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Hoare logic

I Hoare triples {P}s{Q}, meaning “If we enter statement s in
a state verifying P, the state after executing s will verify Q”.

I Function contracts, pre- and post-conditions.
I Weakest pre-condition calculus and program verification.
I The Why language.



Position of the problem

Memory update

I in “classical” Hoare logic,
variables are manipulated
directly

I What happens if we add
pointers, arrays,
structures?

Example

int x[2];

/*@ ensures x[0]==0 &&
x[1] == 1;*/

int main () {
int i = 0;
x[] = i;
i=i+1;
x[] = i;

}
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Position of the problem

Memory update

I in “classical” Hoare logic,
variables are manipulated
directly

I What happens if we add
pointers, arrays,
structures?

Example

int x[2];

/*@ ensures x[0]==0 &&
x[1] == 1;*/

int main () {
int i = 0;
x[i] = i;
i=i+1;
x[i] = i;

}

(i + 1 == 0⇒
(i+1 == 0∧x1 == 1))∧
(i + 1 == 1⇒
(x0 == 0 ∧ i + 1 == 1))
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Presentation

Operations
type ’a farray
logic select: ’a farray, int −> ’a
logic store: ’a farray, int, ’a −> ’a farray

Axioms
axiom select_store_eq:
forall a:’a farray. forall i: int. forall v: ’a.

select(store(a,i,v),i) = v
axiom select_store_neq:
forall a:’a farray. forall i,j: int. forall v: ’a.

i <> j −>
select(store(a,i,v),j) = select(a,j)
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Usage

Correspondence

I array assignment is
represented with store

I array access is represented
with select

Example

int x[2];

/*@ ensures x[0]==0 &&
x[1] == 1;*/

int main () {
int i = 0;
x[i] = i;
i=i+1;
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Length and Validity of Accesses

Up to now our arrays are infinite: we can access or update any
cell.

I Each array has a length
I select and store have to be guarded
I Use imperative arrays, i.e. references to functional arrays

Length
logic length: ’a farray −> int
axiom length_pos: forall a: ’a farray. length(a) >= 0
axiom store_length:
forall a:’a farray. forall i: int. forall v: ’a.
length(store(a,i,v)) = length(a)
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Imperative arrays

Guarded accesses
parameter select_:

a:’a farray ref −> i: int −>
{ 0 <= i < length(a) }
’a reads a
{ result = select(a,i) }

parameter store_:
a: ’a farray ref −> i: int −> v:’a −>
{ 0 <= i < length(a) }
unit writes a
{ a = store(a@,i,v) }



Dĳkstra’s dutch flag

Description
Let x be an array whose elements are either BLUE, WHITE, or RED.
We want to sort x ’s elements, so that all BLUE are at the beginning,
WHITE in the middle, and RED at the end.

initial state



Dĳkstra’s dutch flag

Description
Let x be an array whose elements are either BLUE, WHITE, or RED.
We want to sort x ’s elements, so that all BLUE are at the beginning,
WHITE in the middle, and RED at the end.

initial state final state



Dĳkstra’s dutch flag

Description
Let x be an array whose elements are either BLUE, WHITE, or RED.
We want to sort x ’s elements, so that all BLUE are at the beginning,
WHITE in the middle, and RED at the end.

initial state processing

?

blue

current
red

final state



Dutch flag in C

typedef enum { BLUE, WHITE, RED } color;

void dutch(color a[], int length) {
int blue = 0, current = 0, red = length − 1;
while (current < red) {

switch (a[current]) {
case BLUE : a[current]=a[blue]; a[blue]=BLUE;

white++; current++; break;
case WHITE: current++; break;
case RED : red−−; a[current]=a[red];

a[red]=RED; break;
}

}
}



in Why: colors

type color
logic BLUE,WHITE,RED: color

axiom is_color: forall c: color.
c = BLUE or c = WHITE or c = RED

parameter eq_color: c1:color −> c2:color −>
{} bool { if result then c1 = c2 else c1 <> c2 }



Specification

logic monochrome:
color farray, int, int, color −> prop

axiom monochrome_def_1:
forall a: color farray. forall low,high: int.
forall c: color.
monochrome(a,low,high,c) −>

forall i:int. low<=i<high −> select(a,i) = c

axiom monochrome_def_2:
forall a: color farray. forall low,high: int.
forall c: color.

(forall i:int. low<=i<high −> select(a,i) = c) −>
monochrome(a,low,high,c)



Why Program

let flag = fun (t: color farray ref) −>
begin

let blue = ref 0 in
let current = ref 0 in
let red = ref (length !t) in
while !current < !red do

let c = select_ t !current in
if (eq_color c BLUE) then begin

store_ t !current (select_ t !blue);
store_ t !blue BLUE;
blue:=!blue+1;
current:=!current + 1

end

...



Why Program(cont’d)

...

else if (eq_color c WHITE) then
current:=!current + 1

else begin
red:=!red−1;
store_ t !current (select_ t !red);
store_ t !red RED

end
done

end



Function contract

No pre-condition
Post-condition:

{ exists blue: int. exists red: int.
monochrome(t,0,blue,BLUE) and
monochrome(t,blue,red,WHITE) and
monochrome(t,red,length(t),RED)

}



Don’t forget the loop invariant

{ invariant
0<=blue and blue <= current and
current <= red and red <= length(t) and
monochrome(t,0,blue,BLUE) and
monochrome(t,blue,current,WHITE) and
monochrome(t,red,length(t),RED)

}



Proof

Is the program correct?
All proof obligations are discharged by alt-ergo:
gwhy dutch.why

Further specification
Currently, we have only proved that at the end we have a dutch
flag. Other points remain:

I Do we have the same number of blue (resp. white and red)
cells than at the start of the function?
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Position of the Problem

Assignment Rule
Arrays are not the only objects which reflects poorly in the logic.
The assignment rule in Hoare logic:

{P[x ← e]}x = e{P}

contains implicit assumptions:
I Expressions e are shared between the original language and

the logic
I We can always find a unique location x which is modified (no

alias)
Examples of Problematic Constructions

I Pointers
I Structures
I Casts
I ...



