
1st Asian-Pacific Summer School on Formal
Methods

Course 12: Deductive verification of C programs
with Frama-C and Jessie

Virgile Prevosto

CEA List

August 30, 2009



outline

Jessie Usage

Function Contracts

Advanced Specification
Example 1: Searching
Example 2: Sorting



Jessie Usage

Function Contracts

Advanced Specification
Example 1: Searching
Example 2: Sorting



What is Jessie?

I Hoare-logic based plugin, developed at INRIA Saclay.
I Input: a program and a specification
I Jessie generates verification conditions
I Use of Automated Theorem Provers to discharge the VCs
I If all VCs are proved, the program is correct with respect to

the specification
I Otherwise: need to investigate why the proof fails

I Fix bug in the code
I Adds additional annotations to help ATP
I Interactive Proof (Coq)



What is Jessie?

I Hoare-logic based plugin, developed at INRIA Saclay.
I Input: a program and a specification
I Jessie generates verification conditions
I Use of Automated Theorem Provers to discharge the VCs
I If all VCs are proved, the program is correct with respect to

the specification
I Otherwise: need to investigate why the proof fails

I Fix bug in the code
I Adds additional annotations to help ATP
I Interactive Proof (Coq)



What is Jessie?

I Hoare-logic based plugin, developed at INRIA Saclay.
I Input: a program and a specification
I Jessie generates verification conditions
I Use of Automated Theorem Provers to discharge the VCs
I If all VCs are proved, the program is correct with respect to

the specification
I Otherwise: need to investigate why the proof fails

I Fix bug in the code
I Adds additional annotations to help ATP
I Interactive Proof (Coq)



What is Jessie?

I Hoare-logic based plugin, developed at INRIA Saclay.
I Input: a program and a specification
I Jessie generates verification conditions
I Use of Automated Theorem Provers to discharge the VCs
I If all VCs are proved, the program is correct with respect to

the specification
I Otherwise: need to investigate why the proof fails

I Fix bug in the code
I Adds additional annotations to help ATP
I Interactive Proof (Coq)



What is Jessie?

I Hoare-logic based plugin, developed at INRIA Saclay.
I Input: a program and a specification
I Jessie generates verification conditions
I Use of Automated Theorem Provers to discharge the VCs
I If all VCs are proved, the program is correct with respect to

the specification
I Otherwise: need to investigate why the proof fails

I Fix bug in the code
I Adds additional annotations to help ATP
I Interactive Proof (Coq)



What is Jessie?

I Hoare-logic based plugin, developed at INRIA Saclay.
I Input: a program and a specification
I Jessie generates verification conditions
I Use of Automated Theorem Provers to discharge the VCs
I If all VCs are proved, the program is correct with respect to

the specification
I Otherwise: need to investigate why the proof fails

I Fix bug in the code
I Adds additional annotations to help ATP
I Interactive Proof (Coq)



What is Jessie?

I Hoare-logic based plugin, developed at INRIA Saclay.
I Input: a program and a specification
I Jessie generates verification conditions
I Use of Automated Theorem Provers to discharge the VCs
I If all VCs are proved, the program is correct with respect to

the specification
I Otherwise: need to investigate why the proof fails

I Fix bug in the code
I Adds additional annotations to help ATP
I Interactive Proof (Coq)



What is Jessie?

I Hoare-logic based plugin, developed at INRIA Saclay.
I Input: a program and a specification
I Jessie generates verification conditions
I Use of Automated Theorem Provers to discharge the VCs
I If all VCs are proved, the program is correct with respect to

the specification
I Otherwise: need to investigate why the proof fails

I Fix bug in the code
I Adds additional annotations to help ATP
I Interactive Proof (Coq)



What is Jessie?

I Hoare-logic based plugin, developed at INRIA Saclay.
I Input: a program and a specification
I Jessie generates verification conditions
I Use of Automated Theorem Provers to discharge the VCs
I If all VCs are proved, the program is correct with respect to

the specification
I Otherwise: need to investigate why the proof fails

I Fix bug in the code
I Adds additional annotations to help ATP
I Interactive Proof (Coq)



What is Jessie Useful for?

Usage
I Proof of functional properties of the program
I Modular verification (function per function)

Limitations
I Cast between pointers and integers
I Limited support for union type
I Aliasing requires some care



What is Jessie Useful for?

Usage
I Proof of functional properties of the program
I Modular verification (function per function)

Limitations
I Cast between pointers and integers
I Limited support for union type
I Aliasing requires some care



What is Jessie Useful for?

Usage
I Proof of functional properties of the program
I Modular verification (function per function)

Limitations
I Cast between pointers and integers
I Limited support for union type
I Aliasing requires some care



What is Jessie Useful for?

Usage
I Proof of functional properties of the program
I Modular verification (function per function)

Limitations
I Cast between pointers and integers
I Limited support for union type
I Aliasing requires some care



What is Jessie Useful for?

Usage
I Proof of functional properties of the program
I Modular verification (function per function)

Limitations
I Cast between pointers and integers
I Limited support for union type
I Aliasing requires some care



What is Jessie Useful for?

Usage
I Proof of functional properties of the program
I Modular verification (function per function)

Limitations
I Cast between pointers and integers
I Limited support for union type
I Aliasing requires some care



From Frama-C to Theorem Provers

C file

Frama-CJessieWhy fileWhy

Verification conditions

Automated provers:
Alt-ergo
Simplify
Z3
...

