine, libaries which implement domain variables are responsible
for notifying the system when they constrain a variable. They do so by invoking the built-
ins notify constrained/1 and wake/0 which is the generic way of telling the system that a
variable has been constrained.
The simplest application using the constrained condition is a little debugging support predicate
that prints a variable’s current partial value (e.g., domain) whenever it changes:

3Examples of such libraries are branch and bound, changeset, chr/ech, propia, repair, visualisation.
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report(X) :-

( var(X) ->

writeln(constrained(X)),

suspend(report(X), 1, X->constrained) % (re)suspend

;

writeln(instantiated(X))

).

This now works with any library that implements a notion of constrainedness, e.g., the interval
solver library(ic):

?- report(X), X :: 1..5, X #> 2, X #< 4.

constrained(X)

constrained(X{1 .. 5})

constrained(X{3 .. 5})

instantiated(3)

X = 3

Yes (0.01s cpu)

The report/1 predicate is woken when the domain is initally attached to X, whenever the
domain gets reduced, and finally when X gets instantiated.

18.7.2 Library-defined Waking Conditions on Variables

Constraint-solver libraries typically define additional, specialised waking conditions for the type
of variable that they implement. For instance, the interval solver lib(ic) defines the following
conditions:

min: wake when the minimum domain value changes;

max: wake when the maximum domain value changes;

hole: wake when the domain gets a new hole;

type: wake when the variable type changes from real to integer.

Obviously, these conditions only make sense for domain variables that are created by the lib(ic)
library, and are mainly useful for implementing extensions to this library, e.g., new constraints.
The library-defined waking conditions can be used with suspend/3 by using one of the following
syntactic forms:

[A, B]->ic:min

[A, B]->ic:(min of ic)

Using these conditions, we can define a more specialised form of the above report/1 predicate
which only wakes up on the specified ic-domain changes:

report_ic(X) :-

( var(X) ->

writeln(newdomain(X)),

suspend(report_ic(X), 1, [X->ic:min,X->ic:max,X->ic:hole])

;

writeln(instantiated(X))

).
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The behaviour is similar to above, the predicate wakes up on every domain change:

?- X::1..5, report_ic(X), X#> 2, X #< 4.

newdomain(X{1 .. 5})

newdomain(X{3 .. 5})

instantiated(3)

X = 3

Yes (0.00s cpu)

Note that we now have to set up the delayed goal after the variable already has a domain.
This is because the ic-specific waking conditions can only be used with ic-variables,4 not with
domain-less generic variables.

18.7.3 Global Symbolic Waking Conditions: Triggers

Although waking conditions for a goal are usually related to variables within the goal’s argu-
ments, it is also possible to specify symbolic waking conditions which are unrelated to variables.
These are called triggers and are identified simply by an arbitrary name (an atom). Goals
can be suspended on such triggers, and the trigger can be pulled explicitly by program code in
particular circumstances. By combining triggers with the event mechanism (chapter 14) it is
even possible to wake goals in response to synchronous or asynchronous events.
A goal is suspended on a trigger using the syntax trigger(Name) in suspend/3 as in the following
example:

?- suspend(writeln(woken), 0, trigger(happy)).

There is 1 delayed goal.

Yes (0.00s cpu)

The built-in trigger/1 can then be used to wake the goal:

?- suspend(writeln(woken), 0, trigger(happy)), trigger(happy).

woken

Yes (0.00s cpu)

Of course, symbolic triggers can be used together with other waking conditions to specify alter-
native reasons to wake a goal.

Postponed Goals

There is one system-defined trigger called postponed. It is provided as a way to postpone the
triggering of a goal as much as possible. This trigger is pulled just before the end of certain
encapsulated executions, like

• end of toplevel execution;

• inside all-solution predicates (findall/3, setof/3);

• inside bb min/3 and minimize/2.

A suspension should be attached to the postponed trigger only when

4More precisely, variables which have an ic-attribute, see chapter 17.
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• it might not have any other waking conditions left;

• and it might at the same time have other waking conditions left that could make it fail
during further execution;

• and one does not want to execute it now, e.g., because it is known to succeed or re-suspend.

An example is a goal that originally woke on modifications of the upper bound of an interval
variable. If the variable gets instantiated to its upper bound, there is no need to wake the
goal (since the bound has not changed), but the variable (and with it the waking condition)
disappears and the goal may be left orphaned.

18.8 Lower-level Primitives

Suspended goals are actually represented by a special opaque data type, called suspension,
which can be explicitly manipulated under program control using the primitives defined in this
section. Although usually a suspended goal waits for some waking condition in order to be
reactivated, the primitives for suspension handling do not enforce this. To provide maximum
flexibility of use, the functionalities of suspending and waking/scheduling are separated from
the trigger mechanisms that cause the waking.

18.8.1 Suspensions and Suspension Lists

A suspension represents a goal that is part of the resolvent. Apart from the goal structure
proper, it holds information that is used for controlling its execution. The components of a
suspension are:

The goal structure A term representing the goal itself, e.g., X > Y.

The goal module The module from which the goal was called.

The scheduling priority The priority with which the goal will be scheduled when
it becomes woken.

The run priority The priority under which the goal will eventually be executed.

The state This indicates the current position of the suspension within the resolvent.
It is either suspended (sleeping), scheduled or executed (dead).

Additional data Debugging information etc.

Suspensions which should be woken by the same event are grouped together in a suspension
list. Suspension lists are either stored in an attribute of an attributed variable or attached to a
symbolic trigger.

18.8.2 Creating Suspended Goals

The most basic primitive to create a suspension is

make suspension(Goal, Priority, Susp)
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where Goal is the goal structure, Priority is a small integer denoting the priority with which
the goal should be woken and Susp is the resulting suspension.

Note that usually make suspension/3 is not used directly, but implicitly via suspend/3,4
(described in section 18.6) which in addition attaches the suspension to a trigger condition.

A suspension which has not yet been scheduled for execution and executed, is called sleeping,
a suspension which has already been executed is called executed or dead (since it disappears
from the resolvent, but see section 18.9 for an exception). A newly created suspension is always
sleeping, however note that due to backtracking, an executed suspension can become sleeping
again. Sometimes we use the term waking, which is less precise and denotes the process of both
scheduling and eventual execution.

By default, suspensions are printed as follows (the variants with invocation numbers are used
when the debugger is active):

’SUSP- 78-susp’ sleeping suspension with id 78
’SUSP- 78-sched’ scheduled suspension with id 78
’SUSP- 78-dead’ dead suspension with id 78

’SUSP-123-susp’ sleeping suspension with invocation number 123
’SUSP-123-sched’ scheduled suspension with invocation number 123
’SUSP-123-dead’ dead suspension with id invocation number 123

It is possible to change the way suspensions are printed by defining a portray/3 transformation
for the term type goal.

18.8.3 Operations on Suspensions

The following summarises the predicates that can be used to create, test, decompose and destroy
suspensions.

make suspension(Goal, Priority, Susp) Create a suspension with a given pri-
ority from a given goal. The goal will subsequently show up as a delayed goal.

is suspension(Susp) Succeeds if Susp is a sleeping or scheduled suspension, fails
if it is not a suspension or a suspension that has been already executed.

type of(S, goal) Succeeds if S is a suspension, no matter if it is sleeping, scheduled
or executed.

get suspension data(Susp, Name, Value) Extract any of the information con-
tained in the suspension: Name can be one of goal, module, priority, state
or invoc (debugger invocation number).

set suspension data(Susp, Name, Value) The priority and invoc (debugger
invocation number) fields of a suspension can be changed using this primitive.
If the priority of a sleeping suspension is changed, this will only have an effect
at the time the suspension gets scheduled. If the suspension is already sched-
uled, changing priority has no effect, except for future schedulings of demons
(see 18.9).

kill suspension(Susp) Convert the suspension Susp into an executed one, i.e.,
remove the suspended goal from the resolvent. This predicate is meta-logical
as its use may change the semantics of the program.

183



18.8.4 Examining the Resolvent

The system keeps track of all created suspensions and it uses this data, e.g., in the built-
in predicates delayed goals/1, suspensions/1, current suspension/1, subcall/2 and to
detect floundering of the query given to the ECLiPSe top-level loop.

18.8.5 Attaching Suspensions to Variables

Suspensions are attached to variables by means of the attribute mechanism. For this purpose, a
variable attribute must have one or more slots reserved for suspension lists. Suspensions can
then be inserted into one or several of those lists using

insert suspension(Vars, Susp, Index) Insert the suspension Susp into the In-
dex ’th suspension list of all attributed variables occurring in Vars. The current
module specifies which of the attributes will be taken.

insert suspension(Vars, Susp, Index, Module) Similar to the above, but it in-
serts the suspension into the attribute specified by Module.

For instance,

insert_suspension(Vars, Susp, inst of suspend, suspend)

inserts the suspension into the inst list of the (system-predefined) suspend attribute of all
variables that occur in Vars, and

insert_suspension(Vars, Susp, max of fd, fd)

would insert the suspension into the max list of the finite-domain attribute of all variables in
Vars.
Note that both predicates find all attributed variables which occur in the general term Vars and
for each of them, locate the attribute which corresponds to the current module or the Module
argument respectively. This attribute must be a structure, otherwise an error is raised, which
means that the attribute has to be initialized before calling insert suspension/4,3. Finally,
the Index ’th argument of the attribute is interpreted as a suspension list and the suspension
Susp is inserted at the beginning of this list. A more user-friendly interface to access suspension
lists is provided by the suspend/3 predicate.

18.8.6 User-defined Suspension Lists

Many important attributes and suspension lists are either provided by the suspend-attribute or
by libraries like the interval solver library lib(ic). For those suspension lists, initialization and
waking is taken care of by the library code.
For the implementation of user-defined suspension lists, the following low-level primitives are
provided:

init suspension list(+Position, +Attribute) Initializes argument Position of
Attribute to an empty suspension list.

merge suspension lists(+Pos1, +Attr, +Pos2, +Attr2) Appends the first of
two suspension lists (argument Pos1 of Attr1 ) to the end of the second (argu-
ment Pos2 of Attr2 ). NOTE: The append is destructive, i.e., the second list is
modified.
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enter suspension list(+Pos, +Attr, +Susp) Adds the suspension Susp to the
suspension list in the argument position Pos of Attr. The suspension list can
be pre-existing, or the argument could be uninstantiated, in which case a new
suspension list will be created.

schedule suspensions(+Position, +Attribute) Takes the suspension list on ar-
gument position Position within Attribute, and schedule them for execution. As
a side effect, the suspension list within Attribute is updated, i.e., suspensions
which are no longer useful are removed destructively. See section 18.8.8 for
more details on waking.

18.8.7 Attaching Suspensions to Global Triggers

A single suspension or a list of suspensions can be attached to a symbolic trigger by using
attach suspensions(+Trigger, +Susps). A symbolic trigger can have an arbitrary name
(an atom).

18.8.8 Scheduling Suspensions for Waking

Suspended goals are woken by submitting at least one of the suspension lists in which they
occur to the waking scheduler. The waking scheduler which maintains a global priority queue
inserts them into this queue according to their scheduling priority (see figure 18.1). A suspension
list can be passed to the scheduler by either of the predicates schedule suspensions/1 (for
triggers) or schedule suspensions/2 (for uder-defined suspension lists). A suspension which
has been scheduled in this way and awaits its execution is called a scheduled suspension.

Note, however, that scheduling a suspension by means of schedule suspensions/1 or sched-
ule suspensions/2 alone does not implicitly start the waking scheduler. Instead, execution
continues normally with the next goal in sequence after schedule suspensions/1,2. The
scheduler must be explicitly invoked by calling wake/0. Only then does it start to execute
the woken suspensions.

The reason for having wake/0 is to be able to schedule several suspension lists before the
priority-driven execution begins.5

18.9 Demon Predicates

A common pattern when implementing data-driven algorithms is the following variant of the
report/1 example from above:

report(X) :-

suspend(report1(X), 1, X->constrained). % suspend

report1(X) :-

( var(X) ->

writeln(constrained(X)),

suspend(report(X), 1, X->constrained) % re-suspend

;

writeln(instantiated(X)) % die

5This mechanism may be reconsidered in a future release.
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).

Here we have a goal that keeps monitoring changes to its variables. To do so, it suspends on
some or all of those variables. When a change occurs, it gets woken, does something, and re-
suspends. The repeated re-suspending has two disadvantages: it can be inefficient, and the goal
does not have a unique identifying suspension that could be easily referred to, because on every
re-suspend a new suspension is created.
To better support this type of goals, ECLiPSe provides a special type of predicate, called a
demon. A predicate is turned into a demon by annotating it with a demon/1 declaration. A
demon goal differs from a normal goal only in its behaviour on waking. While a normal goal dis-
appears from the resolvent when it is woken, the demon remains in the resolvent. Declaratively,
this corresponds to an implicit recursive call in the body of each demon clause. Or, in other
words, the demon goal forks into one goal that remains in the suspended part of the resolvent,
and an identical one that gets scheduled for execution.
With this functionality, our above example can be done more efficiently. One complication arises,
however. Since the goal implicitly re-suspends, it now has to be explicitly killed when it is no
longer needed. The easiest way to achieve this is to let it remember its own suspension in one
of its arguments. This can then be used to kill the suspension when required:

% A demon that wakes whenever X becomes more constrained

report(X) :-

suspend(report(X, Susp), 1, X->constrained, Susp).

:- demon(report/2).

report(X, Susp) :-

( var(X) ->

writeln(constrained(X)) % implicitly re-suspend

;

writeln(instantiated(X)),

kill_suspension(Susp) % remove from the resolvent

).

18.10 More about Priorities

For the scheduled goals, ECLiPSe uses an execution model which is based on goal priorities and
which guarantees that a scheduled goal with a higher priority will be always executed before any
goal with lower priority. Priority is a small integer number ranging from 1 to 12, 1 being the
highest priority and 12 the lowest (cf. figure 18.1). Each goal which is being executed is executed
under a current priority. The priority of the currently executing goal can be determined with
get priority/1. This priority is

• normally inherited from the caller

• implicitly set to the goal’s run priority during waking

• explicitly set using call priority(Goal, Prio)

All goals started from the ECLiPSe top-level loop or from the command line with the -e option
have priority 12.
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Priority-based execution is driven by a scheduler: it picks up the scheduled suspension with the
highest scheduling priority. If its scheduling priority is higher than the priority of the currently
executing goal, then the execution of the current goal is interrupted and the new suspension
is executed under its run priority (which may be higher than the scheduling priority). This is
repeated until there are no suspensions with priority higher than that of the current goal.
Note that suspensions have two distinct priorities attached: the scheduling priority determining
the order of execution, and the run priority determining the atomicity of execution.

18.10.1 Changing Priority Explicitly

It is also possible to execute a goal with a given priority by means of call priority(Goal, Prio)
which calls Goal with the priority Prio. When a goal is called this way with high priority, it is
effectively made atomic, i.e., it will not be interrupted by goals with lower priority that wake
up while it executes. Those goals will all be deferred until exit from call priority/2. This
technique can sometimes improve efficiency. Consider for example the following program:

p(1).

report(Term) :-

writeln(term=Term),

suspend(report(Term),3,Term->inst).

and the execution

[eclipse 2]: report(f(X,Y,Z)), p(X),p(Y),p(Z).

term = f(X, Y, Z)

term = f(1, Y, Z)

term = f(1, 1, Z)

term = f(1, 1, 1)

report/1 is woken and executed three times, once for each variable binding. If instead we do
the three bindings under high priority, it will only execute once after all bindings have already
been done:

[eclipse 3]: report(f(X,Y,Z)), call_priority((p(X),p(Y),p(Z)), 2).

term = f(X, Y, Z)

term = f(1, 1, 1)

Note that woken goals are automatically executed under their run priority (default 2), which
usually make the use of call priority(Goal, Prio) unnecessary.

18.10.2 Choice of Priorities

Although the programmer is more or less free to specify which priorities to use, we strongly
recommend to stick to the following scheme (from urgent to less urgent):

debugging (1) goals which don’t contribute to the semantics of the program and
always succeed, e.g., display routines, consistency checks or data breakpoints.

immediate goals which should be woken immediately and which do not do any
bindings or other updates. Examples are quick tests which can immediately fail
and thus avoid redundant execution.
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quick fast deterministic goals which may propagate changes to other variables.

normal deterministic goals which should be woken after the quick class.

slow deterministic goals which require a lot of processing, e.g., complicated disjunc-
tive constraints.

delayed nondeterministic goals or goals which are extremely slow.

toplevel goal (12) the default priority of the user program.

18.11 Details of the Execution Mechanism

18.11.1 Particularities of Waking by Unification

Goals that are suspended on the inst or bound waking conditions are woken by unifications of
their suspending variables. One suspending variable can be responsible for delaying several
goals, on the other hand one goal can be suspended on several suspending variables (as alternative
waking conditions). This means that when one suspending variable is bound, several delayed
goals may be woken at once. The order of executing woken suspended goals does not necessarily
correspond to the order of their suspending. It is in fact determined by their priorities and is
implementation-dependent within the same priority group.

The waking process never interrupts unifications and/or a sequence of simple goals. Simple
goals are a subset of the built-ins and can be recognised by their call_type flag as returned by
get flag/3, simple goals having the type external. Note also that some predicates, e.g., is/2,
are normally in-line expanded and thus simple, but can be regular when inlining is suppressed,
e.g., by the pragma(noexpand) directive.

ECLiPSe treats simple predicates (including unification) always as a block. Delayed goals are
therefore woken only at the end of a successful unification and/or a sequence of simple goals.
If a suspending variable is bound in a simple goal, the suspended goals are woken only at the
end of the last consecutive simple goal or at the clause end. If the clause contains simple goals
at the beginning of its body, they are considered part of the head (extended head) and if a
suspending variable is bound in the head unification or in a simple predicate in the extended
head, the corresponding delayed goals are woken at the end of the extended head.

