
1st Asian Pacific Summer School on Formal
Methods

Course 12: Static Analysis of C programs with
Frama-C

Virgile Prevosto

CEA List

August 30, 2009



outline

Presentation

Data-flow Analysis

Abstract Interpretation

Abstract Interpretation in Practice



Presentation

Data-flow Analysis

Abstract Interpretation

Abstract Interpretation in Practice



Motivations

Main objective
Statically determine some semantic properties of a program

I safety: pointer are all valid, no arithmetic overflow, ...
I termination
I functional properties
I dead code
I ...

Embedded code
I Much simpler than desktop applications
I Some parts are critical, i.e. a bug have severe consequences

(financial loss, or even dead people)
I Thus a good target for static analysis



Some examples

I During first gulf war (1991), a patriot missile failed to
intercept an Iraqi missile due to rounding errors

I Failure of Ariane 5 maiden flight (arithmetic overflows)
I ...



Some tools

Polyspace Verifier Checks for (absence of) run-time error
C/C++/Ada)
http:
//www.mathworks.com/products/polyspace/

ASTRÉE Absence of error without false alarm in
SCADE-generated code
http:
//www.di.ens.fr/~cousot/projets/ASTREE/

Coverity Checks for various code defects (C/C++/Java)
http://www.coverity.com

http://www.mathworks.com/products/polyspace/
http://www.mathworks.com/products/polyspace/
http://www.di.ens.fr/~cousot/projets/ASTREE/
http://www.di.ens.fr/~cousot/projets/ASTREE/
http://www.coverity.com


Some tools (cont’d)

a3 Worst-case execution time and Stack depth
http://www.absint.com/

FLUCTUAT Accuracy of floating-point computations and origin
of rounding errors
http:
//www-list.cea.fr/labos/fr/LSL/fluctuat/

Frama-C A toolbox for analysis of C programs
http://frama-c.cea.fr/

http://www.absint.com/
http://www-list.cea.fr/labos/fr/LSL/fluctuat/
http://www-list.cea.fr/labos/fr/LSL/fluctuat/
http://frama-c.cea.fr/


A brief history

I 90’s: CAVEAT, an Hoare logic-based tool for C programs
I 2000’s: CAVEAT used by Airbus during certification process

of the A380
I 2002: Why and its C front-end Caduceus
I 2006: Joint project to write a successor to CAVEAT and

Caduceus
I 2008: First public release of Frama-C



Architecture

I A modular architecture
I Kernel:

I CIL (U. Berkeley) library for the C front-end
I ACSL front-end
I Global management of analyzer’s state

I Various plug-ins for the analysis
I Value analysis (abstract interpretation)
I Jessie (translation to Why)
I Slicing
I Impact analysis
I ...



Presentation

Data-flow Analysis

Abstract Interpretation

Abstract Interpretation in Practice



Concrete execution

Concrete semantics
I Formalisation of all possible behaviors of a program
I Function which associate to a program an element of the

concrete domain of interest
I Trace semantics: associate to each program point the values

that the variables can take at this point

number of steps

value of x



Example

int fact(int x) {
int z = 1,y = 1;
if (x<4) { x = 4; }
while (y<=x) {

z=z*y;
y++;

}
return z;

}



Fixpoint Computations

I Control-flow graph (CFG) of the program
I Each edge has an associated a transfer function fi ,j : L→ L
I System of equations li =

⋃
{ej∈lj}{fj,i(ej)}

I Solved by successive iterations (Kleene)



Control-flow Graph

int fact(int x) {
l0

int z = 1,y = 1;
l1

if (x<4) { x = 4;
l2

}

l3

while (y<=x) {
l4

z=z*y;

y++;
l5

}
l6

return z;
}

l0

l1

l2

l3

l4

l5 l6

y← 1 z← 1

x < 4
x ≥ 4

x ← 4

y ≤ x
y > x

z← z ∗ y
y← y + 1



Iterations

x y z
S0 Z
S1 Z 1 1
S2 −∞..4 1 1
S3 4..+∞ 1. . . 1, 2, 6, 24 . . .