Proof assistants:
Coq
Isabelle
PVS



A first example

Check safety of a function
I Pointer accesses
I Arithmetic overflow
I Division

unsigned int M;

void mean(unsigned int* p, unsigned int* q) {
M = (*p + *q) / 2;

}



Jessie Usage

Function Contracts

Advanced Specification
Example 1: Searching
Example 2: Sorting



ACSL

Safety of a program is important, but this is not sufficient: We
also want it to do “the right thing”...
But in order for jessie to verify that, we need to explain it what
“the right thing” is, and to explain it formally
This is the purpose of ACSL, ANSI/ISO C Specification
Language.

I Behavioral specification language à la JML and Eiffel
I Function contracts
I Logic models
I Independent from any plug-in



ACSL

Safety of a program is important, but this is not sufficient: We
also want it to do “the right thing”...
But in order for jessie to verify that, we need to explain it what
“the right thing” is, and to explain it formally
This is the purpose of ACSL, ANSI/ISO C Specification
Language.

I Behavioral specification language à la JML and Eiffel
I Function contracts
I Logic models
I Independent from any plug-in



ACSL

Safety of a program is important, but this is not sufficient: We
also want it to do “the right thing”...
But in order for jessie to verify that, we need to explain it what
“the right thing” is, and to explain it formally
This is the purpose of ACSL, ANSI/ISO C Specification
Language.

I Behavioral specification language à la JML and Eiffel
I Function contracts
I Logic models
I Independent from any plug-in



ACSL

Safety of a program is important, but this is not sufficient: We
also want it to do “the right thing”...
But in order for jessie to verify that, we need to explain it what
“the right thing” is, and to explain it formally
This is the purpose of ACSL, ANSI/ISO C Specification
Language.

I Behavioral specification language à la JML and Eiffel
I Function contracts
I Logic models
I Independent from any plug-in



ACSL

Safety of a program is important, but this is not sufficient: We
also want it to do “the right thing”...
But in order for jessie to verify that, we need to explain it what
“the right thing” is, and to explain it formally
This is the purpose of ACSL, ANSI/ISO C Specification
Language.

I Behavioral specification language à la JML and Eiffel
I Function contracts
I Logic models
I Independent from any plug-in



ACSL

Safety of a program is important, but this is not sufficient: We
also want it to do “the right thing”...
But in order for jessie to verify that, we need to explain it what
“the right thing” is, and to explain it formally
This is the purpose of ACSL, ANSI/ISO C Specification
Language.

I Behavioral specification language à la JML and Eiffel
I Function contracts
I Logic models
I Independent from any plug-in



ACSL

Safety of a program is important, but this is not sufficient: We
also want it to do “the right thing”...
But in order for jessie to verify that, we need to explain it what
“the right thing” is, and to explain it formally
This is the purpose of ACSL, ANSI/ISO C Specification
Language.

I Behavioral specification language à la JML and Eiffel
I Function contracts
I Logic models
I Independent from any plug-in



ACSL

Safety of a program is important, but this is not sufficient: We
also want it to do “the right thing”...
But in order for jessie to verify that, we need to explain it what
“the right thing” is, and to explain it formally
This is the purpose of ACSL, ANSI/ISO C Specification
Language.

I Behavioral specification language à la JML and Eiffel
I Function contracts
I Logic models
I Independent from any plug-in



Behavior of a function

I Functional specification
I Pre-conditions (requires)
I Post-conditions (ensures)

Example
unsigned int M;
/*@

requires \valid(p) ∧ \valid(q);
ensures M ≡ (*p + *q) / 2;

*/
void mean(unsigned int* p, unsigned int* q) {

if (*p ≥ *q) { M = (*p − *q) / 2 + *q; }
else { M = (*q − *p) / 2 + *p; }

}



Behavior of a function

I Functional specification
I Pre-conditions (requires)
I Post-conditions (ensures)

Example
unsigned int M;
/*@

requires \valid(p) ∧ \valid(q);
ensures M ≡ (*p + *q) / 2;

*/
void mean(unsigned int* p, unsigned int* q) {

if (*p ≥ *q) { M = (*p − *q) / 2 + *q; }
else { M = (*q − *p) / 2 + *p; }

}



Behavior of a function

I Functional specification
I Pre-conditions (requires)
I Post-conditions (ensures)

Example
unsigned int M;
/*@

requires \valid(p) ∧ \valid(q);
ensures M ≡ (*p + *q) / 2;

*/
void mean(unsigned int* p, unsigned int* q) {

if (*p ≥ *q) { M = (*p − *q) / 2 + *q; }
else { M = (*q − *p) / 2 + *p; }

}



Side effects

The specification:
/*@

requires \valid(p) ∧ \valid(q);
ensures M ≡ (*p + *q) / 2;
assigns M;

*/
void mean(unsigned int* p, unsigned int* q);



Jessie Usage

Function Contracts

Advanced Specification
Example 1: Searching
Example 2: Sorting



A concrete example

Informal spec
I Input: a sorted array and its length, an element to search.
I Output: index of the element or -1 if not found

Implementation
int find_array(int* arr, int length, int query) {

int low = 0;
int high = length − 1;
while (low ≤ high) {

int mean = low + (high −low) / 2;
if (arr[mean] ≡ query) return mean;
if (arr[mean] < query) low = mean + 1;
else high = mean − 1;

}
return −1;

}



An example

Informal specification
I Input: an array and its length
I Output: the array is sorted in ascending order

int index_min(int* a, int low, int high);

void swap(int* arr, int i, int j);

void min_sort(int* arr, int length) {
for(int i = 0; i < length; i++) {

int min = index_min(arr,i,length);
swap(arr,i,min);

}
}


	Jessie Usage
	Function Contracts
	Advanced Specification
	Example 1: Searching
	Example 2: Sorting