A cut is also considered a simple goal and is therefore always executed before waking any pending
suspended goals. This is important to know especially in the situations where the cut acts like a
guard, immediately after the clause neck or after a sequence of simple goals. If the goals woken
by the head unification or by the extended head are considered as constraints on the suspending
variables, the procedure will not behave as expected. For example

filter(_P,[],[]) :- !.

filter(P,[N|LI],[N|NLI]) :-

N mod P =\= 0,

!,

filter(P,LI,NLI).

filter(P,[N|LI],NLI) :-

filter(P,LI,NLI).

delay integers(_, List) if var(List).

integers(_, []).
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integers(N, [N|Rest]) :-

N1 is N + 1,

integers(N1, Rest).

?- integers(2, Ints), filter(2, Ints, [X1,X2]).

The idea here is that integers/2 fills a list with integers on demand, i.e., whenever new list
elements appear. The predicated filter/3 removes all integers that are a multiple of P. In the
example query, the call to integers/2 initially delays. When filter/3 is called, Ints gets instan-
tiated in the head unification of the second clause of filter/3, which will wake up integers/2.
However, since the second clause of filter/3 has an extended head which extends up to the cut,
integers/2 will not actually be executed until after the cut. Therefore, N is not yet instantiated
at the time of the arithmetic test and causes an error message.
The reason why delayed goals are woken after the cut and not before it is that neither of the two
possibilities is always the intended or the correct one, however when goals are woken before the
cut, there is no way to escape it and wake them after, and so if a nondeterministic goal is woken,
it is committed by this cut which was most probably not intended. On the other hand, it is
always possible to force waking before the cut by inserting a regular goal before it, for example
true/0, so the sequence

true, !

can be viewed as a special cut type.
As a consequence, the example can be fixed by inserting true at the beginning of the second
clause. However, a preferable and more robust way is using the if-then-else construct, which
always forces waking suspended goals before executing the condition. This would also be more
efficient by avoiding the creation of a choice point:

filter(_P,[],[]).

filter(P,[N|LI],LL) :-

(N mod P =\= 0 ->

LL = [N|NLI],

filter(P, LI, NLI)

;

filter(P,LI,LL)

).

18.11.2 Cuts and Suspended Goals

The cut relies on a fixed order of goal execution in that it discards some choice points if all goals
preceding it in the clause body have succeeded. If some of these goals delay without being woken
before the cut, or if the head unification of the clause with the cut wakes any nondeterministic
delayed goal, the completeness of the resulting program is lost and there is no clean way to save
it as long as the cut is used.
The user is strongly discouraged to use non-local cuts together with coroutining, or to be precisely
aware of their scope. The danger of a cut is twofold:

• Delaying out of the scope of a cut: a cut can be executed after some calls preceding it in
the clause (or children of these calls) delay. When they are then woken later, they may
cause the whole execution to fail instead of just the guard before the cut.
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• Delaying into the scope of a cut: the head unification of a clause with cuts can wake
delayed goals. If they are nondeterministic, the cut in the body of the waking clause will
commit even the woken goals

18.12 Simulating the Delay-Primitives of other Systems

It is relatively easy to simulate similar constructs from other systems by using delay clauses, for
example, MU-Prolog’s sound negation predicate ∼/1 can be in ECLiPSe simply implemented
as

delay ~ X if nonground(X).

~ X :- \+ X .

MU-Prolog’s wait declarations can be in most cases simulated using delay clauses. Although it
is not possible to convert all wait declarations to delay clauses, in the real life examples this can
usually be achieved. The block declarations of SICStus Prolog can be easily expressed as delay
clauses with var/1 and nonground/1 conditions. The freeze/2 predicate (e.g., from SICStus
Prolog, same as geler/2 in Prolog-II) can be expressed as

delay freeze(X, _) if var(X).

freeze(_, Goal) :- call(Goal).

The transcription of “when declarations” from NU-Prolog basically involves negating them: for
instance, the when declarations

?- flatten([], _) when ever.

?- flatten(A._, _) when A.

can be rewritten as

delay flatten(A, _) if var(A).

delay flatten([A|_], _) if var(A).

Note that in contrast to when declarations, there are no syntactic restrictions on the head of a
delay clause, in particular, it can contain any compound terms and repeated variables. In the
clause body, a delay clause allows more flexibility by supporting programming with (a subset
of) built-ins. In general, it is a matter of taste whether specifying delay-conditions or execute-
conditions is more straightforward. However, the semantics of delay clauses is certainly more
intuitive in that missing delay clauses simply imply no delay, while missing when-declarations
imply a most general when ever declaration.
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Chapter 19

More About Suspension

The fundamentals of goal suspension and waking were described in the previous chapter. This
chapter looks at some applications and examples in greater detail.

19.1 Waiting for Instantiation

Goals that are to be woken when one or more variables become instantiated use the inst

list. For instance, the following show how to implement a predicate freeze/2, such that the call
freeze(Term, Goal) delays and is woken as soon as any variable in Term becomes instantiated:

freeze(Term, Goal) :-

suspend(Goal, 3, Term->inst).

or equivalently by

freeze(Term, Goal) :-

make_suspension(Goal, 3, Susp),

insert_suspension(Term, Susp, inst of suspend, suspend).

When it is called with a nonground term, it produces a delayed goal and when one variable is
instantiated, the goal is woken:

[eclipse 2]: freeze(X, write(hello)).

X = X

Delayed goals:

write(hello)

yes.

[eclipse 3]: freeze(p(X, Y), write(hello)), X=Y.

X = X

Y = X

Delayed goals:

write(hello)
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yes.

[eclipse 4]: freeze(p(X, Y), write(hello)), Y=1.

hello

X = X

Y = 1

yes.

However, if its argument is ground, it will still produce a suspended goal which may not be what
we expect:

[eclipse 5]: 8.

freeze(a, write(hello)).

Delayed goals:

write(hello)

yes.

To correct this problem, we can test this condition separately:

freeze(Term, Goal) :-

nonground(Term),

!,

suspend(Goal, 3, Term->inst).

freeze(_, Goal) :-

call(Goal).

and get the expected results:

[eclipse 8]: freeze(a, write(hello)).

hello

yes.

Another possibility is to wait until a term becomes ground, i.e., all its variables become instan-
tiated. In this case, it is not necessary to attach the suspension to all variables in the term.
The Goal has to be called when the last variable in Term is instantiated, and so we can pick up
any variable and attach the suspension to it. We may then save some unnecessary waking when
other variables are instantiated before the selected one. To select a variable from the term, we
can use the predicate term variables/2 which extracts all variables from a term. However,
when we already have all variables available, we can in fact dispose of Term which may be huge
and have a complicated structure. Instead, we pick up one variable from the list until we reach
its end:

wait_for_ground(Term, Goal) :-

term_variables(Term, VarList),

wait_for_var(VarList, Goal).

wait_for_var([], Goal) :-

call(Goal).

wait_for_var([X|L], Goal) :-
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(var(X) ->

suspend(wait_for_var([X|L], Goal), 3, X->inst)

;

nonground(X) ->

term_variables(X, Vars),

append(Vars, L, NewVars),

wait_for_var(NewVars, Goal)

;

wait_for_var(L, Goal)

).

19.2 Waiting for Binding

Sometimes we want a goal to be woken when a variable is bound to another one, e.g., to check for
subsumption or disequality. As an example, let us construct the code for the built-in predicate
∼=/2. This predicate imposes the disequality constraint on its two arguments. It works as
follows:

1. It scans the two terms. If they are identical, it fails.

2. If it finds a pair of different arguments at least one of which is a variable, it suspends.
If both arguments are variables, the suspension is placed on the bound suspended list of
both variables. If only one is a variable, the suspension is placed on its inst list, because
in this case the constraint may be falsified only if the variable is instantiated.

3. Otherwise, if it finds a pair of arguments that cannot be unified, it succeeds.

4. Otherwise it means that the two terms are equal and it fails.

The code looks as follows. equal args/3 scans the two arguments. If it finds a pair of unifi-
able terms, it returns them in its third argument. Otherwise, it calls equal terms/3 which
decomposes the two terms and scans recursively all their arguments.

dif(T1, T2) :-

(equal_args(T1, T2, Vars) ->

(nonvar(Vars) ->

(Vars = inst(V) ->

suspend(dif(T1, T2), 3, V->inst)

;

suspend(dif(T1, T2), 3, Vars->bound)

)

;

fail % nothing to suspend on, they are identical

)

;

true % the terms are different

).

equal_args(A1, A2, Vars) :-
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(A1 == A2 ->

true

;

var(A1) ->

(var(A2) ->

Vars = bound(A1, A2)

;

Vars = inst(A1)

)

;

var(A2) ->

Vars = inst(A2)

;

equal_terms(A1, A2, Vars)

).

equal_terms(R1, R2, Vars) :-

R1 =.. [F|Args1],

R2 =.. [F|Args2],

equal_lists(Args1, Args2, Vars).

equal_lists([], [], _).

equal_lists([X1|A1], [X2|A2], Vars) :-

equal_args(X1, X2, Vars),

(nonvar(Vars) ->

true % we have already found a variable

;

equal_lists(A1, A2, Vars)

).

Note that equal args/3 can yield three possible outcomes: success, failure and delay. Therefore,
if it succeeds, we have to make the distinction between a genuine success and delay, which is
done using its third argument. The predicate dif/2 behaves exactly as the built-in predicate
∼=/2:

[eclipse 26]: dif(X, Y).

X = X

Y = Y

Delayed goals:

dif(X, Y)

yes.

[eclipse 27]: dif(X, Y), X=Y.

no (more) solution.

[eclipse 28]: dif(X, Y), X=f(A, B), Y=f(a, C), B=C, A=a.
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no (more) solution.

[eclipse 29]: dif(X, Y), X=a, Y=b.

X = a

Y = b

yes.

Note also that the scan stops at the first variable being compared to a different term. In this
way, we scan only the part of the terms which is absolutely necessary to detect failure – the two
terms can become equal only if this variable is bound to a matching term.
This approach has one disadvantage, though. We always wake the dif/2 call with the original
terms as arguments. Each time the suspension is woken, we scan the two terms from the
beginning and thus repeat the same operations. If, for instance, the compared terms are lists
with thousands of elements and the first 10000 elements are ground, we spend most of our time
checking them again and again.
The reason for this handling is that the system cannot suspend the execution of dif/2 while
executing its subgoals: it cannot freeze the state of all the active subgoals and their arguments.
There is however a possibility for us to do this explicitly: as soon as we find a variable, we stop
scanning the terms and return a list of continuations for all ancestor compound arguments. In
this way, equal args returns a list of pairs and their continuations which will then be processed
step by step:

• equal args/4 scans again the input arguments. If it finds a pair of unifiable terms, it
inserts it into a difference list.

• equal lists/4 processes the arguments of compound terms. As soon as a variable is found,
it stops looking at following arguments but it appends them into the difference list.

• diff pairs/2 processes this list. If it finds an identical pair, it succeeds, the two terms
are different. Otherwise, it suspends itself on the variables in the matched pair (here the
suspending is simplified to use only the bound list).

• The continuations are just other pairs in the list, so that no special treatment is necessary.

• When the variables suspended upon are instantiated to compound terms, the new terms
are again scanned by equal arg/4, but the new continuations are prepended to the list.
As a matter of fact, it does not matter if we put the new pairs at the beginning or at the
end of the list, but tracing is more natural when we use the fifo format.

• If this list of pairs is exhausted, it means that no potentially non-matching pairs were
found, the two terms are identical and thus the predicate fails. note that this is achieved
by a matching clause for diff pairs/2 which fails if its first argument is a free variable.

• In the following program, note the optimisation for lists in equal terms/4: if one term
is a list, we pass it directly to equal lists/4 instead of decomposing each element with
functor/3. Obviously, this optimisation is applicable only if the input terms are known
not to contain any pairs which are not proper lists.
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dif2(T1, T2) :-

equal_args(T1, T2, List, Link),

!,

diff_pairs(List, Link).

d2if(_, _). % succeed if already different

equal_args(A1, A2, L, L) :-

A1 == A2, !.

equal_args(A1, A2, [A1-A2|Link], Link) :-

(var(A1);var(A2)),

!.

equal_args(A1, A2, List, Link) :-

equal_terms(A1, A2, List, Link).

equal_terms(T1, T2, List, Link) :-

T1 = [_|_],

T2 = [_|_],

!,

equal_lists(T1, T2, List, Link).

equal_terms(T1, T2, List, Link) :-

T1 =.. [F|Args1],

T2 =.. [F|Args2],

equal_lists(Args1, Args2, List, Link).

equal_lists([], [], L, L).

equal_lists([X1|A1], [X2|A2], List, Link) :-

equal_args(X1, X2, List, L1),

(nonvar(List) ->

L1 = [A1-A2|Link]

;

equal_lists(A1, A2, L1, Link)

).

diff_pairs([A1-A2|List], Link) :-

-?->

(A1 == A2 ->

diff_pairs(List, Link)

;

(var(A1); var(A2)) ->

suspend(diff_pairs([A1-A2|List], Link), 3, A1-A2->bound)

;

equal_terms(A1, A2, NewList, NewLink) ->

NewLink = List, % prepend to the list

diff_pairs(NewList, Link)

;

true

).
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Now we can see that compound terms are processed up to the first potentially matching pair
and then the continuations are stored:

[eclipse 30]: dif2(f(g(X, Y), h(Z, 1)), f(g(A, B), h(2, C))).

X = X

...

Delayed goals:

diff_pairs([X - A, [Y] - [B], [h(Z, 1)] - [h(2, C)]|Link], Link)

yes.

When a variable in the first pair is bound, the search proceeds to the next pair:

[eclipse 31]: dif2(f(g(X, Y), h(Z, 1)), f(g(A, B), h(2, C))), X=A.

Y = Y

...

Delayed goals:

diff_pairs([Y - B, [] - [], [h(Z, 1)] - [h(2, C)]|Link], Link)

yes.

dif2/2 does not do any unnecessary processing, so it is asymptotically much better than the
built-in ∼=/2.

This predicate, however, can be used only to impose a constraint on the two terms (i.e., it is a
“tell” constraint only). It uses the approach of “eager failure” and “lazy success”. Since it does
not process the terms completely, it sometimes does not detect success:

[eclipse 55]: dif2(f(X, a), f(b, b)).

X = X

Delayed goals:

diff_pairs([X - b, [a] - [b]|Link], Link)

yes.

If we wanted to write a predicate that suspends if and only if the disequality cannot be decided,
we have to use a different approach. The easiest way would be to process both terms completely
each time the predicate is woken. There are, however, better methods. We can process the
terms once when the predicate dif/2 is called, filter out all possibly matching pairs and then
create a suspension for each of them. As soon as one of the suspensions is woken and it finds an
incompatible binding, the dif/2 predicate can succeed. There are two problems:

• How to report the success? There are N suspensions and each of them may be able to
report success due to its bindings. All others should be disposed of.

This can be solved by introducing a new variable which will be instantiated when the two
terms become non-unifiable. Any predicate can then use this variable to ask or wait for the
result. At the same time, when it is instantiated, all suspensions are woken and finished.
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• How to find out that the predicate has failed? We split the whole predicate into N inde-
pendent suspensions and only if all of them are eventually woken and they find identical
pairs, the predicate fails. Any single suspension does not know if it is the last one or not.

To cope with this problem, we can use the “short circuit” technique: each suspension will
include two additional variables, the first one being shared with the previous suspension
and the second one with the next suspension. All suspensions are thus chained with these
variables. The first variable of the first suspension is instantiated at the beginning. When
a suspension is woken and it finds out that its pair of matched terms became identical, it
binds those additional variables to each other. When all suspensions are woken and their
pairs become identical, the second variable of the last suspension becomes instantiated and
this can be used for notification that the predicate has failed.

dif3(T1, T2, Yes, No) :-

compare_args(T1, T2, no, No, Yes).

compare_args(_, _, _, _, Yes) :-

nonvar(Yes).

compare_args(A1, A2, Link, NewLink, Yes) :-

var(Yes),

(A1 == A2 ->

Link = NewLink % short-cut the links

;

(var(A1);var(A2)) ->

suspend(compare_args(A1, A2, Link, NewLink, Yes), 3,

[[A1|A2]->bound, Yes->inst])

;

compare_terms(A1, A2, Link, NewLink, Yes)

).

compare_terms(T1, T2, Link, NewLink, Yes) :-

T1 =.. [F1|Args1],

T2 =.. [F2|Args2],

(F1 = F2 ->

compare_lists(Args1, Args2, Link, NewLink, Yes)

;

Yes = yes

).

compare_lists([], [], L, L, _).

compare_lists([X1|A1], [X2|A2], Link, NewLink, Yes) :-

compare_args(X1, X2, Link, L1, Yes),

compare_lists(A1, A2, L1, NewLink, Yes).

The variable Yes is instantiated as soon as the constraint becomes true. This will also wake
all pending suspensions which then simply succeed. The argument No of dif3/4 becomes
instantiated to no as soon as all suspensions are woken and their matched pairs become identical:

[eclipse 12]: dif3(f(A, B), f(X, Y), Y, N).
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Y = Y

...

Delayed goals:

compare_args(A, X, no, L1, Y)

compare_args(B, Y, L1, N, Y)

yes.

[eclipse 13]: dif3(f(A, B), f(X, Z), Y, N), A = a, X = b.

Y = yes

N = N

...

yes.

[eclipse 14]: dif3(f(A, B), f(X, Z), Y, N), A=X, B=Z.

Y = Y

N = no

...

yes.