S4 4..+∞ 1. . . 1, 2, 6, . . .

S5 4..+∞ 2. . . 1, 2, 6, . . .

S6 4..+∞ 4. . . 1, 2, 6, . . .

l0

l1

l2

l3

l4

l5 l6

y← 1 z← 1

x ≤ 4
x > 4

x ← 4

y ≤ x
y > x

z← z ∗ y
y← y + 1



Undecidability

Rice’s Theorem
Any non-trivial semantic property of a program is undecidable.

Example
Halting problem: it cannot be decided statically if a given program
will always terminate or not

Approximations
Even if the general case is unreachable, it is possible to devise
analyses that give useful information



Presentation

Data-flow Analysis

Abstract Interpretation

Abstract Interpretation in Practice



Approximations

I Ensuring termination of the analysis
I Use abstract values
I Allows approximations
I may lead to false alarm

Abstract interpretation
I Formalized by Patrick and Radhia Cousot [POPL’77]
I Give relations between concrete and abstract domains (Galois

connection)
I Termination (widening)
I Mixing information from distinct abstractions (reduced

product)



Correction and completeness

The approximation can be either
correct: All concrete behavior are represented by the

abstraction
complete: All abstract behaviors are the representation of a

concrete trace
but not both

steps

values



Example: intervals

x y z
S0 Z
S1 Z 1 1
S2 −∞..4 1 1
S3 4..+∞ 1..+∞ 1..+∞
S4 4..+∞ 1..+∞ 1..+∞
S5 4..+∞ 2..+∞ 1..+∞
S6 4..+∞ 5.. +

∞
1..+∞

l0

l1

l2

l3

l4

l5 l6

y← 1 z← 1

x ≤ 4
x > 4

x ← 4

y ≤ x
y > x

z← z ∗ y
y← y + 1



Reduced product

Frama-c’s integers abstraction uses intervals and modulo
information.

I normal product: x ∈ [0; 8] ∧ x ≡ 1[2]
I but 0 6≡ 1[2], so x ∈ [1; 7] ∧ x ≡ 1[2]
I more generally the reduced product of two abstract domains

allows to deduce more information than by doing two
analyses separately



Presentation

Data-flow Analysis

Abstract Interpretation

Abstract Interpretation in Practice



Abstract domains

Frama-C use mainly 3 domains:
I floating-point values: intervals
I integral types: intervals and modulo information
I pointers: set of possible base addresses + an offset (which is

an integer).
I a few other refinements for pointed values



Representation of the state

In order to scale to realistic programs (100 kLOC or more), an
efficient representation of the state of the program at each point
is very important:

I Maximal sharing of the sub-expressions (hash-consing).
I Data structures allowing for fast search and insertion:

variations over Patricia trees.
I some improvements of the Ocaml compiler itself have helped

a lot.



Semantic unrolling

It is possible to regain some precision (at the expense of the
performances) by keeping at most n states separated before
merging or widening.

Example
int main(int c) {
int x = 0;
int y = 0;
if (c<0) x++;
if (c<0) y++;
if (x == y) { x = y = 42; }
return 0;
}

running frama-c

c ∈ [−∞;∞]
x ∈ [0; 1]

c ∈ ]−∞;∞[
x ∈ [0; 1]
y ∈ [0; 1]

c ∈ ]−∞;∞[
x ∈ [0; 42]
y ∈ [0; 42]

c ∈ ]−∞; 0[∪[0;∞]
x = 0∪ 1

c ∈ ]−∞; 0[∪[0;∞[
x = 0∪ 1
y = 0∪ 1

c ∈ ]−∞; 0[∨[0;∞[
x = 42∨ 42
y = 42∨ 42



Exploiting value analysis results

It is possible to use the results of value analysis to produce more
specialized results. This includes currently:

I semantic constant folding
I inputs and outputs of a function
I slicing
I impact analysis


	Presentation
	Data-flow Analysis
	Abstract Interpretation
	Abstract Interpretation in Practice

