1st Asian Pacific Summer School on Formal
Methods
Course 12: Static Analysis of C programs with
Frama-C

Virgile Prevosto

CEA List

August 30, 2009

Software Analyzers

Presentation
Data-flow Analysis
Abstract Interpretation

Abstract Interpretation in Practice

(longm1
(for (i=¢

outline

Software Analyzers

Presentation

f [l 2l a . .
Motivations

Main objective
Statically determine some semantic properties of a program

» safety: pointer are all valid, no arithmetic overflow, ...
termination

>
» functional properties
» dead code

>

Embedded code ’

» Much simpler than desktop applications

» Some parts are critical, i.e. a bug have severe consequences ,

teng i (financial loss, or even dead people)

{for(i=C

» Thus a good target for static analysis

Some examples

» During first gulf war (1991), a patriot missile failed to
intercept an lragi missile due to rounding errors

» Failure of Ariane 5 maiden flight (arithmetic overflows)

> ...

(longm
(for i=C

Some tools

Polyspace Verifier Checks for (absence of) run-time error
C/C++/Ada)
http:
//www.mathworks.com/products/polyspace/

ASTREE Absence of error without false alarm in
SCADE-generated code
http:
//www.di.ens.fr/~cousot/projets/ASTREE/ E
Coverity Checks for various code defects (C/C++/Java) PR
http://www.coverity.com ; '

(long m1
(for (=0

http://www.mathworks.com/products/polyspace/
http://www.mathworks.com/products/polyspace/
http://www.di.ens.fr/~cousot/projets/ASTREE/
http://www.di.ens.fr/~cousot/projets/ASTREE/
http://www.coverity.com

!
Some tools (cont'd)

a3 Worst-case execution time and Stack depth
http://www.absint.com/

FLUCTUAT Accuracy of floating-point computations and origin
of rounding errors
http:
//www-1list.cea.fr/labos/fr/LSL/fluctuat/
Frama-C A toolbox for analysis of C programs
http://frama-c.cea.fr/ ST

(long m1
(for (1=(

http://www.absint.com/
http://www-list.cea.fr/labos/fr/LSL/fluctuat/
http://www-list.cea.fr/labos/fr/LSL/fluctuat/
http://frama-c.cea.fr/

e
A brief history

» 90’s: CAVEAT, an Hoare logic-based tool for C programs

(long m1
(for (i=(

A brief history

» 90’s: CAVEAT, an Hoare logic-based tool for C programs

» 2000's: CAVEAT used by Airbus during certification process
of the A380

(longm
(for i=C

A brief history

» 90’s: CAVEAT, an Hoare logic-based tool for C programs

» 2000's: CAVEAT used by Airbus during certification process
of the A380

» 2002: Why and its C front-end Caduceus

(long m1
(for (1=(

P
A brief history

» 90’s: CAVEAT, an Hoare logic-based tool for C programs

» 2000's: CAVEAT used by Airbus during certification process
of the A380

» 2002: Why and its C front-end Caduceus

» 2006: Joint project to write a successor to CAVEAT and
Caduceus

(long m1
(for (=0

P
A brief history

» 90’s: CAVEAT, an Hoare logic-based tool for C programs

» 2000's: CAVEAT used by Airbus during certification process
of the A380

» 2002: Why and its C front-end Caduceus

» 2006: Joint project to write a successor to CAVEAT and
Caduceus

» 2008: First public release of Frama-C

(long m1
(for (1=(

f r ama .
Architecture

» A modular architecture

f r ama .
Architecture

» A modular architecture
» Kernel:

(longm
(for (i=¢

Software Analyzers

» A modular architecture
» Kernel:
» CIL (U. Berkeley) library for the C front-end

(long m1
(for (i=(

Architecture

Software Analyzers

» A modular architecture
» Kernel:

» CIL (U. Berkeley) library for the C front-end
» ACSL front-end

(long m1
(for (i=C

Architecture

Software Analyzers

» A modular architecture
» Kernel:

» CIL (U. Berkeley) library for the C front-end
» ACSL front-end
» Global management of analyzer's state

(long m1
{for (i=C

Architecture

Software Analyzers

» A modular architecture
» Kernel:

» CIL (U. Berkeley) library for the C front-end
» ACSL front-end
» Global management of analyzer's state