Pointers

I Pointer ∼ base address + index
I Must take care of variables whose address is taken

Example

int x;
/*@ ensures
*p == \old(*p) + 1; */
void incr (int* p)

{ (*p)++ }

parameter x: int farray ref
let incr =
fun (p: int farray ref) −>
{ length(p) >= 1 }
store_ p 0

((select_ p 0)+1)
{ select(p,0) =

select(p@,0) + 1
and length(p)=length(p@)

}
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Pointers (cont’d)

/*@ ensures x == 1; */
int main ()
{incr(&x);
return x}

let main = fun (_:unit) −>
{ length(x) = 1 and

select(x,0) = 0 }
begin

incr x;
select_ x 0

end
{ length(x) = 1 and

select(x,0) = 1 }
Demo



Aliases

Position of the Problem
In the previous example, we only had one pointer. In practice,
programs use usually more than that. What happens if two pointers
refer to the same location?

Example
/*@ ensures *p == \old(*p + 1) &&

*q == \old(*q + 1); */
void incr2(int* p, int* q) { (*p)++; (*q)++ }
int x;
/*@ ensures x == 1; */
int main () { incr2(&x,&x); return 0 }
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Aliases

Position of the Problem
In the previous example, we only had one pointer. In practice,
programs use usually more than that. What happens if two pointers
refer to the same location?

Example
/*@ ensures *p == \old(*p + 1) &&

*q == \old(*q + 1); */
void incr2(int* p, int* q) { (*p)++; (*q)++ }
int x;
/*@ ensures x == 1; */
int main () { incr2(&x,&x); return 0 }

this is true only if p and
q are distinct



An erroneous why translation

parameter x: int farray ref
let incr2 = fun (p: int farray ref) −>
fun (q: int farray ref) −>
begin store_ p 0 ((select_ p 0)+1);
store_ q 0 ((select q 0)+1) end

{ select(p,0) = select(p@,0) + 1 and
select(q,0) = select(q@,0) + 1}

let main = fun (_:unit) −> { select(x,0) = 0 }
begin let _ = incr2 x x in select_ x 0 end
{ select(x,0) = 1 }

result
Computation of VCs...
File "pointer2.why", line 28, characters 22-23:
Application to x creates an alias
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parameter x: int farray ref
let incr2 = fun (p: int farray ref) −>
fun (q: int farray ref) −>
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{ select(x,0) = 1 }

result
Computation of VCs...
File "pointer2.why", line 28, characters 22-23:
Application to x creates an alias

error is here



Separation Logic

I Extension of Hoare logic dealing allowing to deal with the
heap

I introduced by O’Hearn and Reynolds in 2001-2002
I new logic operators:

I l 7→ v : the heap contains a single location l with value v
I e1 ∗ e2: the heap is composed of two distinct parts, verifying

e1 and e2 respectively

Example
Pre-condition for incr2:

∃n,m : int.p 7→ n ∗ q 7→ m
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Frame rule

Most Hoare logic inference rules apply to separation logic. A new
rule indicates that it is always possible to extend the heap:

{P}s{Q}
{P ∗ R}s{Q ∗ R}

provided the free variables of R are not modified by s.



Summary

I Separation logic is a very powerful formalism to deal
explicitly with memory.

I Very few tools deal directly with separation logic
I Some of its concepts are incorporated in memory models
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Memory as array

Presentation
In order to deal with pointers, we have to represent somehow the
whole memory state of the program in the logic. This is called a
memory model.

A first attempt
I See the memory as one big array, with pointers as indices.
4 very close to the concrete execution.
4 allows to represent all program constructions.
8 each store can potentially modify something anywhere
8 in practice formulas quickly become untractable.
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Burstall-Bornat Model

In order to overcome the scalability issues of the memory-as-array
model, more abstract models can be used.

I Split the memory in distinct, smaller arrays, for locations
which are known not to overlap.

I For programs with structures, we use an array per field (x->a
and y->b are necessarily distinct).

I Can be extended to distinguish int and float, int and
struct

4 gives smaller formulas
8 some low-level operations (casts, pointer arithmetic) are out

of the scope of the model.
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Memory Regions

I It is possible to go beyond the Burstall-Bornat partition by
using some static analysis to identify regions which do not
overlap

I Used by the Jessie tool to refine its model
I New preconditions (separation of pointers) that need to be

checked

example
int a[2];

void incr2(int* x, int* y) { ... }

int main() {
incr2(&a[0],&a[1]);

return 0;
}
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Memory Regions

I It is possible to go beyond the Burstall-Bornat partition by
using some static analysis to identify regions which do not
overlap

I Used by the Jessie tool to refine its model
I New preconditions (separation of pointers) that need to be

checked

example
int a[2];

void incr2(int* x, int* y) { ... }

int main() {
incr2(&a[0],&a[1]);

return 0;
}

separated(&a[0], &a[1]) holds
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Summary

I Dealing with memory can be tricky
I Functional arrays play a central role
I Aliases and separation properties
I Need for memory models
I How to do that in practice: see tomorrow
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