Now we have a constraint predicate that can be used both to impose disequality on two terms
and to query it. For instance, a condition “if T1 = T2 then X = single else X = double” can
be expressed as

cond(T1, T2, X) :-

dif3(T1, T2, Yes, No),

cond_eval(X, Yes, No).

cond_eval(X, yes, _) :- -?->

X = double.

cond_eval(X, _, no) :- -?->

X = single.

cond_eval(X, Yes, No) :-

var(Yes),

var(No),

suspend(cond_eval(X, Yes, No), 2, Yes-No->inst).

This example could be further extended, e.g., to take care of shared variables, occur check or
propagating from the answer variable (e.g., imposing equality on all matched argument pairs
when the variable Y is instantiated). We leave this as a (rather advanced) exercise to the reader.

19.3 Waiting for other Constraints

The constrained list in the suspend attribute is used for instance in generic predicates which
have to be notified about the possible change of the state of a variable, especially its unifiability
with other terms. Our example with the dif predicate could be for instance extended to work
with finite domain or other constrained variables. The modification is fairly simple:
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• When a variable in one term is matched against a subterm of the other term, it might not
necessarily be unifable with it, because there might be other constraints imposed on it.
Therefore, not unify/2 must be used to test it explicitly.

• The suspension should be woken not only on binding, but on any constraining and thus
the constrained list has to be used.

The predicate compare args/5 is thus changed as follows:

compare_args(_, _, _, _, Yes) :-

nonvar(Yes).

compare_args(A1, A2, Link, NewLink, Yes) :-

var(Yes),

(A1 == A2 ->

Link = NewLink

;

(var(A1);var(A2)) ->

(not_unify(A1, A2) ->

Yes = yes

;

suspend(compare_args(A1, A2, Link, NewLink, Yes), 3,

[[A1|A2]->constrained, Yes->inst])

)

;

compare_terms(A1, A2, Link, NewLink, Yes)

).

Now our dif3/4 predicate yields correct results even for constrained variables:

[eclipse 1]: dif3(A, B, Y, N), A::1..10, B::20..30.

Y = yes

N = N

A = A{[1..10]}

B = B{[20..30]}

yes.

[eclipse 2]: dif3(A, B, Y, N), A::1..10, B = 5, A ## 5.

Y = yes

N = N

B = 5

A = A{[1..4, 6..10]}

yes.

[eclipse 18]: dif3(A, B, Y, N), A + B $= 1, A $= 1/2.

Y = Y

N = no

B = 1 / 2

A = 1 / 2
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Chapter 20

Memory Organisation And Garbage
Collection

20.1 Introduction

This chapter may be skipped on a first reading. Its purpose is to give the advanced user a better
understanding of how the system uses memory resources. In a high level language like Prolog it
is often not obvious for the programmer to see where the system allocates or frees memory.

The sizes of the different memory areas can be queried by means of the predicate statistics/2
and statistics/0 prints a summary of all these data. Here is a sample output:

[eclipse 1]: statistics.

times: [1.12, 0.09, 2.74] seconds

session_time: 2.74 seconds

event_time: 2.74 seconds

global_stack_used: 1936 bytes

global_stack_allocated: 4456448 bytes

global_stack_peak: 4456448 bytes

trail_stack_used: 64 bytes

trail_stack_allocated: 262144 bytes

trail_stack_peak: 4456448 bytes

control_stack_used: 564 bytes

control_stack_allocated:262144 bytes

control_stack_peak: 262144 bytes

local_stack_used: 492 bytes

local_stack_allocated: 262144 bytes

local_stack_peak: 262144 bytes

shared_heap_allocated: 1613824 bytes

shared_heap_used: 1411000 bytes

private_heap_allocated: 73728 bytes

private_heap_used: 36992 bytes

gc_number: 1

gc_collected: 23472.0 bytes

gc_area: 23560 bytes

203



gc_ratio: 99.6264855687606 %

gc_time: 0.0 seconds

dictionary_entries: 3252

dict_hash_usage: 2117 / 8192

dict_hash_collisions: 314 / 2117

dict_gc_number: 2

dict_gc_time: 0.01 seconds

The used-figures indicate the actual usage at the moment the statistics built-in was called. The
allocated value is the amount of memory that is reserved for this area and actually occupied by
the ECLiPSe process. The peak value indicates what was the maximum allocated amount during
the session. In the following we will discuss the six memory areas mentioned. The gc-figures are
described in section 20.2.

20.1.1 The Shared/Private Heap

The heap is used to store a variety of data:

compiled code: The heap is used to store compiled Prolog code. Consequently
its size is increased by the various compile-predicates, the assert-family and
by load/1. Space is freed when single clauses (retract) or whole predicates
(abolish) are removed from the system. Note that space reclaiming is usually
delayed in these cases (see trimcore/0), since the removed code may still be
under execution. Erasing a module also reclaims all the memory occupied by
the module’s predicates.

non-logical storage: All facilities for storing information across backtracking use
the heap to do so. This includes the handle-based facilities (bags, shelves) as
well as the name-based facilities (records, non-logical variables and arrays).
As a general rule, when a stored term is overwritten, the space for the old value
is reclaimed. All memory related to a non-logical store is reclaimed when the
store is destroyed (e.g., using erase array/1, erase all/1, bag abolish/1,
shelf abolish/1).

dictionary: The dictionary is the system’s table of atoms and functors. The dic-
tionary grows whenever the system encounters an atom or functor that has not
been mentioned so far. The dictionary shrinks on dictionary garbage collec-
tions, which are triggered automatically after a certain number of new entries
has been made (see set flag/2). The dictionary is designed to hold several
thousand entries, the current number of entries can be queried with statis-
tics/0,2.

various descriptors: The system manages a number of other internal tables (for
modules, predicates, streams, operators, etc.) that are also allocated on the
heap. This space is reclaimed when the related Prolog objects cease to exist.

I/O-buffers: When streams are opened, the system allocates buffers from the heap.
They are freed when the stream is closed.

allocation in C-externals: If third party libraries or external predicates written in
C/C++ call malloc() or related C library functions, this space is also allocated
from the heap. It is the allocating code’s responsibility to free this space if it
becomes unused.
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Note that the distinction between shared and private heap is only relevant for parallel ECLiPSe

systems, where multiple workers share the shared heap, but have their own private heap and
stacks.

20.1.2 The Local Stack

The Local Stack is very similar to the call/return stack in procedural languages. It holds Prolog
variables and return addresses. Space on this stack is allocated during execution of a clause and
deallocated before the last subgoal is called (due to tail recursion / last call optimisation). This
deallocation can not be done when the clause exits nondeterministically (this can be checked
with the debugger or the profiling facility). However, if a deallocation has been delayed due to
nondeterminism, it is finally done when a cut is executed or when execution fails beyond the
allocation point. Hence the ways to limit growth of the local stack are

• use tail recursion where possible;

• avoid unnecessary nondeterminism (cf. 20.1.3).

20.1.3 The Control Stack

The main use of the Control Stack is to store so-called choicepoints. A choicepoint is a
description of the system’s state at a certain point in execution. It is created when more than
one clause of a predicate apply to a given goal. Should the first clause fail, the system will
backtrack to the place where the choice was made, the old state will be restored from the
choicepoint and the next clause will be tried. Disjunctions (;/2) also create choicepoints.
The only way to reduce Control Stack usage is to avoid unnecessary nondeterminism. This
is done by writing deterministic predicates in such a way that they can be recognised by the
system. The debugger can help to identify nondeterministic predicates: When it displays an
*EXIT port instead of EXIT then the predicate has left a choicepoint behind. In this case it
should be checked whether the nondeterminism was intended. If not, the predicate can often be
made deterministic by

• writing the clause heads such that a matching clause can be more easily selected by index-
ing ;

• using the if-then-else construct (.. -> .. ; ..);

• deliberate insertion of (green) cuts.

20.1.4 The Global Stack

The Global Stack holds Prolog structures, lists, strings and long numbers. So the user’s selection
of data structures is largely responsible for the growth of this stack (cf. 5.4). In coroutining
mode, delayed goals also consume space on the Global Stack. It also stores source variable names
for terms which were read in with the flag variable_names being on. When this feature is not
needed, it should be turned off so that space on the global stack is saved.
The global stack grows while a program creates data structures. It is popped only on failure.
ECLiPSe therefore provides a garbage collector for the Global Stack which is called when a
certain amount of new space has been consumed. See section 20.2 for how this process can be
controlled. Note again that unnecessary nondeterminism reduces the amount of garbage that
can be reclaimed and should therefore be avoided.
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20.1.5 The Trail Stack

The Trail Stack is used to record information that is needed on backtracking. It is therefore
closely related to the Control Stack. Ways to reduce Trail Stack consumption are

• avoid unnecessary nondeterminism;

• supply mode declarations.

The Trail Stack is popped on failure and is garbage collected together with the Global Stack.

20.2 Garbage collection

The four stacks grow an shrink as needed.1 In addition, ECLiPSe provides an incremental
garbage collector for the global and the trail stack. It is also equipped with a dictionary garbage
collector that frees memory that is occupied by obsolete atoms and functors. Both collectors are
switched on by default and are automatically invoked from time to time. Nevertheless, there
are some predicates to control their action. The following predicate calls affect both collectors:

set flag(gc, on): Enable the garbage collector (the default).

set flag(gc, verbose): The same as ’on’, but print a message on every collection
(the message goes to toplevel output):

GC ... global: 96208 - 88504 (92.0 %), trail: 500 - 476 (95.2 %), time: 0.017

It displays the area to be searched for garbage, the amount and percentage of
garbage, and the time for the collection. The message of the dictionary collector
is as follows:

DICTIONARY GC ... 2814 - 653, (23.2 %), time: 0.033

It displays the number of dictionary entries before the collection, the number
of collected entries, the percentage of reduction and the collection time.

set flag(gc, off): Disable the garbage collector (and risk an overflow), e.g., for time-
critical execution sequences.

Predicate calls related to the stack collector are:

set flag(gc policy, adaptive): This option affects the triggering heuristics of the
garbage collector, together with the gc_interval setting. The adaptive policy
(the default) minimises garbage collection time.

set flag(gc policy, fixed): As above, but the fixed policy minimises space con-
sumption.

set flag(gc interval, Nbytes): Specify how often the collector is to be invoked.
Roughly, Nbytes is the number of bytes that your program can use up before
a garbage collection is triggered. There may be programs that create lots of
(useful) lists and structures while leaving few garbage. This will cause the
garbage collector to run frequently while reclaiming little space. If you suspect
this, you should call statistics/0 and check the garbage ratio. If it is very low
(say below 50%) it may make sense to increase the gc_interval, thus reducing

1Provided that the underlying operating system supports this.
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the number of garbage collections. This is normally only necessary when the
gc_policy is set to fixed. With gc_policy set to adaptive, the collection
intervals will be adjusted automatically.

garbage collect: Request an immediate collection (only if enabled). The use of
this predicate should be restricted to situations where the automatic triggering
performs badly. It should then be inserted in a place where you know for sure
that you have just created a lot of garbage, e.g., before the tail-recursive call in
something like

cycle(OldState) :-

transform(OldState, NewState), /* long computation */

!,

garbage_collect, /* OldState is obsolete */

cycle(NewState).

statistics(gc number, N): The number of stack garbage collections performed
during this ECLiPSe session.

statistics(gc collected, Bytes): The amount of global stack space (in bytes) re-
claimed by all the garbage collections.

statistics(gc area, Bytes): The average global stack area that was scanned by
each garbage collection. This number should be close to the amount selected
with gc_interval, if it is much larger, gc_interval should be increased.

statistics(gc ratio, Percentage): The average percentage of garbage found and
reclaimed by each garbage collection. If this ratio is low, gc_interval should
be increased.

statistics(gc time, Seconds): The total cpu time spent during all garbage collec-
tions.

Predicates related to the dictionary collector are:

set flag(gc interval dict, N): Specify that the dictionary collector should be in-
voked after N new dictionary entries have been made.

statistics(dict gc number, N): The number of garbage collections performed on
the dictionary during this ECLiPSe session.

statistics(dict gc time, Seconds): The total cpu time spent by all dictionary
garbage collections.
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Chapter 21

Operating System Interface

21.1 Introduction

ECLiPSe’s operating system interface consists of a collection of built-in predicates and some
global flags that are accessed with set flag/2, get flag/2 and env/0. They are described in
the following sections. The interface is mostly compatible across Unix and Windows operating
systems.

21.2 Environment Access

A number of predicates and global flags is provided to get more or less useful information from
the operating system environment.

21.2.1 Command Line Arguments

Arguments provided on the UNIX (or DOS) command line are accessed by the built-ins argc/1
which gives the number of command line arguments (including the command name itself) and
argv/2 which returns a requested positional argument in string form. If the first argument of
argv/2 is the atom all, then a list of all command line arguments is returned.

21.2.2 Environment Variables

On UNIX, environment variables are another way to pass information to the ECLiPSe process.
Their string value can be read using getenv/2:

[eclipse 1]: getenv(’HOME’, Home).

Home = "/usr/octopus"

yes.

The environment variables available on Window is version dependent, and is not a recommended
method of passing information.

21.2.3 Exiting ECLiPSe

When ECLiPSe is exited, it can give a return code to the operating system. This is done by
using exit/1. It exits ECLiPSe and returns its integer argument to the operating system.
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[eclipse 1]: exit(99).

csh% echo $status

99

Note that halt is equivalent to exit(0).

21.2.4 Time and Date

The current date can be obtained in the form of a UNIX date string:

[eclipse 1]: date(Today).

Today = "Tue May 29 20:49:39 1990\n"

yes.

The library calendar contains a utility predicate to convert this string into a Prolog structure.
Another way to access the current time and date is the global flag unix_time. It returns the
current time in the traditional UNIX measure, i.e., in seconds since 00:00:00 GMT Jan 1, 1970:

[eclipse 1]: get_flag(unix_time, Now).

Now = 644008011

yes.

Other interesting timings concern the resource usage of the running ECLiPSe. The statistics/2
built-in gives three different times, the user cpu time, the system cpu time and the elapsed real
time since the process was started (all in seconds):

[eclipse 1]: statistics(times, Used).

Used = [0.916667, 1.61667, 2458.88]

yes.

The first figure (user cpu time) is the same as given by cputime/1.

21.2.5 Host Computer

Access to the name and unique identification of the host computer where the system is running
can be obtained by the two global flags hostname and hostid, accessed via get flag/2 or env/0.
These flags might not be available on all machines, get flag/2 fails in these cases.

21.2.6 Calling C Functions

Other data may be obtained with the predicate call c/2 which allows to call directly any C
function which is linked to the Prolog system. Functions which are not linked can be loaded
dynamically with the load/1 predicate.

21.3 File System

A number of built-in predicates is provided for dealing with files and directories. Here we
consider only the file as a whole, for opening files and accessing their contents refer to chapter
11.
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21.3.1 Current Directory

The current working directory is an important notion in UNIX. It can be read and changed
within the ECLiPSe system by using getcwd/1 and cd/1 respectively. The current working
directory is accessible as a global flag as well. Reading and writing this flag is equivalent to the
use of getcwd/1 and cd/1:

[eclipse 1]: getcwd(Where).

Where = "/usr/name/prolog"

yes.

[eclipse 2]: cd(..).

yes.

[eclipse 3]: get_flag(cwd, Where)

Where = "/usr/name"

yes.

All ECLiPSe built-ins that take file names as arguments accept absolute pathnames as well as
relative pathnames starting at the current directory.

21.3.2 Looking at Directories

To look at the contents of a directory, read directory/4 is available. It takes a directory
pathname and a file name pattern and returns a list of subdirectories and a list of files matching
the pattern. The following metacharacters are recognised in the pattern: * matches an arbitrary
sequence of characters, ? matches any single character, [] matches one of the characters inside
the brackets unless the first one is a ^, in which case it matches any character but those inside
the brackets.

[eclipse 1]: read_directory("/usr/john", "*", Dirlist, Filelist).

Dirlist = ["subdir1", "subdir2"]

Filelist = ["one.c", "two.c", "three.pl", "four.pl"]

yes.

21.3.3 Checking Files

For checking the existence of files, exists/1 or the more powerful existing file/4 is used. For
accessing any file properties there is get file info/3. It can return file permissions, type, owner,
size, inode, number of links as well as creation, access and modification times (as defined by the
UNIX system call stat(2); not all entries are meaningful under Windows), and accessibility
information. It fails when the specified file does not exist. Refer to the reference manual or
help/1 for details.

21.3.4 Renaming and Removing Files

For these basic operations with files, rename/2 and delete/1 are provided.
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21.3.5 File names

The file names used by ECLiPSe is in the Unix format, including on Window platforms, with
the addition that the disk such as C: is indicated by //C/, so a Windows file name such as
"C:\my\path\name.ecl" should be writen as "//C/my/path/name.pl". The utility predicate
os file name/2 provides for the conversion between the format used in ECLiPSe and the Op-
erating Systems’ format.

The utility pathname/4 is provided to ease the handling of file names. It takes a full pathname
and cuts it into the directory pathname, the file name proper and a suffix ( the part beginning
with the last dot in the string). It also expands symbolic pathnames, starting with ~, ~user or
$var.

[eclipse 1]: Name = "~octopus/prolog/file.pl",

pathname(Name, Path, File, Suffix).

Path = "/usr/octopus/prolog/"

File = "file.pl"

Name = "~octopus/prolog/file.pl"

Suffix = ".pl"

yes.

21.4 Creating Communicating Processes

ECLiPSe provides all the necessary built-ins needed to create UNIX processes and establish
communication between them. A ECLiPSe process can communicate with other processes via
streams and by sending and receiving signals.