» Various plug-ins for the analysis

(longm
(for i=C

Architecture

f [l 2l a

Software Analyzers

» A modular architecture
» Kernel:

» CIL (U. Berkeley) library for the C front-end
» ACSL front-end
» Global management of analyzer's state

» Various plug-ins for the analysis
» Value analysis (abstract interpretation)

(longm
(for i=C

Architecture

f [l 2l a

Software Analyzers

» A modular architecture

» Kernel:
» CIL (U. Berkeley) library for the C front-end
» ACSL front-end
» Global management of analyzer's state

» Various plug-ins for the analysis

» Value analysis (abstract interpretation)
» Jessie (translation to Why)

(long m1
(for (1=(

Architecture

Software Analyzers

» A modular architecture
> Kernel:
» CIL (U. Berkeley) library for the C front-end
» ACSL front-end
» Global management of analyzer's state
» Various plug-ins for the analysis
» Value analysis (abstract interpretation)
» Jessie (translation to Why)
» Slicing

(long m1
(for (1=(

Architecture

f [l 2l a

Software Analyzers

» A modular architecture
» Kernel:

» CIL (U. Berkeley) library for the C front-end
» ACSL front-end

» Global management of analyzer's state
» Various plug-ins for the analysis

» Value analysis (abstract interpretation)

» Jessie (translation to Why)

» Slicing

» Impact analysis

(long m1
(for (1=(

Architecture

f [l 2l a .
Architecture

» A modular architecture
» Kernel:

» CIL (U. Berkeley) library for the C front-end

» ACSL front-end

» Global management of analyzer's state
» Various plug-ins for the analysis

» Value analysis (abstract interpretation)

» Jessie (translation to Why) .

» Slicing Y
» Impact analysis o
>

(long m1
(for (1=(

¢ C

Software Analyzers

Data-flow Analysis

f [l 2l a

Software Analyzers

Concrete execution

Concrete semantics
» Formalisation of all possible behaviors of a program

» Function which associate to a program an element of the
concrete domain of interest

» Trace semantics: associate to each program point the values
that the variables can take at this point

value of x
A

(long m1
(for (1=(

number of s

f [l 2l a

Software Analyzers

Concrete execution

Concrete semantics
» Formalisation of all possible behaviors of a program

» Function which associate to a program an element of the
concrete domain of interest

» Trace semantics: associate to each program point the values
that the variables can take at this point

value of x
A

(long m1
(for (1=(

number of s

.
Concrete execution

Software Analyzers

Concrete semantics
» Formalisation of all possible behaviors of a program

» Function which associate to a program an element of the
concrete domain of interest

» Trace semantics: associate to each program point the values
that the variables can take at this point

value of x

number of st

.
Concrete execution

Software Analyzers

Concrete semantics
» Formalisation of all possible behaviors of a program

» Function which associate to a program an element of the
concrete domain of interest

» Trace semantics: associate to each program point the values
that the variables can take at this point

value of x

number of st

.
Concrete execution

Software Analyzers

Concrete semantics
» Formalisation of all possible behaviors of a program

» Function which associate to a program an element of the
concrete domain of interest

» Trace semantics: associate to each program point the values
that the variables can take at this point

value of x

number of st

frama

Software Analyzers

int fact(int x
int z = 1,y
if (x<4) { x
while (y<=x)

Z=Z*Y;
y++;

I

}

return z;

(long m1
(for(i=C

) o
=1;

{

4;

¥

Example

Example

int fact(int x) {
int z = 1,y = 1;

if (x<4) { x=4; }
while (y<=x) {
Z=Z*Y;
y++;
+ .
return z; ;é

Fixpoint Computations
» Control-flow graph (CFG) of the program
» Each edge has an associated a transfer function f;; : L — L
» System of equations ; = Uyeey{fi(€)}
» Solved by successive iterations (Kleene)
4

(longm
(for i=C

e Control-flow Graph

int fact(int x) { @
int z = 1,y = 1;®

ye—1l|z«1
if (x<4) { x = 4; <::>}
while (y<=x) {

Z=ZXY;

y>Xx

y++;

