From 4967a7c3cfb8a6d55247664d18f3f398c39dec5e Mon Sep 17 00:00:00 2001 From: Michele Alberti <michele.alberti@cea.fr> Date: Thu, 19 Jan 2023 16:31:44 +0100 Subject: [PATCH] [doc] Update documentation. --- doc/mnist.rst | 17 ++++++----------- 1 file changed, 6 insertions(+), 11 deletions(-) diff --git a/doc/mnist.rst b/doc/mnist.rst index 6e08ace..e99cbd4 100644 --- a/doc/mnist.rst +++ b/doc/mnist.rst @@ -4,10 +4,11 @@ *********************************** CAISAR provides a convenient way for verifying (local) robustness properties of -neural networks on datasets, for classification problems only, in a specific -``CSV`` format. In particular, each of the ``CSV`` lines is interpreted as +neural networks working on datasets with values in :math:`[0, 1]`, for +classification problems only. For the moment, CAISAR supports datasets in a +specific ``CSV`` format only, where each ``CSV`` lines is interpreted as providing the classification label in the first column, and the dataset element -features in the other columns. +features in the remaining columns. We recall that a neural network is deemed robust on a dataset element whenever it classify with a same label all other elements being at an @@ -35,7 +36,7 @@ a fragment (:math:`100` images) of the MNIST dataset under the ``examples/mnist/csv`` folder. Each line in this file represents an MNIST image: in particular, the first column represents the classification label, and the remaining :math:`784` columns represent the greyscale value of the respective -pixels. +pixels, rescaled into :math:`[0, 1]`. Properties ---------- @@ -121,15 +122,9 @@ dataset, with each element's feature pertubed by :math:`1 \%`, looks like this: use caisar.DatasetClassificationProps goal robustness: - let normalized_dataset = min_max_scale true (0.0:t) (1.0:t) dataset in - robust model normalized_dataset (0.0100000000000000002081668171172168513294309377670288085937500000:t) + robust model dataset (0.0100000000000000002081668171172168513294309377670288085937500000:t) end -Note the presence of the ``min_max_scale`` function defined in -``DatasetClassification`` for normalizing all feature values in :math:`[0,1]`. -Besides classic *Min-Max scaling*, CAISAR also provides ``z_norm`` function for -*Z-normalization*. - This file is available, as is, under the ``/examples/mnist/`` folder as `property.why <https://git.frama-c.com/pub/caisar/-/blob/master/examples/mnist/property.why>`_. -- GitLab