21.4.1 Process creation

The built-ins of the exec group and sh/1 fork a new process and execute the command given
as the first argument. Sorted by their versatility, there are:

• sh(Command)

• exec(Command, Streams)

• exec(Command, Streams, ProcessId)

• exec group(Command, Streams, ProcessId)

With sh/1 (or its synonym system/1) it is possible to call and execute any UNIX command
from withing ECLiPSe. However it is not possible to communicate with the process. Moreover,
the ECLiPSe process just waits until the command has been executed.

The exec group makes it possible to set up communication links with the child process by
specifying the Streams argument. It is a list of the form

[Stdin, Stdout, Stderr]

and specifies which ECLiPSe stream should be connected to the stdin, stdout or stderr

streams of the child respectively. Unless null is specified, this will establish pipes to be created
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between the ECLiPSe process and the child. On Berkeley UNIX systems the streams can be
specified as sigio(Stream) which will setup the pipe such that the signal sigio is issued every
time new data appears on the pipe. Thus, by defining a suitable interrupt handler, it is possible
to service this stream in a completely asynchronous way.

21.4.2 Process control

The sh/1 and exec/2 built-ins both block the ECLiPSe process until the child has finished.
For more sophisticated applications, the processes have to run in parallel and be synchronised
explicitly. This can be achieved with exec/3 or exec group/3. These return immediately after
having created the child process and unify its process identifier (Pid) with the their argument.
The Pid can be used to

• send signals to the process, using the built-in kill(Pid, Signal);

• wait for the process to terminate and obtain its return status: wait(Pid, Status).

The difference between exec/3 and exec group/3 is that the latter creates a new process group
for the child, such that the child does not get the interrupt, hangup and kill signals that are
sent to the parent.
The process identifier of the running ECLiPSe and of its parent process are available as the
global flags pid and ppid respectively. They can be accessed using get flag/2 or env/0.
Here is an example of how to connect the UNIX utility bc (the arbitrary-precision arithmetic
language) to a ECLiPSe process. We first create the process with two pipes for the child’s
standard input and output. Then, by writing and reading these streams, the processes can
communicate in a straightforward way. Note that it is usually necessary to flush the output
after writing into a pipe:

[eclipse 1]: exec(bc, [in,out], P).

P = 9759

yes.

[eclipse 2]: writeln(in, "12345678902321 * 2132"), flush(in).

yes.

[eclipse 3]: read_string(out, end_of_line, "", _, Result).

Result = "26320987419748372"

yes.

In this example the child process can be terminated by closing its standard input (in other cases
it may be necessary to send a signal). The built-in wait/2 is then used to wait for the process
to terminate and to obtain its exit status. Don’t forget to close the ECLiPSe streams that were
opend by exec/3:

[eclipse 4]: close(in), wait(P,S).

P = 9759

S = 0 More? (;)

yes.
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[eclipse 5]: at_eof(out), close(out).

yes.

21.4.3 Interprocess Signals

The UNIX (or the appropriate Windows) signals are all mapped to ECLiPSe interrupts. Their
names and numbers may vary on different machines. Refer to the operating system documen-
tation for details.
The way to deal with incoming signals is to define a Prolog or external predicate and declare it as
the interrupt handler for this interrupt (using set interrupt handler/2). Interrupt handlers
can be established for all signals except those that are not allowed to be caught by the process
(like e.g., the kill signal 9). For a description of event handling in general see chapter 14.
For explicitly sending signals to other processes kill/2 is provided, which is a direct interface to
the UNIX system call kill(2). Note that some signals can be set up to be raised automatically,
e.g., sigio can be raised when data arrives on a pipe.
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Chapter 22

Interprocess Communication

ECLiPSe contains built-in predicates that support interprocess communications using sockets.
Sockets implement bidirectional channels that can connect multiple processes on different ma-
chines in different networks. The socket predicates are directly mapped to the system calls and
therefore detailed information can be found in the Unix manuals.

Sockets in general allow a networked communication among many processes, where each packet
sent by one process can be sent to different address. In order to limit the number of necessary
built-in predicates, ECLiPSe supports only point-to-point communication based on stream or
datagram sockets, or many-to-one communication based on datagrams. Broadcasting as well
as using one socket to send data to different addresses is not supported, except that datagram
sockets can be re-connected, so that the same socket is directed to another address. Below we
describe the basic communication types that are available in ECLiPSe.

Note that the sockets streams in ECLiPSe are buffered like all other streams, and so it is
necessary to flush the buffer in order to actually send the data to the socket. This can be done
either with the flush/1 predicate or with the option %b in printf/2,3.

22.1 Socket Domains

Currently there are two available domains, unix and internet. The communication in the unix
domain is limited to a single machine running under an Unix operating system, and the sockets
are associated to files in this machine’s file system.

The internet domain can be used to connect any two machines which are connected through
the network. It can also connect two processes on the same machine. The address of a socket is
then identified by the host name and the port number. The host name is the same as obtained,
e.g., with get_flag(hostname, Host). The port identifies the channel on the host which is used
for the communication. This is available under both Unix and Windows operating systems.

22.2 Stream Connection (internet domain)

This type of communication is very similar to pipes, the stream communication is reliable and
there are no boundaries between the messages. Stream sockets always require explicit connection
from both communicating processes.

After a socket is created with the socket/3 predicate, one of the processes, the server, gives it a
name and waits for a connection. The other process uses the same name when connecting to the
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former process. After the connection is established, both processes can read and write on the
socket and so the difference between the server and the client disappears. The socket addresses
contain the host name and the port number. Since one port number identifies the socket on a
given host, the process cannot itself specify the port number it wants to use because it can be
already in use by another process. Therefore, the safe approach is to use the default and let the
system specify the port number, which is achieved by leaving the port uninstantiated. Since the
host is always known, it can also be left uninstantiated. The client, however, has to specify both
the host name and the port number:

server:

[eclipse 10]: socket(internet, stream, s), bind(s, X).

X = acrab5 / 3789

yes.

[eclipse 11]: listen(s, 1), accept(s, From, news).

<blocks waiting for a connection>

client:

[eclipse 26]: socket(internet, stream, s), connect(s, acrab5/3789).

yes.

[eclipse 27]: printf(s, "%w. %b", message(client)), read(s, Msg).

server:

From = acrab4 / 1627

yes.

[eclipse 12]: read(news, Msg),

printf(news, "%w. %b", message(server)).

Msg = message(client)

yes.

client:

Msg = message(server)

yes.

22.3 Datagram Connection (internet domain)

This type of communication is the most general one offered by ECLiPSe. It is based on packets
sent from one process to another, perhaps across a network. Any machine which is reachable
over the network can participate in the communication.
The communication protocol does not guarantee that the message will always be delivered, but
normally it will be. Every packet represents a message which is read separately at the system
level, however at the Prolog level the packet boundaries are not visible.1 The difference to
stream communication is that there is no obligatory connection between the server and the

1The packet boundaries are not of much interest in Prolog because every Prolog term represents itself a message
with clear boundaries.
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client. First the socket has to be created, and then the process which wants to read from the it
binds the socket to a name. Any other process can then connect directly to this socket using the
connect/2 predicate and send data there. This connection can be temporary, and after writing
the message to the socket the process can connect it to another socket, or just disconnect it by
calling connect(Socket, 0).

Such datagram connection works only in one direction, namely from the process that called
connect/2 to the process that called bind/2, however the connection in the other direction
can be established in the same way.

Since ECLiPSe does not provide a link to the system call sendto(), the address where the
packet should be sent to can be specified only using connect/2. If the next packet is to be sent
to a different address, a new connect/2 call can be used. The socket can be disconnected by
calling connect(s, 0/0).

The functionality of recvfrom() is not available, i.e., the sender has to identify itself explicitly
in the message if it wants the receiver to know who the sender was.

Below is an example of a program that starts ECLiPSe on all available machines which are not
highly loaded and accepts a hello message from them. Note the use of rsh to invoke the process
on the remote machine and pass it the host name and port address. Note that this example is
Unix specific.

% Invoke ECLiPSe on all available machines and accept a hello message

% from them.

connect_machines :-

machine_list(List), % make a list of machines from ruptime

socket(internet, datagram, sigio(s)), % signal when data comes

bind(s, Address),

set_interrupt_handler(io, io_handler/0),

connect_machines(List, Address).

% As soon as a message arrives to the socket, the io signal will

% be sent and the handler reads the message.

io_handler :-

set_flag(enable_interrupts, off),

read_string(s, end_of_line, "", _, Message),

writeln(Message),

set_flag(enable_interrupts, on).

% Invoke eclipse on all machines with small load and let them execute

% the start/0 predicate

connect_machines([info(RHost, UpTime, Users, L1, _, _)|Rest],

Host/Port

) :-

UpTime > 0, % it is not down

L1 < 0.5, % load not too high

Users < 3, % not too many users

!,

concat_string(, Command),
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exec([’rsh’, RHost, ’eclipse’, Host, Port, ’-b’,

’/home/lp/micha/sepia4/up.pl’, ’-e’, ’start’], [], _),

connect_machines(Rest, Host/Port).

connect_machines([_|Rest], Address) :-

connect_machines(Rest, Address).

connect_machines([], _).

% ECLiPSe on remote hosts is invoked with

% eclipse host port -b file.pl -e start

% It connects to the socket of the main process,

% sends it a hello message and exits.

start :-

is_built_in(socket/3), % to ignore non-BSD machines

argv(1, SHost),

argv(2, SPort),

atom_string(Host, SHost),

number_string(Port, SPort),

get_flag(hostname, LHost),

socket(internet, datagram, s), % create the socket

connect(s, Host/Port), % connect to the main process

printf(s, "hello from %s\n%b", LHost).

% Invoke ruptime(1) and parse its output to a list of accessible

% machines in the form

% info(Host, UpTime, Users, Load1, Load2, Load3).

machine_list(List) :-

% exec/2 cannot be used as it could overflow

% the pipe and then block

exec([’ruptime’, ’-l’], [null, S], P),

parse_ruptime(S, List),

close(S),

wait(P, _),

!.

% Parse the output of ruptime

parse_ruptime(S, [Info|List]) :-

parse_uptime_record(S, Info),

!,

parse_ruptime(S, List).

parse_ruptime(_, []).

% parse one line of the ruptime output

parse_uptime_record(S, info(Host, Time, Users, Load1, Load2, Load3)) :-

read_token(S, Host, _),

Host \== end_of_file,

read_token(S, Up, _),

(Up == up ->
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read_time(S, Time),

read_token(S, ’,’, _),

read_token(S, Users, _),

read_token(S, _, _),

read_token(S, ’,’, _),

read_token(S, load, _),

read_token(S, Load1, _),

read_token(S, ’,’, _),

read_token(S, Load2, _),

read_token(S, ’,’, _),

read_token(S, Load3, _)

;

read_time(S, _),

Time = 0

).

% Parse the up/down time and if the machine is down, return 0

read_time(S, Time) :-

read_token(S, T1, _),

(read_token(S, +, _) ->

Days = T1,

read_token(S, Hours, _),

read_token(S, :, _)

;

Days = 0,

Hours = T1

),

read_token(S, Mins, _),

Time is ((24 * Days) + Hours) * 60 + Mins.

and here is a script of the session:

[eclipse 1]: [up].

up.pl compiled traceable 4772 bytes in 0.08 seconds

yes.

[eclipse 2]: connect_machines.

sending to mimas3

sending to mimas8

sending to acrab23

sending to europa1

sending to europa5

sending to regulus2

sending to miranda5

sending to mimas2

sending to triton6

sending to europa2

sending to acrab7
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sending to europa3

sending to sirius

sending to miranda6

sending to charon6

sending to acrab13

sending to triton1

sending to acrab20

sending to triton4

sending to charon2

sending to triton5

sending to acrab24

sending to acrab21

sending to scorpio

sending to acrab14

sending to janus5

yes.

[eclipse 3]: hello from mimas3

eclipse: Command not found. % eclipse not installed here

hello from regulus2

hello from mimas8

hello from acrab20

hello from europa1

hello from mimas2

hello from miranda6

hello from miranda5

hello from europa3

hello from charon6

hello from charon2

hello from acrab24

hello from triton5

hello from acrab21

hello from janus5

hello from triton4

hello from triton6

hello from europa2

hello from europa5

hello from acrab23

hello from triton1

hello from acrab14

hello from acrab13

hello from acrab7

22.4 Stream Connection (unix domain)

The sequence of operations is the same as for the internet domain, however in the unix domain
the socket addresses are the file names:
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server:

[eclipse 10]: socket(unix, stream, s), bind(s, ’/tmp/sock’).

yes.

[eclipse 11]: listen(s, 1), accept(s, _, news).

<blocks waiting for a connection>

client:

[eclipse 26]: socket(unix, stream, s), connect(s, ’/tmp/sock’).

yes.

[eclipse 27]: printf(s, "%w. %b", message(client)), read(s, Msg).

server:

[eclipse 12]: read(news, Msg),

printf(news, "%w. %b", message(server)).

Msg = message(client)

yes.

client:

Msg = message(server)

yes.

22.5 Datagram Connection (unix domain)

This is similar to datagram connection in the internet domain, except that it is limited to
communications between two processes on the same Unix machine.

Again, like in the internet domain, the connection must be established in both directions if
bi-direction communication is required:

server:

% Make a named socket and read two terms from it

[eclipse 10]: socket(unix, datagram, s), bind(s, ’/tmp/sock’).

yes.

[eclipse 11]: read(s, X), read(s, Y).

process1:

% Connect a socket to the server and write one term

[eclipse 32]: socket(unix, datagram, s), connect(s, ’/tmp/sock’).

yes.

[eclipse 33]: printf(s, "%w. %b", message(process1)).

process2:

% Connect a named socket to the server and write another term
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[eclipse 15]: socket(unix, datagram, s), connect(s, ’/tmp/sock’),

bind(s, ’/tmp/socka’).

yes.

[eclipse 16]: printf(s, "%w. %b", message(process2)).

yes.

% And now disconnect the output socket from the server

[eclipse 17]: connect(s, 0).

yes.

server:

% Now the server can read the two terms

X = message(process1)

Y = message(process2)

yes.

% and it writes one term to the second process on the same socket

[eclipse 12]: connect(s, ’/tmp/socka’),

printf(s, "%w. %b", message(server)).

process2:

%

[eclipse 18]: read(s, Msg).

Msg = message(server)

yes.

222



Chapter 23

Language Dialects, ISO Prolog and
Porting Prolog Applications

The ECLiPSe system has evolved from the Edinburgh family of Prolog systems, and thus shares
many properties with other systems in the same tradition. It also supports the ISO Prolog
Standard from 1995 and its 2005, 2012 and 2017 corrigenda.

However, the default programming language dialect used with ECLiPSe (known as eclipse_language)
is a separate and unique dialect, which is the result of design decisions taken for conceptual,
practical and occasionally historical reasons.

To run an application written in another Prolog dialect on ECLiPSe, one has basically two
choices: Using a compatibility package, or modifying the program.

23.1 Using compatibility language dialects

The ECLiPSe compatibility language dialects are the fastest way to get a program running
that was originally written for a different system. The dialects are implemented as libraries.
The module system makes it possible for different application modules to use different language
dialects.

To use a particular language dialect, prefix your program with a module/3 directive that
specifies the desired language dialect, for example

:- module(mymodule, [], iso).

Here, the last argument of the module/3 directive indicates the language (the default being
eclipse language). It is not advisable to use :-lib(iso) or :-ensure_loaded(library(iso))

within an eclipse language module, because this would lead to import conflicts between the
different versions of built-in predicates.

Examples of supported language dialects are

• ISO Standard Prolog (iso strict, iso and iso light).

• C-Prolog (cprolog), one of the oldest and most influential Prolog implementations.

• Quintus Prolog (quintus), an early influential commercial system.

• SICStus Prolog (sicstus), an academic and commercial system based on Quintus.

223



• SWI Prolog (swi), a popular Prolog with large user base.

See the Reference Manual for details on the compatibility provided by the language dialects. The
language dialects are just modules which provide the necessary code and exports to emulate a
particular Prolog dialect. This module is imported instead of the default eclipse_language

dialect which provides the ECLiPSe language. The source code of the language dialect module
is provided in the ECLiPSe library directory. Using this as a guideline, it should be easy to
write similar packages for other systems, as long as their syntax does not deviate too much from
the Edinburgh tradition.
For quick experiments with a language dialect, ECLiPSe can be started with a different default_language
option (see appendix D), e.g.

% eclipse -L <dialect>

This will give you a toplevel prompt in the given language dialect. The same effect can be
achieved by setting the ECLIPSEDEFAULTLANGUAGE environment variable to the name of
the chosen dialect.

23.1.1 ISO Prolog

The ISO Prolog standard [1] is supported in three variants:

• The iso strict dialect provides an implementation of ISO Standard Prolog and complies
strictly with ISO/IEC 13211-1 (Information Technology, Programming Languages, Prolog,
Part 1, General Core, 1995) and the technical corrigenda ISO/IEC 13211-1 TC1 (2007),
TC2 (2012) and TC3 (2017).

• The iso dialect provides an implementation of ISO Standard Prolog and in addition in-
cludes ECLiPSe functionality that does not conflict with the standard.

• The iso light dialect provides the essence of ISO features without aiming for full confor-
mance (in particular with respect to error handling), and may include ECLiPSe extensions
that go beyond what the letter of the standard allows.

The specification of implementation-defined features stipulated by the standard can be found in
the reference manual for iso strict and iso.