(for (i=(}
-

f r ama .
Iterations

Xy z

50 y —1
S1
: Po
S3 <

@: X >4
54 X

I y > X

Ss yE ‘
Se z* 5

«—
o ye—y+
Is

f r ama .
Iterations

X
<

I y > X

I\

h
o ye—y+ I e

f r ama .
Iterations

X |y z
Sol Z ye—1llz«—1
S117Z |1 1

I y > X

I\

h
o ye—y+ I e

f r ama .
Iterations

(&)
X \% Z
Sol Z ye—|l|lz«—1
51 Z 1
S| —o00.4 |1]/1>
S3 <
x >4

54 X «—

Q3 y>X N
Ss y <) M
56 Z — Z %Y 9

it yey+ @ e

[terations
(o)
X y Z
Sol Z ye—|l|lz«—1
S5 Z 1
52 —00..4 |1][1)
x >4
54 X «—
Q:.; y > X N
Ss y <) M
56 Z = Z %\ 3
vt yey+ @ e

[terations
(o)
X y z
Sol Z ye—|l|lz«—1
S| Z 1
52 —00..4 |1]ID
x >4
54 X —
Q:.; y > X N
Ss y <) M
56 Z—Z %Y 9
e ye vyt @ e

(long m1
(for (i=(

Softw

So
S
S
S3

S4

are Analyzers

—00..4
4.+ o0

[terations

1
Qa y>X

Iterations
(0)
X y Z
Sol Z ye—|l|lz«—1
S5 Z 1
52 —00..4 |1][1)
S3 4. +00 |1 <
x >4
Q}; y > X N
S5l 4.+ 00 | 2 y < M
56 Z = Z %\ 3
] ye—y+ @ e

(long m1
(for (i=(

Softw

So
S
S
S3

S4

are Analyzers

—00..4
4.+ o0

[terations

1
ga y>X

(long m1
(for (i=(

Softw

So
S
S
S3

S4

are Analyzers

—00..4
4.+ o0

[terations

1
ga y>X

Iterations
(o)
X y z
Sol Z y—|llz—1
S5 Z 1
52 —00..4 |1][Q
53 4. +00 | 1.5 < ,6,24
x >4
Sal 4. +0 | 1.4 X — 12,6
g:.; y > X N
S5l 4..+ 00 | 2.5 y < ,6 2
Se Z =2 %X S,
] ye—y+ @ e

[terations
(o)
X y Z
Sol Z ye—|l|lz«—1
S| Z 1
52 —00..4 |1][Q
53 4. +o0 | 1.5 < ;6; 24
x >4
Sal 4. +00 1.5 X — 142,6,24
g:.; y > X N
Ss| 4.4+ 00 | 2.5 y < ,6
56 Z—Z %Y 9
o ye—y+ @ e

:
Iterations

X y z
Sol Z ye—1llz—1
Sl Z 1 1
Sy —o0.4 |1 1 /D
S3l 4.4+ 00 | 1.5 1,2,6,24 X <4
x >4
S4 4. +00 1.5 1,2,6,24 X «— 2
I y > X

Ss 4. +00|2.5 |1,2,6 y <

Sel 4.+ 00 | 5 24 6 LTS
e ye=y+ o
Is

:
Iterations

X y z
Sol Z ye—1llz«—1
S Z 1 1
S| —.4]1 1 /D
S3l4.+0 | 1... 1,2,6,24... x </
x >4
Sy b..+00 | 1... 1,2,6,... X — 2
I y > X
Ss| 4.+ 00 | 2... 1,2,6,... y <

Sel 4.4+ 00| 4... [1,2,6,... 0 L%
ot y—y+ e
Is

l‘ranla . -
Undecidability

Rice's Theorem
Any non-trivial semantic property of a program is undecidable.

(long m1
(for(i=C

franla . -
Undecidability

Software Analyzers

Rice's Theorem
Any non-trivial semantic property of a program is undecidable.

Example
Halting problem: it cannot be decided statically if a given program
will always terminate or not

(longm
(for i=C

franla . -
Undecidability

Software Analyzers

Rice's Theorem
Any non-trivial semantic property of a program is undecidable.

Example
Halting problem: it cannot be decided statically if a given program
will always terminate or not

Approximations
Even if the general case is unreachable, it is possible to devise ’
~ analyses that give useful information

Software Analyzers

Abstract Interpretation

fIrama . .
Approximations

» Ensuring termination of the analysis
» Use abstract values
» Allows approximations

» may lead to false alarm

(long m1
(for (i=C

S
Approximations

» Ensuring termination of the analysis
» Use abstract values
» Allows approximations

» may lead to false alarm

Abstract interpretation
» Formalized by Patrick and Radhia Cousot [POPL'77]

» Give relations between concrete and abstract domains (Galois
connection)

» Termination (widening)

» Mixing information from distinct abstractions (reduced
product)

(long m1
(for (1=(

(long m1
(for(i=C

Correction and completeness

The approximation can be either

values

:
Correction and completeness

The approximation can be either

correct: All concrete behavior are represented by the
abstraction

values

(long m1
(for (i=C

fIrama .
Correction and completeness

The approximation can be either

correct: All concrete behavior are represented by the
abstraction

complete: All abstract behaviors are the representation of a
concrete trace

values
A

(long m1
{for (i=C

:
Correction and completeness

The approximation can be either
correct: All concrete behavior are represented by the
abstraction
complete: All abstract behaviors are the representation of a
concrete trace

but not both

values
A

(long m1
(for (1=(

Software Analyzers

(long m1
{for (i=C

4.

+ 00

Example: intervals

Is

y>Xx

Software Analyzers

(long m1
{for (i=C

X

4.

+ 00

Example: intervals

Is

y>Xx

Software Analyzers

X

Se| 4.. + 0

(long m1
{for (i=C

Is

Example: intervals

y>Xx

[v am a] .
Example: intervals

(o)
yeliz«1
X y z

50Z /D
S5 Z 1 1 x < 4
S3 X]
54 /3 y>x
Ss y <
Sel 4.. + o0 5. + 1.+ 00 6 <

Z 2 kY

o ye—y+
Is

[v am a] .
Example: intervals

(o)
y<—1 z«— 1
X y V4

So| Z ID
S5 Z 1 1 x <4
53 4. +00 |1 1 .
54 /3 y>x
Ss y <)
Sel 4.. + o0 5. + 1.+ 00 6 <

Z 2 kY

o ye—y+
Is

[v am a] .
Example: intervals

O,
y—1l|z«1
X y z

50Z /D
S Z 1 1 x <4
S3l 4.+ |1 1 X2
54 /3 y>x
Ss y <)
Sel 4.. + o0 5. + 1.+ 00 6 <

Z —Z %Y

o ye—y+
Is

[v am a] .
Example: intervals

y—1l|z«1
X y z
50Z /D
S Z 1 1 x <4
S3l 4.+ |1 1 X2
S5 y <
Sel 4.. + o0 5. + 1.+ 00 o <
Z— Z %Y

o ye—y+
Is

[v am a] .
Example: intervals

(o)
y—1l|z«1
X y V4
So| Z ID
5 Z 1 1 x <4
53 4. +00 |1 1 X «— 2
Se| 4.. 4+ o0 5. + 1.4+ o l
o0 -
Z = Z kY

o ye—y+
Is

[v am a] .
Example: intervals

(o)
y—1l|z«1
X y z
So| Z ID
5 Z 1 1 x <4
S34.+0|1.+01 iy
Sad.+00 |1 1 A y > X
Se| 4.. 4+ o0 5. + 1.4+ 6 l
o0 k-
Z 2 kY

o ye—y+
Is

[v am a] .
Example: intervals

(o)
ye—1llz«1
X y z
So| Z ID
5 Z 1 1 x <4
S34.+0|1.+01 iy
Seld. +0|1.4+41 Iy V> x
Se| 4.. + 00 5. 1..+ o0 o ke
o0 k-
Z = Z kY

o ye—y+
Is

[v am a] .
Example: intervals

ye—1llz«1
X y z
So| Z ID
S Z 1 1 x <4
S3l 4. +o0|1l.+0¢l.+o00 2
54 4.+OO 1..+O< /3 _y>X
S5l 4.+ 00| 2.+ 1.+ 00 y <
Se| 4.. + 00 > 1 + oo 6 ke
>]
Z <~ Z %Y

o ye—y+
Is

:
Example: intervals

(o)
ye—1llz«—1
X y z
S Z /D
S Z 1 1 x <4
S3l4.+00|1.+09l.+00 =
Saf 4. 400 |1..+00 1.4+ 00 I y>x
S5l 4. +00 |2, .+ 1l.+ 00 y <
Se| 4.. + 0 5. 1..4+ 00 0
00 L
Z < Z*Y§

R y—y+
Is

Reduced product

Frama-c's integers abstraction uses intervals and modulo
information.