23.1.2 Compiler versus interpreter

The following problem can occur despite the use of compatibility packages: If your program was
written for an interpreter, e.g., C-Prolog, you have to be aware that ECLiPSe is a compiling
system. There is a distinction between static and dynamic predicates. By default, a predicate is
static. This means that its clauses have to be be compiled as a whole (they must not be spread
over multiple files), its source code is not stored in the system, and it can not be modified
(only recompiled as a whole). In contrast, a dynamic predicate may be modified by compiling or
asserting new clauses and by retracting clauses. Its source code can be accessed using clause/1,2
or listing/0,1. A predicate is dynamic when it is explicitly declared as such or when it was
created using assert/1. Porting programs from an interpreter usually requires the addition of
some dynamic declarations. In the worst case, when (almost) all procedures have to be dynamic,
the flag all_dynamic can be set instead.
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23.2 Porting programs to plain ECLiPSe

If you want to use ECLiPSe to do further development of your application, it is probably
advantageous to modify it such that it runs under plain ECLiPSe. In the following we summarise
the main aspects that have to be considered when doing so.

• In general, it is almost always possible to add to your program a small routine that fixes
the problem, rather than to modify the source of the application in many places. For
example, name clashes are fixed more easily by using the local/1 declaration rather than
by renaming the clashing predicate in the whole application program.

• Due to lack of standardisation, some subtle differences in the syntax exist between Prolog
systems. See A.4 for details. ECLiPSe has a number of options that make it possible to
configure its behaviour as desired.

• ECLiPSe has the string data type which is not present in Prolog of the Edinburgh family.
Double-quoted items are parsed as strings in ECLiPSe, while they are lists of integers in
other systems and when the compatibility packages are used (cf. chapter 5.4).

• I/O predicates of the see and tell group are not built-ins in ECLiPSe, but they are
provided in the cio library. Call lib(cio) in order to have them available (cf. appendix
A). Similarly for numbervars/3.

• In ECLiPSe, some built-ins raise events in cases where they just fail in other systems, e.g.,
arg(1, 2, X) fails in C-Prolog, but raises a type error in ECLiPSe. If some code relies
on such behaviour, it is best to modify it by adding an explicit check like

..., compound(T), arg(N, T, X), ...

Another alternative is to redefine the arg/3 built-in, using :/2 to access the original
version:

:- local arg/3.

arg(N, T, X) :-

compound(X),

eclipse_language:arg(N, T, X).

A third alternative is to define an error handler which will fail the predicate whenever the
event is raised. In this case:

my_type_error(_, arg(_, _, _)) :- !, fail.

my_type_error(E, Goal) :- error(default(E), Goal).

:- set_error_handler(5, my_type_error/2).

• As the ECLiPSe compiler does not accept procedures whose clauses are not consecutive
in a file, it may be necessary to add discontiguous/1 directives if you want to compile
such procedures.
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23.3 Exploiting the features of ECLiPSe

When rewriting existing applications as well as when writing new programs, it is useful to bear
in mind important ECLiPSe features which can make programs easier to write and/or faster:

• Compiler features relevant for performance can be found in section 6.7.

• Use ECLiPSe’s nonlogical storage facilities (section 10), which are usually more suitable
to store permanent data than assert/1 is, and are usually faster.

• ECLiPSe has a number of language extensions which make programming easier, see chapter
5.

• The predicates get flag/2, get flag/3, get file info/3, get stream info/3 and
get var info/3 give a lot of useful information about the system and the data.

• The ECLiPSe macros often help to solve syntactic problems (see chapter 13).

• The TkECLiPSe GUI provides many features that should make developing programs easier
than with the traditional tty interface.

• It is worth familiarising oneself with the debugger’s features, see chapter 15.

• ECLiPSe is highly customizable, even problems which seemingly require modification of
the ECLiPSe sources can very often be solved at the Prolog level.
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Appendix A

Syntax

A.1 Introduction

This chapter provides a definition of the syntax of the ECLiPSe Prolog language. A complete
specification of the syntax is provided and comparison to other commercial Prolog systems are
made. The ECLiPSe syntax is based on that of Edinburgh Prolog ([2]).

A.2 Notation

The following notation is used in the syntax specification in this chapter:

• a term_h is a term which is the head of the clause.

• a term_h(N) is a term_h of maximum precedence N.

• a term_g is a term which is a goal (body) of the clause.

• a term_g(N) is a term_g of maximum precedence N.

• a term_a is a term which is an argument of a compound term or a list.

• a term(N) can be any term (term_h, term_a or term_h) of maximum precedence N.

• fx(N) is a prefix operator of precedence N which is not right associative.

• fy(N) is a prefix operator of precedence N which is right associative.

• similar definitions apply for infix (xfx, xfy, yfx) and postfix (xf, yf) operators.

A.2.1 Character Classes

The following character classes exist:
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Character Class Notation Used Default Members

upper case UC all upper case letters
underline UL _

lower case LC all lower case letters
digit N digits
blank space BS space, tab and nonprintable ASCII characters
end of line NL line feed
atom quote AQ ’

string quote SQ "

list quote LQ ‘

chars quote CQ

radix RA

ascii AS

solo SL ! ;

special DS ( [ { ) ] } , |

line comment CM %

escape ES \

first comment CM1 /

second comment CM2 *

symbol SY # + - . : < = > ? @ ^ ~ $ &

terminator TS
The character class of any character can be modified by a chtab-declaration.

A.2.2 Groups of characters

Group Type Notation Valid Characters

alphanumerical ALP UC UL LC N

non escape NES any character except escape
sign SGN + -

A.2.3 Valid Tokens

Terms are defined in terms of tokens, and tokens are defined in terms of characters and character
classes. Individual tokens can be read with the predicates read token/2 and read token/3.
The description of the valid tokens follows.
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Atoms

ATOM = (LC ALP*)

| (SY | CM1 | CM2 | ES)+

| (AQ (NES | ESCSEQ)* AQ)

| SL

| []

| {}

| |

If the syntax option doubled_quote_is_quote is enabled, two immediately consecutive AQ
characters may occur inside an AQ-quoted sequence, and will be interpreted as a single occur-
rence of the quote within the name. If the syntax option bar_is_no_atom is active, the vertical
bar cannot be used as an atom, unless quoted.

Numbers

1. integers

INT = [SGN] N+

2. based integers

INTBAS = [SGN] N+ (AQ | RA) (N | LC | UC)+

The base must be an integer between 1 and 36 included, the value being valid for this base.

If the syntax option iso_base_prefix is active, the syntax for based integers is instead

INTBAS = [SGN] 0 (b | o | x) (N | LC | UC)+

which allows binary, octal and hexadecimal numbers respectively.

3. character codes

INTCHAR = [SGN] (0 (AQ|RA)|AS) CHARCONST

For all plain characters, CHARCONST is just that character, and the value of the integer
is the character code of that character. For special characters, see the detailed definition
of CHARCONST below A.2.3.

4. rationals

RAT = [SGN] N+ UL N+

5. floats

FLOAT = [SGN] N+ . N+ [ (e | E) [SGN] N+ | Inf | NaN ]

| [SGN] N+ (e | E) [SGN] N+
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If the syntax option float_needs_point is active, then only the first alternative (with
floating point) is valid syntax.

6. bounded reals

BREAL = FLOAT UL UL FLOAT

where the first float must be less or equal to the second.

If the syntax option blanks_after_sign is active, then blank space (BS*) is allowed between
the sign and the following digits.

Strings

STRING = SQ (NES | ESCSEQ | SQ BS* SQ)* SQ

Text enclosed in SQ (string quote) characters is parsed as a constant of type string. By default,
the double quote " is the SQ character.

By default, consecutive strings are concatenated into a single string literal. This behaviour can
be disabled by the syntax option no_string_concatenation. If the strings are consecutive
without intervening blank space, the doubled_quote_is_quote causes the doubled quotes to be
interpreted as a single occurrence of the quote within the string.

Lists of numeric character codes

LIST = LQ (NES | ESCSEQ | LQ BS* LQ)* LQ

Text enclosed in LQ (list quote) characters is parsed as a list of numeric character codes. For
example, if the double quote " is defined as list quote, then "abc" is parsed as [97,98,99].

Concatenation and doubled quotes are handled as for SQ-quoted strings.

Lists of single-character atoms

LIST = CQ (NES | ESCSEQ | CQ BS* CQ)* CQ

Text enclosed in CQ (chars quote) characters is parsed as a list of single-atom characters. For
example, if the double quote " is defined as chars quote, then "abc" is parsed as [’a’,’b’,’c’].

Concatenation and doubled quotes are handled as for SQ-quoted strings.

Variables

VAR = (UC | UL) ALP*

End of clause

EOCL = . (BS | NL | <end of file>) | TS | <end of file>

If the syntax option eof_is_no_fullstop is active, then end-of-file alone does not act as EOCL.
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Escape Sequences within Quotes

Within quoted constants (atoms, strings, character lists), the following escape sequences ESC-
SEQ may occur, and lead to the corresponding special character being inserted into the quoted
item.

ESCSEQ = Result Syntax option
ES a ASCII alert (7)
ES b ASCII backspace (8)
ES f ASCII form feed (12)
ES n ASCII newline (10)
ES r ASCII carriage return (13)
ES t ASCII tabulation (9)
ES v ASCII vertical tab (11)
ES e ASCII escape (27) not iso restrictions
ES d ASCII delete (127) not iso restrictions
ES s ASCII space (32) not iso restrictions
ES (ES|AQ|SQ|LQ|CQ) the ES,AQ,SQ,LQ or CQ character
ES NL ignored
ES c (BS|NL)* ignored not iso restrictions
ES three octal digits character with given octal character code not iso escapes
ES octal digits ES character with given octal character code iso escapes
ES x hex digits ES character with given hexadecimal character code

It is illegal for any other character to follow the ES. If the syntax option iso_escapes is active,
the octal escape sequence can be of any length and must be terminated with an ES character.
Some sequences are disabled by the iso_restrictions option.

Character Constants

An integer character constant (see 3) is by default introduced by the sequence 0’ and followed
by CHARCONST, which is defined as one of the following:
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CHARCONST = Represents Syntax option
(ALP|SL|DS|CM|CM1|CM2|SY|TS) that character
<SPACE> ASCII space (32)
(SQ|LQ|CQ) the SQ,LQ or CQ character
ES (ES|AQ|SQ|LQ|CQ) the ES,AQ,SQ,LQ or CQ character
ES a ASCII alert (7)
ES b ASCII backspace (8)
ES f ASCII form feed (12)
ES n ASCII newline (10)
ES r ASCII carriage return (13)
ES t ASCII tabulation (9)
ES v ASCII vertical tab (11)
AQ AQ the AQ character itself iso escapes and doubled quote is quote
ES octal digits ES character with given octal character code iso escapes
ES x hex digits ES character with given hexadecimal character code
<TAB> ASCII tabulation (9) not iso escapes
NL ASCII newline (10) not iso escapes
AQ the AQ character itself not iso escapes
ES the ES character itself not iso escapes
ES e ASCII escape (27) not iso restrictions
ES d ASCII delete (127) not iso restrictions
ES s ASCII space (32) not iso restrictions

It is recommended to use only those sequences that are recognised universally, i.e. independent
of syntax option settings. The other sequences are present for compatibility with various Prolog
dialects. The syntax options iso_escapes and iso_restrictions disable several of those. The
AQ AQ sequence is of dubious value – it is recommended to write 0’\’ instead of 0’’’.

A.3 Formal definition of clause syntax

What follows is the specification of the syntax. The terminal symbols are written in UPPER
CASE or as the character sequence they consist of.

program ::= clause EOCL

| clause EOCL program

clause ::= head

| head rulech goals

| rulech goals

head ::= term_h

goals ::= term_g

| goals , goals

| goals ; goals

| goals -> goals

| goals -> goals ; goals
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term_h ::= term_h(0)

| term(1200)

term_g ::= term_g(0)

| term(1200)

term(0) ::= VAR /* not a term_h */

| attr_var /* not a term_h */

| ATOM

| structure

| structure_with_fields

| subscript

| list

| STRING /* not a term_h nor a term_g */

| number /* not a term_h nor a term_g */

| bterm

term(N) ::= term(0)

| prefix_expression(N)

| infix_expression(N)

| postfix_expression(N)

prefix_expression(N) ::= fx(N) term(N-1)

| fy(N) term(N)

| fxx(N) term(N-1) term(N-1)

| fxy(N) term(N-1) term(N)
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infix_expression(N) ::= term(N-1) xfx(N) term(N-1)

| term(N) yfx(N) term(N-1)

| term(N-1) xfy(N) term(N)

postfix_expression(N) ::= term(N-1) xf(N)

| term(N) yf(N)

attr_var ::= VAR { attributes }

/* Note: no space before { */

attributes ::= attribute

| attribute , attributes

attribute ::= qualified_attribute

| nonqualified_attribute

qualified_attribute ::= ATOM : nonqualified_attribute

nonqualified_attribute ::= term_a

structure ::= functor ( termlist )

/* Note: no space before ( */

structure_with_fields ::= functor { termlist }

| functor { }

/* Note: no space before { */

subscript ::= structure list

| VAR list

/* Note: no space before list */

termlist ::= term_a

| term_a , termlist

list ::= [ listexpr ]

| .(term_a, term_a)

listexpr ::= term_a

| term_a | term_a

| term_a , listexpr

term_a ::= term(1200)

/* Note: it depends on syntax_options */
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number ::= INT

| INTBAS

| INTCHAR

| RAT

| FLOAT

| BREAL

bterm ::= ( clause )

| { clause }

functor ::= ATOM /* arity > 0 */

rulech ::= :-

| ?-

A.3.1 Comments

There are two types of comments: bracketed comments, which are enclosed by CM1-CM2 and
CM2-CM1, and the end-of-line comment, which is enclosed by CM and NL. Both types of
comment behave as separators. When the syntax option nested_comments is on (the default is
off), bracketed comments can be nested.

A.3.2 Operators

In Prolog, the user is able to modify the syntax dynamically by explicitly declaring new operators.
The built-in op/3 performs this task. As in Edinburgh Prolog, a lower precedence value means
that the operator binds more strongly (1 strongest, 1200 weakest).

Any atom (whether symbolic, alphanumeric, or quoted) can be declared as an operator. Once
an operator has been declared, the parser will accept the corresponding operator notation, and
certain output built-ins will produce the operator notation if possible. There are three classes
of operators: prefix, infix and postfix.

• When f is declared as a prefix unary operator (fx or fy), then the term f(X) can alter-
natively be written as f X.

• When f is declared as a prefix binary operator (fxx or fxy), then the term f(X,Y) can
alternatively be written as f X Y.

• When f is declared as a postfix operator (xf or yf), then the term f(X) can alternatively
be written as X f.

• When f is declared an an infix operator (xfx, xfy or yfx), then the term f(X,Y) can
alternatively be written as X f Y.

An operator can belong to more than one class, e.g., the plus sign is both a prefix and an infix
operator at the same time.

In the associativity specification of an operator (e.g., fx, yfx), x represents an argument whose
precedence must be lower than that of the operator. y represents an argument whose precedence
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must be lower or equal to that of the operator. y should be used if one wants to allow chaining
of operators (i.e., if one wants them to be associative). The position of the y will determine the
grouping within a chain of operators. For example:

Example declaration will allow to stand for

---------------------------------------------------------------

:- op(500,xfx,in). A in B in(A,B)

:- op(500,xfy,in). A in B in C in(A,in(B,C))

:- op(500,yfx,in). A in B in C in(in(A,B),C)

:- op(500,fx ,pre). pre A pre(A)

:- op(500,fy ,pre). pre pre A pre(pre(A))

:- op(500, xf,post). A post post(A)

:- op(500, yf,post). A post post post(post(A))

:- op(500,fxx,bin). bin A B bin(A,B)

:- op(500,fxy,bin). bin A bin B C bin(A,bin(B,C))

Operator declarations are usually local to a module, but they can be exported and imported. The
operator visible in a module is either the local one (if any), an imported one, or a predefined one.
Some operators are pre-defined (see Appendix B on page 241). They may be locally redefined
if desired.
Note that parentheses are used to build expressions with precedence zero and thus to override
operator declarations.1

A.3.3 Operator Ambiguities

Unlike the canonical syntax, operator syntax can lead to ambiguities.

• For instance, when a prefix operator is followed by an infix or postfix operator, the prefix
is often not meant to be a prefix operator, but simply the left hand side argument of
the following infix or postfix. In order to decide whether that is the case, ECLiPSe uses
the operator’s relative precedences and their associativities, and, if necessary, a two-token
lookahead. If this rules out the prefix-interpretation, then the prefix is treated as a simple
atom. In the rare case where this limited lookahead is not enough to disambigute, the
prefix must be explicitly enclosed in parentheses.

• Another source of ambiguity are operators which have been declared both infix and postfix.
In this case, ECLiPSe uses a one-token lookahead to check whether the infix-interpretation
can be ruled out. If yes, the operator is interpreted as postfix, otherwise as infix. Again,
in rare cases parentheses may be necessary to enforce the interpretation as postfix.

• When a binary prefix operator is followed by an infix operator, then either of them could be
the main functor. Faced with the ambiguity, the system will prefer the infix interpretation.
To force the binary prefix to be recognised, the infix must be enclosed in parentheses.

A.4 Syntax Differences between ECLiPSe and other Prologs

ECLiPSe supports the following extensions of Prolog syntax:

1Quotes, on the other hand, are used to build atoms from characters with different or mixed character classes;
they do not change the precedence of operators.
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• Attributed variables: X{Attr}.

• Rational numbers: 3_4.

• Bounded real numbers: 1.99__2.01.

• Array subscripts: Matrix[3,4].

• Structures with named fields: emp{age:33,salary:33000}.

• Binary prefix operators: some X p(X).

Some of these extensions can be disabled via syntax option settings (this is done for example by
the compatibility packages). In addition to the above extensions, the following minor differences
exist between default ECLiPSe syntax and most Prolog systems:

• In ECLiPSe, end of file is accepted as fullstop.

• By default, an unquoted vertical bar can be used as an atom or functor (controlled by the
syntax option bar_is_no_atom).

• By default, operators with precedence higher than 1000 are allowed in a comma-separated
list of terms, i.e., structure arguments and lists. The ambiguity is resolved by considering
commas as argument separators rather than operators inside the term. Thus, for example,

p(a :- b, c)

is accepted and parsed as p/2. This behaviour can be disabled (and turned into a syntax
error) by setting the syntax option limit_arg_precedence.

• By default, double-quoted items are parsed as strings, not as character lists. This behaviour
can be changed via set chtab/2 which allows string-quotes, list-quotes and atom-quotes
to be redefined.

• By default, consecutive string- or list-quotes have the effect of concatenating the quoted
items, while consecutive atom-quotes have no special meaning. This can be changed by
using the syntax option doubled_quote_is_quote.

• By default, blank space between a sign and a number is significant: When there is no space
between sign and number, the sign is taken as part of the number. With space, the sign
is taken as prefix operator. This is controlled by the syntax option blanks_after_sign.

A.5 Changing the Parser’s behaviour

Some of these properties can be changed by choosing one of the following syntax options (see
syntax_options in the description of get flag/2). The following options exist (unless otherwise
noted, the options are disabled by default):

bar is no atom: disallow the use of an unquoted vertical bar as atom or functor,
except when it occurs in infix-position.

bar is semicolon: translate occurrences of unquoted infix vertical bars into terms
with functor ;/2, e.g. (a|b) = (a;b).
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based bignums: Allow base notation even to write integers longer than the word-
size (this implies they are always positive because the most significant bit is not
interpreted as a sign bit).

blanks after sign: ignore blank space between a sign and a number (by default,
this space is significant and will lead to the sign being taken as prefix operator
rather than the number’s sign). Also allow signs of numbers to be quoted.

doubled quote is quote: parse a pair of quotes within a quoted item as one oc-
currence of the quote within the item (atom, string, or character list). If this
option is off (the default), this is simply parsed as two consecutive items. In
the case of strings and character lists, these consecutive items are concatenated
into a single literal, unless the no string concatenation options is set.

eof is no fullstop: do not treat end-of-file as a fullstop.

float needs point: require floating point numbers to be written with a decimal
point, e.g. 1.0e-3 instead of 1e-3.

iso escapes: ISO-Prolog compatible escape sequences within strings and atoms.

iso base prefix: allow binary, octal or hexadecimal numbers to be written with 0b,
0o or 0x prefix respectively, and disallow the base’number notation.

iso restrictions: enable all ISO-Prolog syntax restrictions that are not controlled
by individual settings. This includes: disallowing operators as operands of
operators; disallowing an atom to be declared as both an infix and a postfix
operator; restrictions on changing operator properties for comma, vertical bar,
and the empty-bracket atoms.

limit arg precedence: do not allow terms with a precedence higher than 999 as
structure arguments, unless parenthesised.

nested comments: allow bracketed comments to be nested.

nl in quotes: allow newlines to occur inside quotes (default).

no array subscripts: disallow the ECLiPSe specific array-subscript syntax.

no attributes: disallow the ECLiPSe specific syntax for variable attributes in curly
braces.

no blanks: do not allow blanks between functor an opening parenthesis (default).

no curly arguments: disallow the ECLiPSe specific syntax for structures with
named arguments in curly braces.

no string concatenation: do not parse consecutive string literals as a single (con-
catenated) string.

plus is no sign: do not interpret a plus sign preceding a number as the number’s
sign (effectively ignoring it), but treat it as a possible prefix operator +/1.

read floats as breals: read all floating point numbers as bounded reals rather than
as floats. The resulting breal is a small interval enclosing the true value of the
number in decimal notation.

syntax errors fail: the predicates of the read-family fail when encountering a syn-
tax error (after printing an error message). Without this option, the predicates
throw an error term of the form error(syntax_error(MessageString), context(...)).

238



var functor is apply: allow variables as functors, and parse a term like X(A,B,C)

as if it were apply(X,[A,B,C]).

A number of further syntax options is provided for the purpose of parsing non-Prolog-like lan-
guages, in particular the Zinc family:

atom subscripts: allow subscripts after atoms, and parse a term like a[B,C] as if
it were subscript(a,[B,C]).

general subscripts: allow subscripts after atoms, parenthesized subterms and sub-
scripted terms, and parse a term such as a[B][C] as if it were written in the
form subscript(subscript(a,[B]),[C]), or a term such as (a-b)[C] as if it
were subscript(a-b,[C]).

curly args as list: parse the arguments of a term in curly brackets as a list, i.e.,
parse {a,b,c} as {}([a,b,c]) instead of the default {}((a,b,c)).

Syntax option settings can be local to a module or exported, e.g.,

:- local syntax_option(not nl_in_quotes).

:- export syntax_option(var_functor_is_apply).

A.6 Short and Canonical Syntax

The following table summarises the correspondence between the short syntax forms (supported
by the parser and the term writer) and their corresponding canonical forms. Usually, the pro-
grammer does not have to be concerned about the canonical represention because the short
syntax is accepted by the parser and reproduced by the term writer (unless canonical writing is
explicitly requested).

Known as Short Canonical Active

------------------------------------------------------------------------

List [A|B] .(A,B) always

Curly brackets {A} {}(A) always

Subscripted variable X[...] subscript(X, [...]) default

Subscripted struct S[...] subscript(S, [...]) default

Declared structure f{...} with(f, [...]) default

Attributed variable X{...} ’with attributes’(X, [...]) default

Variable functor X(...) apply(X, [...]) optional

Here A and B stand for arbitrary terms, X for a variable, S for a compound term in canonical
syntax, f for an arbitrary functor, and the ellipsis for a comma-separated sequence of arbitrary
terms.
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Appendix B

Operators

The following table summarises the predefined global operators in ECLiPSe. They can be
redefined or erased on a per-module basis by hiding them with a user-defined local operator
using op/3.

Prec Assoc Operators

1200 xfx [-->, :-, ?-, if]

1200 fx [:-, ?-]

1190 fy [help]

1190 fx [delay]

1180 fx [-?->]

1170 xfy [else]

1160 fx [if]

1150 xfx [then]

1100 xfy [;, do, ’|’]

1050 xfy [->]

1050 xfx [*->, except, from]

1050 fy [import, reexport]

1000 xfy [,]

1000 fy [abolish, demon, dynamic, export, global,

listing, local, mode, nospy, parallel, skipped,

spy, traceable, unskipped, untraceable]

900 fy [\+, not, once, ~]

700 xfx [#<, #<=, #=, #=<, #>, #>=, #\=, ::,

<, =, =.., =:=, =<, ==, =\=, >, >=,

@<, @=<, @>, @>=, \=, \==, is, ~=]

650 xfx [@, of, with]

600 xfy [:]

600 xfx [..]

500 yfx [+, -, /\, \/]

400 yfx [*, /, //, <<, >>, div, mod, rem]

200 xfy [^]

200 fy [+, -, \]
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Appendix C

Events

We list here the ECLiPSe event types together with the default event handlers and their descrip-
tion. Unless otherwise specified, the arguments that the system passes to the event handler
are

First Argument Second Argument Third Argument

Event number Culprit goal Caller Module

If the caller module is unknown, a free variable is passed.

C.1 Event Types

C.1.1 Argument Types and Values

Event Event Type Default Event Handler

1 general error error handler / 2
2 term of an unknown type error handler / 2
4 instantiation fault error handler / 4
5 type error error handler / 4
6 out of range error handler / 4
7 string contains unexpected characters error handler / 2
8 bad argument list error handler / 2
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C.1.2 Arithmetic, Environment

Event Event Type Default Event Handler

15 creating parallel choice point fail / 0
16 failing to parallel choice point fail / 0
17 recomputation failed error handler / 2
20 arithmetic exception error handler / 2
21 undefined arithmetic expression error handler / 4
23 comparison trap compare handler / 4
24 number expected error handler / 2
25 integer overflow integer overflow handler / 2
30 trying to write a read-only flag error handler / 2
31 arity limit exceeded error handler / 2
32 no handler for event warning handler / 2
33 event queue overflow error handler / 2

C.1.3 Data and Memory Areas, Predicates, Operators

Event Event Type Default Event Handler

40 stale object handle error handler / 2
41 array or global variable does not exist undef array handler / 3
42 redefining an existing array make array handler / 4
43 multiple definition postfix/infix error handler / 2
44 record already exists error handler / 2
45 record does not exist undef record handler / 2
50 trying to modify a read-only ground term error handler / 2
60 referring to an undefined procedure error handler / 4
61 inconsistent tool redefinition error handler / 4
62 inconsistent procedure redefinition error handler / 4
63 procedure not dynamic error handler / 4
64 procedure already dynamic dynamic handler / 3
65 procedure already defined error handler / 4
66 trying to modify a system predicate error handler / 4
67 procedure is not yet loaded error handler / 4
68 calling an undefined procedure call handler / 4
69 autoload event autoload handler / 4
70 accessing an undefined dynamic procedure undef dynamic handler / 3
71 procedure already parallel error handler / 2
72 accessing an undefined operator error handler / 2
73 redefining an existing operator true / 0
74 hiding an existing global operator true / 0
75 referring to a deprecated predicate declaration warning handler / 3
76 predicate declared but not defined declaration warning handler / 3
77 predicate used but not declared or defined declaration warning handler / 3
78 calling a procedure with a reserved name error handler / 2
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C.1.4 Modules, Visibility

Event Event Type Default Event Handler

80 not a module error handler / 2
81 module/1 can appear only as a directive error handler / 2
82 trying to access a locked module locked access handler / 2
83 creating a new module warning handler / 2
84 referring to non-exported predicate declaration warning handler / 3
85 referring to non-existing module declaration warning handler / 3
86 lookup module does not exist no lookup module handler / 4
87 attempt to redefine an existing local item warning handler / 3
88 attempt to redefine an existing exported item warning handler / 3
89 attempt to redefine an already imported item warning handler / 3
90 procedure is already reexported error handler / 4
91 not a tool procedure error handler / 2
92 trying to redefine an existing local procedure error handler / 4
93 trying to redefine an existing exported proce-

dure
error handler / 4

94 trying to redefine an existing imported proce-
dure

error handler / 4

96 ambiguous import ambiguous import resolve / 3
97 module already exists error handler / 2
98 key not correct error handler / 2
99 unresolved ambiguous import ambiguous import warn / 3
100 accessing a procedure defined in another module undef dynamic handler / 3
101 trying to erase a module from itself error handler / 2
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C.1.5 Syntax Errors, Parsing

Event Event Type Default Event Handler

110 syntax error: parser error handler / 2
111 syntax error: list tail ended improperly parser error handler / 2
112 syntax error: illegal character in a quoted token parser error handler / 2
113 syntax error: unexpected comma parser error handler / 2
114 syntax error: unexpected token parser error handler / 2
115 syntax error: unexpected end of file parser error handler / 2
116 syntax error: numeric constant out of range parser error handler / 2
117 syntax error: bracket necessary parser error handler / 2
118 syntax error: unexpected fullstop parser error handler / 2
119 syntax error: postfix/infix operator expected parser error handler / 2
120 syntax error: wrong solo char parser error handler / 2
121 syntax error: space between functor and open

bracket
parser error handler / 2

122 syntax error: variable with multiple attributes parser error handler / 2
123 illegal iteration specifier in do-loop error handler / 4
124 syntax error : prefix operator followed by infix

operator
parser error handler / 2

125 syntax error : unexpected closing bracket parser error handler / 2
126 syntax error : grammar rule head is not valid parser error handler / 2
127 syntax error : grammar rule body is not valid parser error handler / 2
128 syntax error : in source transformation parser error handler / 2
129 syntax error: source transformation floundered parser error handler / 2
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C.1.6 Compilation, Run-Time System, Execution

Event Event Type Default Event Handler

130 syntax error: illegal head compiler error handler / 2
131 syntax error: illegal goal compiler error handler / 2
132 syntax error: term of an unknown type compiler error handler / 2
133 loading the library true / 0
134 procedure clauses are not consecutive compiler error handler / 2
135 trying to redefine a protected procedure compiler error handler / 2
136 trying to redefine a built-in predicate compiler error handler / 2
137 trying to redefine a procedure with another type compiler error handler / 2
138 singleton local variable in do-loop singleton in loop / 2
139 compiled or dumped file message compiled file handler / 3
140 undefined instruction error handler / 2
141 unimplemented functionality error handler / 2
142 built-in predicate not available on this system error handler / 2
143 compiled query failed compiler error handler / 2
144 a cut is not allowed in a condition compiler error handler / 2
145 procedure being redefined in another file redef other file handler / 2
146 start of compilation true / 0
147 compilation aborted compiler abort handler / 3
148 bad pragma pragma handler / 3
149 code unit loaded unit loaded handler / 3

The handlers for these events receive the following arguments:
Event Second Argument Third Argument

130 Culprit clause Module
131 Culprit clause Module
132 Culprit clause Module
133 Library name (string) undefined
134 Procedure Name/Arity Module
135 Procedure Name/Arity Module
136 Procedure Name/Arity Module
137 Procedure Name/Arity Module
138 Variable name (atom) undefined
139 (File, Size, Time), see below Module
140 ’Emulate’ undefined
141 Goal Module
142 Goal Module
143 Goal Module
144 Goal (if an execution error) or Culprit clause (if

compiler error)
Module

145 (Name/Arity, OldFile, NewFile) Module
146 File Module
147 File
148 Clause Module
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The second argument for the event 139 depends on the predicate where it was raised:

• compile/1,2 - (file name, code size, compile time)

• compile stream/1 - (’string’, code size, compile time) with a string stream

• compile stream/1 - (file name, code size, compile time) with a stream associated to a
file

C.1.7 Top-Level

Event Event Type Default Event Handler

150 start of eclipse execution sepia start / 0
151 eclipse restart true / 0
152 end of eclipse execution sepia end / 0
153 toplevel: print prompt toplevel prompt / 2
154 toplevel: start of query execution true / 0
155 toplevel: print values print values / 3
156 toplevel: print answer tty ask more / 2
157 error exit error exit / 0
158 toplevel: entering break level start break / 3
159 toplevel: leaving break level end break / 3

These events are not errors but rather hooks to allow users to modify the behaviour of the
ECLiPSe toplevel. Therefore the arguments that are passed to the handler are not the erroneous
goal and the caller module but defined as follows:
Event Second Argument Third Argument

150 A free variable. If the handler binds the variable to
an atom, this name is used as the toplevel module
name

undefined

151 undefined undefined
152 The argument is the number that ECLiPSe will re-

turn to the operating system
undefined

153 current toplevel module current toplevel module
154 a structure of the form

goal(Goal, VarList, NewGoal, NewVarList),

where Goal is the goal that is about to be exe-
cuted and VarList is the list that associates the
variables in Goal with their names (like in read-
var/3). NewGoal and NewVarList are free vari-
ables. If the handler binds NewVarList then the
toplevel will use NewGoal and NewVarList to re-
place Goal and VarList in the current query.

current toplevel module
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Event Second Argument Third Argument

155 A list associating the variable names with their
values after the query has been executed.

current toplevel module

156 An atom stating the answer to the query that
was just executed. The possible values are:
yes, last_yes or no if the query had no vari-
ables, more_answers, last_answer if the query
contained variables and bindings were printed,
no_answer if a query containing variables failed.

current toplevel module

157 undefined undefined
158 break level current toplevel module
159 break level current toplevel module

When the handler for event 152 (“end of eclipse execution”) calls throw/1, ECLiPSe is not
exited. This is a way to prevent accidental exits from the system. Failure of the handler is
ignored.

C.1.8 Macro Transformation Errors, Lexical Analyser

Event Event Type Default Event Handler

160 global macro transformation already exists error handler / 4
161 macro transformation already defined in this

module
macro handler / 3

162 no macro transformation defined in this module warning handler / 2
163 illegal attempt to remove the last member of a

character class
error handler / 2

164 toplevel: print banner tty banner / 2
165 can’t compile an attributed variable (use

add attribute/2,3)
error handler / 2

166 file successfully processed record compiled file handler / 3
167 initialization/finalization goal failed or aborted warning handler / 3

The event 164 is raised whenever the toplevel loop is restarted.

Event Second Argument Third Argument

164 the banner string
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C.1.9 I/O, Operating System, External Interface

Event Event Type Default Event Handler

170 system interface error system error handler / 4
171 File does not exist : error handler / 2
172 File is not open : error handler / 2
173 library not found error handler / 2
174 child process terminated due to signal error handler / 2
175 child process stopped error handler / 2
176 message passing error error handler / 2
177 shared library not found error handler / 2
190 end of file reached eof handler / 4
191 output error output error handler / 4
192 illegal stream mode error handler / 2
193 illegal stream specification error handler / 2
194 too many symbolic names of a stream error handler / 2
195 yield on flush io yield handler / 2
196 trying to modify a system stream close handler / 2
197 use ’input’ or ’output’ instead of ’user’ error handler / 2
198 reading past the file end past eof handler / 2
210 Remember() not inside a backtracking predicate error handler / 2
211 External function does not exist error handler / 2
212 External function returned invalid code error handler / 2
213 Error in external function error handler / 2
214 Licensing problem error handler / 2

250



C.1.10 Debugging, Object Files

Event Event Type Default Event Handler

230 uncaught exception error handler / 2
231 default help/0 message fail / 0
249 debugger new suspensions event bip delay / 0
250 debugger init event trace start handler tty / 0
251 debugger builtin fail event bip port / 4
252 debugger port event trace line handler tty / 2
253 debugger call event ncall / 2
254 debugger exit event nexit / 1
255 debugger redo event redo / 5
256 debugger delay event ndelay / 2
257 debugger wake event resume / 2
258 debugger builtin call event bip port / 4
259 debugger builtin exit event bip port / 4
260 unexpected end of file error handler / 2
261 invalid saved state error handler / 2
262 can not allocate required space error handler / 2
263 can not save or restore from another break level

than level 0
error handler / 2

264 not an eclipse object file compiled file handler / 3
265 bad eclipse object file version compiled file handler / 3
267 predicate not implemented in this version error handler / 2
268 predicate not supported in parallel session error handler / 2

These handlers receive special arguments:
Event Second Argument Third Argument

252 trace line{port:Port,frame:Frame} undefined
264 (File, [], []) undefined
265 (File, [], []) undefined

C.1.11 Extensions

Event Event Type Default Event Handler

270 undefined variable attribute error handler / 2
271 bad format of the variable attribute error handler / 2
272 delay clause may cause indefinite delay warning handler / 2
273 delayed goals left delayed goals handler / 3
274 stack of woken lists empty error handler / 2
280 Found a solution with cost cost handler / 2

The handlers for these events receive the following arguments:
Event Second Argument Third Argument

272 Culprit clause Module
273 list of sleeping suspensions undefined
280 Cost, Goal undefined
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C.2 Stack Overflows

When a stack overflows, the system performs a throw/1 with an appropriate exit tag, i.e.,

global trail overflow for overflows of the global/trail stack that holds all the program’s data
structures.

local control overflow for overflows of the local/control stack that holds information related
to the control flow.