» normal product: x € [0;8] A x = 1]2]

(long m1
(for (i=C

Reduced product

Frama-c's integers abstraction uses intervals and modulo
information.

» normal product: x € [0;8] A x = 1]2]
» but 0 # 1[2], so x € [1; 7] Ax =1[2]

(long m1
(for (1=(

Reduced product

Frama-c's integers abstraction uses intervals and modulo
information.

» normal product: x € [0;8] A x = 1]2]

» but 0 # 1[2], so x € [1; 7] Ax =1[2]

» more generally the reduced product of two abstract domains

allows to deduce more information than by doing two
analyses separately

(long m1
(for (1=(

Software Analyzers

Abstract Interpretation in Practice Cel
Sk ”5‘ :

frama .
Abstract domains

Frama-C use mainly 3 domains:

» floating-point values: intervals

v

integral types: intervals and modulo information

» pointers: set of possible base addresses + an offset (which is
an integer).

v

a few other refinements for pointed values :

(long m1
(for (1=(

:
Representation of the state

In order to scale to realistic programs (100 kLOC or more), an
efficient representation of the state of the program at each point
is very important:
» Maximal sharing of the sub-expressions (hash-consing).
» Data structures allowing for fast search and insertion:
variations over Patricia trees.

» some improvements of the Ocaml compiler itself have helped
a lot.

: :
Semantic unrolling

It is possible to regain some precision (at the expense of the
performances) by keeping at most n states separated before
merging or widening.

Example

int main(int c) {

int x = 0;

int y = 0;

if (c<0) x++;

if (c<0) y++;

if xk==y) {x=y=42; %
return O; 3

(long m1
(for (1=(}

running frama-c

: :
Semantic unrolling

It is possible to regain some precision (at the expense of the
performances) by keeping at most n states separated before
merging or widening.

Example

int main(int c¢) {
int x = 0;
int y = 0;

if (c<0) x++;
if (c<0) y++;
if xk==y) {x=y=42; %
return O;

}

running frama-c

: :
Semantic unrolling

It is possible to regain some precision (at the expense of the
performances) by keeping at most n states separated before
merging or widening.

Example

int main(int c¢) {
int x = 0;
int y = 0;

if (c<0) x++;
if (c<0) y++;
if xk==y) {x=y=42; %
return O;

}

running frama-c

: :
Semantic unrolling

It is possible to regain some precision (at the expense of the
performances) by keeping at most n states separated before
merging or widening.

Example

int main(int c¢) {

int x = 0;

int y = 0;

if (c<0) x++;

if (c<0) y++;

if xk==y) {x=y=42; %
return O;

}

running frama-c

: :
Semantic unrolling

It is possible to regain some precision (at the expense of the
performances) by keeping at most n states separated before
merging or widening.

Example

int main(int c¢) {
int x = 0;
int y = 0;

if (c<0) x++;
if (c<0) y++;
if xk==y) {x=y=42; %
return O;

}

running frama-c

: .
Semantic unrolling

It is possible to regain some precision (at the expense of the
performances) by keeping at most n states separated before
merging or widening.

Example

int main(int c¢) {
int x = 0;
int y = 0;

if (c<0) x++;
if (c<0) y++;
if xk==y) {x=y=42; %
return O;

}

running frama-c

: :
Semantic unrolling

It is possible to regain some precision (at the expense of the
performances) by keeping at most n states separated before
merging or widening.

Example

int main(int c¢) {

int x = 0;

int y = 0;

if (c<0) x++;

if (c<0) y++;

if xk==y) {x=y=42; %
return O;

}

running frama-c

frama L. .
Exploiting value analysis

It is possible to use the results of value analysis to produce more
specialized results. This includes currently:

» semantic constant folding
> inputs and outputs of a function
> slicing

» impact analysis

(long m1
(for (1=(

results

	Presentation
	Data-flow Analysis
	Abstract Interpretation
	Abstract Interpretation in Practice