These exits can be caught by wrapping a goal that is likely to overflow the stacks into an
appropriate catch/3, e.g.,

..., catch(big_goal(X), global_trail_overflow, react_to_overflow), ...

In the debugger, you can locate the overflow by jumping to a LEAVE port (z command). See
chapter 20 for more details on memory usage.

C.3 ECLiPSe Fatal Errors

A fatal error cannot be caught by the user. When they occur, the system performs a warm
restart. The following fatal errors may be generated by ECLiPSe:

*** Fatal error: Out of memory - no more swap space The available memory (usually
swap space) on the computer has been used up either by the application or some external
process.

*** Fatal error: Internal error - memory corrupted This signals an inconsistency in the
system’s internal data structures. The reason can be either a bug in the ECLiPSe system
itself or in an external predicate provided by the user.

C.4 User-Defined Events

User-defined events should use atomic event names rather than numbers. See the description of
set event handler/2.
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Appendix D

Command Line and Startup Options

D.1 Command Line Options

The ECLiPSe system has several parameters which may be specified on the command line at
invocation time. All the parameters are available with the command line version of eclipse;
with tkeclipse, only the -g and -l parameters are available. The parameters are as follows:

−b file The same as −f file.

−f file Compile the file file before starting the session. Multiple -f options are allowed. The
file name is expected to be in the operating system’s syntax. The file is processed by
ensure loaded/1, i.e., it can be a precompiled file or a source file, and file extensions are
added as specified there.

−e goal Instead of starting an interactive toplevel, the system will execute the goal goal. goal
is given in normal Prolog syntax, and has to be quoted if it contains any characters that
would normally be interpreted by the shell. The -e option can be used together with the
-f option and is executed afterwards. Only one -e option is allowed.

The exit status of the ECLiPSe process reflects success or failure of the executed Prolog
goal (0 for success, 1 for failure, 2 for abort).

When you only have a runtime installation of eclipse, the -e option is compulsory because
a runtime system does not have an interactive toplevel.

−g size This option specifies the limit to which the memory consumption of the ECLiPSe

global/trail stack can grow. The size is specified in kilobytes (followed by an optional K),
in megabytes (followed by M) or in gigabytes (followed by G). The default is 512M on 64-bit,
or 256M on 32-bit machines. The amount required for this stack depends on the program’s
data structures and may have to be increased for very large applications.

−l size This option specifies the limit to which the memory consumption of the ECLiPSe lo-
cal/control stack can grow. The size is specified in kilobytes (followed by an optional K),
in megabytes (followed by M) or in gigabytes (followed by G). The default is 128M on 64-bit,
or 64M on 32-bit machines. The local/control stack is unlikely to require more than this
default. If it does, it is probably caused by a programming error.
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−D directory This options allows one to explicitly specify the ECLiPSe installation directory,
i.e., the directory in which the system tries to find the ECLiPSe runtime system and
libraries. This option overrides (and renders unnecessary) any setting of the ECLIPSEDIR
environment variable (Unix) or, respectively, an ECLIPSEDIR registry entry (Windows)
that may be in effect.

−L language The name of the language dialect used in the “top level module”. The default
is eclipse_language, other possible values include iso, iso_strict, quintus etc. This
property can also be set via an ECLIPSEDEFAULTLANGUAGE environment variable.

−t module The name of the “top level module”. This is an initially empty module, created by
the system, which serves as the context for -f and -e options, and in which interactive
toplevel queries are executed. This can be an arbitrary name, as long as it does not conflict
with important library names. The default is eclipse.

−P Enable support for the sampling profiler (see library(profile). This will cause a slight
slowdown in execution.

− − The ECLiPSe system will ignore this argument and everything that follows on the comm-
mand line. The Prolog program will only see the part of the command line that follows
this argument.

D.2 TkECLiPSe Startup Settings

tkeclipse accepts the same −g and −l options as eclipse for setting stack sizes.
In addition, tkeclipse on UNIX reads settings from the files .tkeclipserc (for toplevel param-
eters) and .tkeclipsetoolsrc (for development tools parameters). The system will first search
for these files in the current directory, and then in the user’s home directory. Each parameter is
specified on a separate line in the appropriate file, in the format

parameter value

On Windows, the settings are instead from the registry keys

HKEY_CURRENT_USER\\Software\\IC-Parc\\ECLiPSe\\tkeclipserc

HKEY_CURRENT_USER\\Software\\IC-Parc\\ECLiPSe\\tkeclipsetoolsrc

where each parameter is specified as a string value under the appropriate parameter key. In
either case, the parameters can be modified and saved using the TkECLiPSe Preference Editor.
The parameters corresponding to the ECLiPSe command line settings are

globalsize (positive integer) The maximum size to which the global/trail stack area can
grow to. The unit is megabytes. Overridden by the -g option.

localsize (positive integer) The maximum size to which the local/control stack area can
grow to. The unit is megabytes. Overridden by the -l option.

initquery (string) An ECLiPSe query that TkECLiPSe will execute immediately after startup.
It can be used to perform user defined initialisations.

default_language (string) The default language name (default: eclipse language). Can be
overridden by ECLIPSEDEFAULTLANGUAGE environment variable.
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default_module (string) The default toplevel module name (default: eclipse).

with_profiler (0/1) Enable support for the profiler (default: 0).
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Appendix E

Style Guide

Every ECLiPSe programming project should adopt a number of style rules. This appendix gives
only a sample set of rules, which can serve as a guideline. Project teams should adapt them to
their own needs and taste.

E.1 Style rules

1. There is one directory containing all code and its documentation (using sub-directories).

2. Filenames are of the form [a-z][a-z_]+ with the extension .ecl.

3. One file per module, one module per file.

4. Each module is documented with comment directives.

5. All required interfaces are defined in separate spec files which are included in the source
with a comment include directive. This helps to separate specification and implementation
code.

6. The actual data of the problem is loaded dynamically from the Java interface; for stand-
alone testing data files from the data directory are included in the correct modules.

7. The file name is equal to the module name.

8. Predicate names are of the form [a-z][a-z_]*[0-9]*. Underscores are used to separate
words. Digits should only be used at the end of the name. Words should be English.

9. Variable names are of the form [A-Z_][a-zA-Z]*[0-9]*. Separate words with capital
letters. Digits should only be used at the end. Words should be English.

10. The code should not contain singleton variables, unless their names start with _. The final
program must not generate singleton warnings.

11. Each exported predicate is documented with a comment directive.

12. Clauses for a predicate must be consecutive.

13. Base clauses should be stated before recursive cases.

257



14. Input arguments should be placed before output arguments.

15. Predicates which are not exported should be documented with a single line comment. It
is possible to use comment directives instead.

16. The sequence of predicates in a file is top-down with a (possibly empty) utility section at
the end.

17. All structures are defined in one file (e.g., flow_structures.ecl) and are documented
with comment directives.

18. Terms should not be used; instead use named structures.

19. When possible, use do-loops instead of recursion.

20. When possible, use separate clauses instead of disjunction or if-then-else.

21. There should be no nested if-then-else constructs in the code.

22. All input data should be converted into structures at the beginning of the program; there
should be no direct access to the data afterwards.

23. All integer constants should be parametrized via facts. There should be no integer values
(others than 0 and 1) in rules.

24. The final code should not use failure-loops; they are acceptable for debugging or testing
purposes.

25. Cuts (!) should be inserted only to eliminate clearly defined choice points.

26. The final code may not contain open choice points, except for alternative solutions that
still can be explored. This is verified with the tracer tool in the debugger.

27. Customizable data facts should always be at the end of a file; their use is deprecated.

28. The predicate member/2 should only be used where backtracking is required; otherwise
use memberchk/2 to avoid creating redundant choice points.

29. The final code may not contain dead code except in the file/module unsupported.ecl.
This file should contain all program pieces which are kept for information/debugging, but
which are not part of the deliverable.

30. The test set(s) should exercise 100 percent of the final code. Conformity is checked with
the line coverage profiler.

31. Explicit unification (=/2) should be replaced with unification inside terms where possible.

32. There is a top-level file (top.ecl) which can be used to generated all on-line documentation
automatically.

33. For each module, a module diagram is provided.

34. For the top-level files, component diagrams are provided.

35. Don’t use ’,’/2 to make tuples.
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36. Don’t use lists to make tuples.

37. Avoid append/3 where possible, use accumulators instead.

E.2 Module structure

The general form of a module is:

1. module definition

2. module comment or inclusion of a spec file

3. exported/reexported predicates

4. used modules

5. used libraries

6. local variable definitions

7. other global operations and settings

8. predicate definitions

E.3 Predicate definition

The general form of a predicate definition is:

1. predicate comment directive

2. mode declaration

3. predicate body
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Appendix F

Restrictions and Limits

The ECLiPSe implementation tries to impose as few limits as possible. The existing limits are:

1. The maximum arity of a predicate in ECLiPSe is 255 (this value can be queried with
get_flag(max_predicate_arity, X)). Note however that the arity of compound terms
is unlimited.

2. The maximum arity of external predicates in the current implementation of ECLiPSe is
16.

3. The stack and heap sizes have virtual memory limits which can be changed using the
-g, -l, -s and -p command line options or the ec_set_option function in case of an
embedded ECLiPSe.

4. When the occur check is disabled (the default) it is possible (and sometimes useful) to
create cyclic data structures. For example, the unification of X and g(X) in

X = g(X)

will result in a cyclic structure

X = g(g(g(g(g(...)))))

Not all ECLiPSe built-in predicates handle cyclic terms gracefully. Care must be taken
with all predicates which traverse the whole term, e.g., copy term/2, term hash/4,
writeq/2, assert/1, compile term/1. These will typically loop or overflow a stack
when applied to cyclic terms. Note however that, starting from version 5.6, cyclic terms are
allowed in all heap copying predicates (setval/2, bag enter/2, shelf set/3, store set/3,
record/2, etc.).
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Index

−—remove a spy point (debugger cmd), 145

− >/2, 54

<—print depth (debugger cmd), 127

∼/1, 172, 190

∼=/2, 172, 179

’,’/2, 258

’.’/2, 48

’C’/3, 111

*—compound iterator construct, 32

*->/2, 42

++X, 3

+—set a spy point (debugger cmd), 145

+/3, 76

+X, 3

,—compound iterator construct, 31

,/2, 54

- (command line option), 254

–X, 3

-?->, 41

.—print definition (debugger cmd), 134

.—print structure definition (debugger cmd),
141

.eclipse_history, 15

.eclipserc, 17

.tkeclipserc, 254

.tkeclipsetoolsrc, 254

:-, 41

:/2, 55, 63, 67, 119

;/2, 54, 124, 205

<—set print depth (debugger cmd), 144

</2, 71

=/2, 54, 55, 73, 258

=:=/2, 55, 71

=</2, 71

==/2, 54, 55, 73

=\=/2, 71

>—set indentation step width (debugger cmd),

145
>/2, 71
>=/2, 71
>>—compound iterator construct, 32
?-, 41
?—help (debugger cmd), 135
?X, 3
[File1,...,FileN], 43, 50
[], 5
@/2, 66, 67, 129
\=/2, 54
\==/2, 54, 174, 175
!/2, 188, 189
-->/2, 108
*->/2, 42
->/2, 42
0—move current subterm to toplevel (debugger

cmd), 138

#—move down to parth argument (debugger
cmd), 136

a—abort (debugger cmd), 133
A—move current subterm up by n levels (de-

bugger cmd), 137
abolish, 204
abort/0, 121
abstract structure notation, 27
accept/3, 89, 90
accessible definition, 62
add_attribute/2, 162
add_attribute/3, 162
after events, 115
als/1, 56
ambiguity, 236
ambiguity warning, 62
anonymous variable, 6
append/3, 259
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arg/3, 37, 38, 55, 86

argc/1, 209

argv/2, 209

arithmetic, 71

built-ins, 71

comparison, 71

comparison, 71

coroutining, 77

expressions, 75

functions, 73

predefined arithmetic functions, 73

prefer rationals, 75

types, 72

user defined arithmetic, 75

arity, 3

array, 37, 204

non-logical, 84

array/1, 84

asm:wam/1, 56

assert/1, 44, 99, 101, 104, 204, 224, 226, 261

at/2, 94, 95

atom, 3

atom/1, 54

atom_string/2, 41

atomic, 3

atomic/1, 54

atomics_to_string/2,3, 41

atoms, 39

attach_suspensions/2, 185

attach_tools/0, 23

attached/1, 25

attribute, 184

specification

qualified, 162

unqualified, 162

attributed variable, 161, 232

attributed variables, 161–169

handlers, 163

-b (command line option), 253

b—break (debugger cmd), 145

B—move current subterm down by n levels (de-
bugger cmd), 140

backtracking, 14

bag, 79, 204

bag_abolish/1, 204

bag_create/1, 80

bag_dissolve/2, 80

bag_enter/2, 80

bag_retrieve/2, 80

bb_min/3, 181

bignum, 72

bind/2, 217

block/3, 125

blocks, 119

body, 6

body of a clause, 3

bounded reals, 73

branch and bound (library), 179

break/0, 145

breal, 73

breal/1, 54

breal/2, 73

buffered output, 94

bug reports, 2

built-ins

arithmetic, 71

comparison, 71

built in procedure, 4

c—creep (debugger cmd), 131

C—move current subterm right by n positions
(debugger cmd), 139

calendar (library), 210

call/1, 53, 130

call_c/2, 210

call_priority/2, 186, 187

callable term, 4

caller module, 65, 67

cancel_after_event/2, 115

catch/3, 119, 125, 252

ccompile

coverage, 158

ccompile/1, 158

ccompile/2, 158

cd/1, 211

changeset (library), 179

character class, 92, 227

character constant, 231

character lists, 39

CHIP, 1

choicepoint, 205

chr (library), 179

cio (library), 225
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clause, 4, 5
body, 3
goal, 5
head, 5
matching, 41
program, 5
termination, 13
unit, 4

clause/1, 104, 224
clause/2, 224
close/1, 90
close/2, 90
code coverage, 149
command line options, 209, 253

-, 254
-D, 254
-L, 254
-P, 254
-b, 253
-e, 253
-f, 253
-g, 253
-l, 253
-t, 254

comment directive, 257
comment/2, 48, 151
compare_instances handler, 164
compare_instances/3, 164
comparison

arithmetic, 71
compilation

nesting compile commands, 15
compile/1, 12, 17, 43, 66, 104, 204, 248
compile/2, 13, 43, 46, 248
compile_stream/1, 43, 248
compile_stream/2, 43
compile_term/1, 44, 51, 261
compile_term/2, 44, 51
compile_term_annotated/3, 51
compiler

arithmetic, 76
pragma, 48

compiler macros, 103
compound term, 4
compound/1, 54
connect/2, 217
constant, 4

constrained, 199

container, 60

control stack, 205

copy_term handler, 164

copy_term/2, 83, 164, 261

copy_term_vars/3, 164

coroutining, 177, 191

arithmetic, 77

count—iterator construct, 31

coverage (library), 150, 157

coverage, 158

coverage counters, 157

cprolog, 223

cputime/1, 76, 210

create_module/1, 51, 68

create_module/3, 68

curly braces, 27

current streams, 87

current_after_events/1, 115

current_array/2, 85

current_compiled_file/3, 51

current_error/1, 118

current_interrupt/2, 120

current_module/1, 67

current_stream/1, 91

current_suspension/1, 184

cut, 188, 189, 258

cut warnings, 189

cyclic terms, 261

-D (command line option), 254

d—delayed goals (debugger cmd), 133

D—move current subterm left by n positions
(debugger cmd), 139

database, 101

dbgcomp/0, 129

DCG, 108

dead code, 258

dead suspension, 183

debug/0, 128

debug/1, 130

debug_output, 126

debugger command

#, 136

−, 145

+, 145

., 134, 141
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0, 138
<, 127, 144
>, 145
?, 135
A, 137
B, 140
C, 139
D, 139
G, 134
N, 146
a, 133
b, 145
c, 131
downarrow key, 140
d, 133
f, 133
g, 135
h, 135
i, 132
j, 132
leftarrow key, 139
l, 132
m, 127, 145
n, 132
o, 127, 145
p, 142
q, 132
rightarrow key, 139
s, 131
uparrow key, 137
u, 134
v, 132
w, 134
x, 135
z, 133

debugging/0, 128
decval/1, 83, 84
default streams, 87
default/0, 121
default_language, 224, 254
default_module, 255
definite clause grammar, 108
definition, 60, 62

accessible, 62
visible, 62, 63

delay
arithmetic, 77

delay clauses, 173

delayed_goals handler, 166

delayed_goals/1, 184

delayed_goals/2, 166

delayed_goals_number handler, 165

delayed_goals_number/2, 165

delete/1, 211

demon, 186

demon/1, 186

determinism, 4

dictionary, 204

dictionary identifier, 4

DID, 4

dif/2, 194, 195, 197

difference list, 4

dim/2, 37, 38

directive, 6

discontiguous/1, 47, 225

disjunction, 258

display/1, 98

do/2, 29, 30

document (library), 149

downarrow key—move current subterm down
by n levels (debugger cmd), 140

dynamic declaration, 99

dynamic procedure, 4

dynamic/1, 47, 99, 100

-e (command line option), 253

ech (library), 179

eci_to_html/3, 152

ECLiPSe, 1

eclipse_language, 60, 67, 223

eclipse_object_suffix, 50

ECLIPSEDEFAULTLANGUAGE, 224

ECLIPSEDEFAULTLANGUAGE, 254

ECLIPSEINIT, 17

ECLIPSELIBRARYPATH, 16

elif/1, 48

else/0, 48

endif/0, 48

engine, 57

engine, 86

ensure_loaded/1, 50, 61, 253

enter_suspension_list/3, 185

env/0, 209, 210, 213

erase/2, 80
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erase_all/1, 204

erase_array/1, 84, 204

erase_module/1, 68

error

fatal, 252

error, 87

error handlers, 243

error/2, 118

error/3, 118

error_id/2, 118

errors, 117

handlers, 119

user defined, 120

escape sequence, 231

event handlers, 243

event/1, 114, 122

event_after/2, 115

event_after_every/2, 115

event_create/3, 114

events, 113, 181

events_after/1, 115

events_nodefer/0, 117

exec/2, 89, 90, 212, 213

exec/3, 89, 90, 212, 213

exec_group/3, 89, 90, 212, 213

executed suspension, 183

existing_file/4, 211

exists/1, 211

exit status, 253

exit/1, 12, 209

exit_block/1, 125, 127

Exiting ECLiPSe, 12

expand_clause/2, 101, 111

export/1, 6, 27, 29, 47, 60, 61, 103

exporting, 60

extended head, 188

extension (file name), 44

external procedure, 4

-f (command line option), 253

f—fail (debugger cmd), 133

fact, 4

factorial function, 75

fail/0, 119

failure loop, 258

fatal errors, 252

fcompile/1, 49

fd (library), 163

fib/2, 82

Fibonacci, 82

file name, 257

extension, 44

finalization, 68

findall/3, 55, 181

float/1, 54

float/2, 73

floating point numbers, 72

floundering, 172, 184

flush/1, 94, 215

for—iterator construct, 31

foreach—iterator construct, 30

foreacharg—iterator construct, 30

foreachelem—iterator construct, 30, 31

foreachindex—iterator construct, 31

format string, 98

free variable, 5

free/1, 54, 167

freeze/2, 190

fromto—iterator construct, 30

fullstop, 13

functions

arithmetic, 73

functor, 4, 5

of a procedure, 6

functor/3, 37, 195

-g (command line option), 253

G—all ancestors (debugger cmd), 134

g—ancestor (debugger cmd), 135

garbage collection, 206

garbage_collect/0, 207

get/1, 92

get/2, 92

get_bounds handler, 165

get_event_handler/3, 114, 118

get_file_info/3, 211

get_flag/2, 11, 16, 17, 72, 144, 145, 209, 210,
213, 237

get_flag/3, 44, 67, 188

get_interrupt_handler/3, 121

get_module_info/3, 67, 69

get_priority/1, 186

get_stream/2, 88

get_stream_info/3, 91, 95
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get_suspension_data/3, 183
get_var_bounds/3, 165
getcwd/1, 41, 211
getenv/2, 209
getref/2, 86
getval/2, 83–85
global flag

prefer rationals, 72, 75
global reference, 79, 86
global stack, 205
globalsize, 254
goal, 5
goal expansion, 52
grammar rules, 108
ground term, 5

h—help (debugger cmd), 135
halt/0, 12, 121, 209
handler, 163

compare_instances, 164
copy_term, 164
delayed_goals_number, 165
delayed_goals, 166
get_bounds, 165
pre_unify, 166
print, 165
set_bounds, 165
suspensions, 165
test_unify, 164
unify, 163
error, 243
event, 243

hash table, 81
head of a clause, 5
head of a pair, 5
heap, 204
help, 15
help/0, 12
help/1, 12, 211
history, 15
hostid, 210
hostname, 210

i—invocation skip (debugger cmd), 132
icompile/2, 152
if then else, 258
if/1, 48
import/1, 47, 61, 105

imported, 61

importing, 61

include/1, 48, 65

incval/1, 83, 84

indexing, 40

infix operator, 235

infix/postfix ambiguity, 236

inheritance, 28

init_suspension_list/2, 184

initialization, 68

initialization file, 17

initialization/1, 61

initquery, 254

inline/2, 52, 105

inlining, 52

input, 87

input/output, 87

insert_suspension/3, 184

insert_suspension/4, 184

inspect subterm commands (debugger), 136

interaction with output modes, 143

instance/2, 164

instantiated variable, 5

integer constants, 258

integer/1, 54

integer/2, 73

integers, 72

interface, 60

internal/0, 121

interrupt, 14

interrupts, 120

tkeclipse, 122

interval arithmetic, 73

is/2, 49, 71, 76, 77, 188

is_dynamic/1, 99

is_suspension/1, 183

iso, 223, 224

ISO Prolog, 223, 224

iso_light, 223, 224

iso_strict, 223, 224

iteration, 29

j—jump to level (debugger cmd), 132

kill/2, 121, 213, 214

kill_display_matrix/1, 21

kill_suspension/1, 183
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-L (command line option), 254
-l (command line option), 253
l—leap (debugger cmd), 132
language, 67
leftarrow key—move current subterm left by

n positions (debugger cmd), 139
lib(suspend), 173
lib(timeout), 117
lib/1, 16, 48, 50, 61
libraries, 16, 60
library

branch and bound, 179
calendar, 210
changeset, 179
chr, 179
cio, 225
coverage, 150, 157
document, 149
ech, 179
fd, 163
lint, 149
mode analyser, 158–160
port profiler, 156, 157
pretty printer, 149
profiler, 150
propia, 179
repair, 179
suspend, 163, 173
visualisation, 179
xref, 149, 152

library path, 16
library search path, 16
library(asm), 56
library(hash), 81
library(regex), 41
library(source_processor), 56, 93
line coverage, 157
lint (library), 149
lint/1, 151
lint/2, 151
list, 5

difference, 4
list_error/3, 118
listing/0, 224
listing/1, 224
load/1, 204, 210
local, 60

local stack, 205

local/1, 27, 47, 61, 62, 83, 84, 103, 225

localsize, 254

lock/0, 69

lock_pass/1, 69

locking, 68

log_output, 87

logical update semantics, 101

lookup module, 63, 67

loop_name—iterator construct, 32

loops, 29

m—module (debugger cmd), 127, 145

macro

no macro expansion, 105

write, 167

macro expansion, 103

macro/3, 53, 104, 105

macro_expansion, 106

macros

clause, 104

compiler, 103

goal, 104

protect arg, 105

read, 103, 104

term, 104

top only, 105

type, 104

write, 103, 104

mailing list, 2

make/0, 13, 50

make_display_matrix/2, 19, 20

make_display_matrix/5, 19, 20

make_suspension/3, 125, 182, 183

matching, 41, 169, 174

matmult/3, 38

matrix, 37

MegaLog, 1

member/2, 258

memberchk/2, 258

memoization, 82

memory usage, 203

merge_suspension_lists/4, 184

meta-predicate, 65

meta/1, 54, 167

meta_attribute/2, 48, 161

metaterm, see attributed variable

268



minimize/2, 181
mode, 5

raw, 92
read, 87
update, 87
write, 87

mode declaration, 51
mode/1, 3, 51
mode analyser (library), 158–160
module

caller, 67
lookup, 67
toplevel, 60

module properties, 67
module/1, 47, 50, 60, 67
module/3, 47, 67, 223
modules, 59
multifor—iterator construct, 31

n—nodebug (debugger cmd), 132
N—nodebug permanently (debugger cmd), 146
name conflict, 62
Name/Arity, 3, 5
named structure, 258
nil, 5
nl/0, 93
nl/1, 93
no_macro_expansion/1, 28, 105
nodbgcomp/0, 16, 129
nodebug/0, 128
non-logical array, 84
non-logical variable, 83, 204
nonground/1, 54, 174, 190
nonground/2, 178
nonground/3, 174
nonvar/1, 54
nospy/1, 128
not/1, 54
not_unify/2, 164, 200
notify_constrained/1, 179
notrace/0, 128
null, 88
number, 5
number/1, 54
number_string/2, 41
numbervars/3, 225

o—output mode (debugger cmd), 127, 145

object code, 49

of/2, 27

op/3, 60, 235, 241

open/3, 6, 89, 95

open/4, 88, 89, 96

operator, 235

ambiguity, 236

infix, 235

postfix, 235

prefix, 235

operators, 241

optimisation, 149

os_file_name/2, 212

output

buffered, 94

format string, 98

output, 87

output of variables, 93

output options, 96

output_mode, 166

overflow, stack, 252

-P (command line option), 254

p—show subterm path (debugger cmd), 142

pair, 5

head, 5

tail, 5

param—iterator construct, 31

pathname/4, 212

pattern matching, 169, 174

pause/0, 14

performance, 149

phrase/3, 109, 110

pid (global flag), 213

pipe streams, 90

plus/3, 77

port_profile/2, 156

port profiler (library), 156, 157

portray/3, 105, 183

postfix operator, 235

postponed, 181

postponed trigger, 181

ppid (global flag), 213

pragma, 48

pragma/1, 48

pre_unify handler, 166

pred/1, 67, 127
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predicate, 5

predicate name, 257

predicate properties, 67

PredSpec, 5

prefer_rationals, 72, 75

prefix ambiguity, 236

prefix operator, 235

prefix/infix ambiguity, 236

pretty_print/2, 153

pretty printer (library), 149

print handler, 165

print/1, 98

printf/2, 93, 98, 104, 165, 166, 215

printf/3, 93, 96, 98, 165, 215

priority, 171

private heap, 204

procedure

built in, 4

dynamic, 4

external, 4

functor, 6

regular, 6

simple, 6

static, 6

tool, 65

profile, 254

profile/1, 154

profiler (library), 150

profiler, 255

profiling, 149, 154

program analysis, 149

program clause, 5

Prolog, 171

prolog_suffix, 17, 44

properties

module, 67

predicate, 67

propia (library), 179

put/1, 92

put/2, 92

q—query the failure culprit (debugger cmd),
132

qualified acccess, 63

qualified attribute specification, 162

query, 6, 13, 15

quintus, 223

rational numbers, 72
rational/1, 54
rational/2, 73
raw mode, 92
read macros, 103
read mode, 87
read/1, 66, 87, 93, 103
read/2, 93
read_annotated/3, 103
read_directory/4, 211
read_string/3,4,5, 41
read_string/5, 92
read_term/2, 93
read_term/3, 93
read_token/2, 92, 228
read_token/3, 92, 228
readvar/3, 93, 248
real/1, 54
record, 80
record/1, 80
record/2, 66
record_create/1, 80
record_wait_append/4, 80
recorda/2, 80
recorded/2, 80
recorded_list/2, 80
recordz/2, 80
redefinition error, 62
redefinition warning, 62
redirecting streams, 91
reexport/1, 47, 64
reference, 79, 86
Reference Manual Section on Engines, 57
regular procedure, 6
remove a spy point, 145, 262
rename/2, 211
repair (library), 179
reset_error_handlers/0, 118
reset_event_handler/1, 118
resolvent, 171
result

coverage, 158
result/1, 158
retract/1, 99, 101, 104, 204
rightarrow key—move current subterm right

by n positions (debugger cmd), 139
runtime system, 60
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s—skip (debugger cmd), 131
Saros, 44
schedule_suspensions/1, 185
schedule_suspensions/2, 185
scheduled suspension, 185
seek/2, 94, 95
SEPIA, 1
set a spy point, 145, 262
set_bounds handler, 165
set_chtab/2, 228, 237
set_event_handler/2, 114, 118, 252
set_flag/2, 11, 16, 17, 129, 204, 206, 209
set_flag/3, 127, 128, 130
set_interrupt_handler/2, 121, 214
set_stream/2, 6, 88, 91
set_stream_property/3, 91, 93, 94, 98
set_suspension_data/3, 183
set_var_bounds/3, 165
setarg/3, 86, 163
setof/3, 55, 130, 181
setref/2, 86
setval/2, 83–85
sh/1, 212, 213
shared heap, 204
shelf, 81, 204
shelf/ 2, 81
shelf_abolish/1, 204
shelf_create/2, 81
shelf_create/3, 81
shelf_get/3, 81
shelf_inc/2, 81
shelf_set/3, 81
sicstus, 223
simple goals, 188
simple procedure, 6
sin/2, 76
singleton, 257
skipped/1, 128, 130
sleeping suspension, 183
Socket streams, 90
socket/3, 89, 90, 215
sort/2, 55
source files, 64
source transformation, 103
SpecList, 6
split_string/4, 41, 92
spy point, 126, 128, 132

remove, 145
set, 145

spy/1, 128, 145
spy_term/2, 133
spy_var/1, 133
stack

overflow, 252
stacks, 205
standard streams, 88
start_tracing, 130
static procedure, 6
statistics/0, 11, 203
statistics/0,2, 204
statistics/2, 11, 203, 207, 210
stderr, 88
stdin, 88
stdout, 88
storage, 226
store, 81
store/ 1, 81
store_create/1, 81
store_delete/2, 82
store_erase/1, 82
store_get/3, 82
store_set/3, 82
stored_keys/2, 82
stored_keys_and_values/2, 82
stream, 6, 87
stream handles, 88
streams

redirecting, 91
string, 6
string/1, 54
string_char/3, 41
string_chars/2, 41
string_code/3, 39, 41
string_codes/2, 41
string_concat/3, 41
string_length/2, 76
string_list/2,3, 41
strings, 39
struct/1, 27
structure, 6, 59, 232
structure notation, see abstract structure no-

tation
structures, 27, 55

inheritance, 28
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subcall/2, 129, 184

subscript, 232

subscript/2, 38

subscript/3, 38

substring/5, 41

succ/2, 77

suffix (file name), 44

suspend, 177, 191

suspend (library), 163, 173

suspend/3, 125, 175, 176, 180, 181, 183, 184

suspend/4, 125, 183

suspended goal, 171

suspending variables, 176, 188

suspension, 182–185

creating, 182

dead, 183

executed, 183

scheduled, 185

sleeping, 183

waking, 183

suspension list, 182, 184

suspensions handler, 165

suspensions/1, 184

suspensions/2, 165

swi, 224

symbolic waking condition, 181, 185

syntax, 60

syntax differences of ECLiPSe, 236

syntax_option, 237

system tool, 66

system/1, 212

-t (command line option), 254

tail of a pair, 5

term, 6

callable, 4

compound, 4

constant, 4

ground, 5

variable, 6

term_hash/4, 261

term_string/2, 41

term_variables/2, 192

test_unify handler, 164

text_to_string/2, 41

thread, 57

throw/1, 117, 119, 121, 125, 127, 249, 252

timed events, 115

timers, 115

times/3, 77

tkeclipse, 44

token, 92

token class, 92

tool, 65

system, 66

tool/2, 66

tool_body/3, 67

Tools, 65

tools/0, 24

top level loop, 12, 173

toplevel module, 60

trace/0, 128

trace/1, 128, 130

trace_call_port/3, 146

trace_exit_port/0, 146

trace_parent_port/1, 146

trace_point_port/3, 146

traceable/1, 127

trail stack, 206

trigger, 181, 185

postponed, 181

trigger/1, 116, 181

triggers, 181

trimcore/0, 204

true/0, 100, 119, 121, 163, 189

twice/1, 65

tyi/1, 92

tyi/2, 92

tyo/1, 92

tyo/2, 92

type

breal, 73

float, 72

integer, 72

rational, 72

type macros, 104

type_of/2, 107, 183

types

arithmetic, 72

u—scheduled goals (debugger cmd), 134

unification

pattern matching, 169

unify handler, 163
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uninstantiated variable, 5
unit clause, 4
unlock/2, 69
unqualified attribute specification, 162
unskipped/1, 128
untraceable/1, 127
uparrow key—move current subterm up by n

levels (debugger cmd), 137
update mode, 87
update_struct/4, 28
use_module/1, 16, 48, 50, 61, 105
user, 88
user group, 2
user_error, 88
user_input, 87
user_output, 87

v—var/term modification skip (debugger cmd),
132

var/1, 42, 54, 161, 174, 190
variable, 6

anonymous, 6
attributed, 161
free, 5
instantiated, 5
non-logical, 83, 204
output, 93
uninstantiated, 5

variable name, 257
variable/1, 83
variable_names, 93
variables, 13
variant/2, 164
visible definition, 62, 63
visualisation (library), 179

w—write source context for current goal (de-
bugger cmd), 134

wait/2, 213
wake/0, 179, 185
waking, 183, 185, 188
waking suspension, 183
waking/1, 129
warning_output, 87
when declarations, 190
with/2, 27
with_profiler, 255
write macros, 103

write mode, 87
write/1, 66, 87, 93, 98, 165, 166
write/2, 93, 165
write_canonical/1, 98
write_history/0, 15
write_term/2, 98
write_term/3, 96, 98
writeln/1, 93, 98, 165
writeln/2, 93, 165
writeq/1, 93, 98, 166
writeq/2, 93, 261

x—examine goal (debugger cmd), 135
xref (library), 149, 152
xref/2, 152

z—zap (debugger cmd), 133
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