
Frama-C Training Session

Browsing your code dependencies

Julien Signoles

CEA LIST

Software Reliability Labs



What are we going to do

How to better understand a C code within Frama-C
by extracting semantic information from this code

For what purpose

I helping to start verification of an unknown code

I helping to understand results of heavier analyses

I helping heavier analyses to give better results

I helping audit activities

I helping reverse-engineering activities

In what way

I using a battery of Frama-C plug-ins, either syntactic or
semantic



Syntactic analyzers

Only deduce information from a direct use of the AST

Warnings

I those here-presented use the normalised program, not the
original one

I does not use advanced semantical information (for instance,
the value of a variable at some statement)

I in particular, does not handle pointers

I some may provide incorrect results in some cases

Syntactic analyzers within Frama-C

I analysing code using program syntax only is not the main
goal of Frama-C

I only few syntactic analyzers in Frama-C



Syntactic analyzers
what they (do not) provide

What their are good for

I getting information quickly

What their are not good for

I providing a big amount of useful information

I providing confidence if they may provide incorrect results



Semantic analyzers

In this session, all semantic analyzers are based on abtract
interpretation and the value analysis plug-in

Features

I theoretically sound: always provide correct results, as long as
there are no soudness implementation bugs

I handle pointers correctly

Semantic analyzers within Frama-C

I most Frama-C plug-in are semantic analyzers



Semantic analyzers
warnings

Warnings

I run the value analysis first

I may take a long time

I over-approximate the results

I all the ways to improve the efficiency/precision of the value
analysis apply

I all the limitations of the value analysis also apply

I all the alarms emitted by the value analysis should be
carefully examined



Outline

1. Lightweight analyzers
I Metrics syntactic
I Callgraphs both
I Constant foldings both
I Occurrence semantic

2. Dependencies and effects
I Functional dependencies and effects semantic
I Imperative effects semantic
I Operational effect semantic
I Data scoping semantic

3. Reducing code to analyse
I Slicing semantic
I Sparecode semantic
I Impact semantic



Lightweight analyzers

They are either:

I syntactic analyzers; or

I semantic analyzers remaining quite precise even if the value
analysis does not give so precise results



Metrics
syntactic code metrics

Give some syntactic metrics about the analyzed code.

Features

I defined and undefined functions

I number of calls to each function

I potential entry points (the never-called functions)

I number of loc

I number of conditionals, assignments, loops, calls, gotos,
pointer access

Warnings

I measures are done on the normalised code, not on the
original one

I does not take function pointers into account



Metrics
(continuing)

What is it good for

I helping to measure how difficult the analyses will be

I helping to identify whether some file is missing

I helping to identify which functions have to be stubbed or
specified

I helping to identify entry points of the analyzed code

How to use

I -metrics dumps metrics on stdout

I -metrics-dump <f> dumps metrics on file f

I also (partially) available from the GUI



Syntactic callgraph

Indicate the callers of each function

Features

I representation as graphs into dot files

I notion of service, a group of related functions which seems to
provide common functionalities

Warning

I does not take function pointers into account

What is it good for

I helping to identify entry points of the analyzed code

I helping to discover services provided by an application

I grasping the code architecture



Syntactic callgraph
(continuing)

How to use

I -cg <f> dumps callgraph in dot file f

I -cg-init-func <f> adds function f as a root service

I from the GUI: menu View, then Show Call Graph (still
experimental)



Semantic callgraph

Same as the syntactic callgraph...
But using the program semantics

Features

I correctly deal with function pointers

Warnings

I run the value analysis first: may take a long time

What is it good for

I computing the callgraph for codes with function pointers



Semantic callgraph
(continuing)

How to use

I -scg-dump dumps the callgraph to stdout into dot format

I -cg-init-func <f> uses function f as a root service

I not available from the GUI

Warnings

I currently not the same interface as the syntactic callgraph
(will be fixed soon)

I currently not exactly the same notion of service as the
syntactic callgraph (will be fixed soon)



Users
function callees

Same as the semantic callgraph...
But not represented as a graph

Feature

I display the callees of each functions

Warning

I no service computed

What is it good for

I extracting information with some external automatic tools
(like grep)

How to use

I -users dumps the function callees on stdout



Syntactic constant folding

Fold all constant expressions in the code before analysis

Feature

I replace constant expressions by their results

Warning

I local propagation only: do not propagate the assignment of a
constant to a left-value in the propram

What is it good for

I quickly simplifying programs with lots of constant expressions

I using analysis puzzled by big constant expressions

How to use

I -constfold performs this analysis before all others



Semantic constant folding

Propagate constant expressions in the whole program

More precisely
I generate a new program where expressions of the input

program which are established as constant by the value
analysis are

I replaced by their value
I propagated through the whole program

Features

I the output program is a compilable C code

I it has the same behaviour as the original one

I handle constant integers and pointers, even function pointers



Semantic constant folding
(continuing)

Warning

I does not handle floating-point values yet

What is it good for

I simplifying programs with lots of constant values

I using analysis puzzled by constant expressions

How to use

I -semantic-const-folding propagates constants and
pretty print the new source code

I -semantic-const-fold <f1>, ..., <fn> propagates
constants only into functions f1, ..., fn

I -cast-from-constant replaces expressions by constants
even when doing so requires a pointer cast



Occurrence
where variables are used

Show the uses of a variable in a program

More precisely

I highlight the left-values that may access a part of the
location denoted by the selected variable

Features

I take aliasing into account

I also show uses of a C variable in logic annotations

I mainly a graphical plug-in

Warnings

I quite difficult to use in batch mode

I does not handle logic variable yet



Occurrence
(continuing)

What is it good for

I understanding a quite mysterious piece of code

I discovering some unknown aliases of the program

How to use

I -occurrence dumps the occurrences of each variable on
stdout

I from the GUI: left panel and contextual menu



Outline

1. Lightweight analyzers
I Metrics syntactic
I Callgraphs both
I Constant foldings both
I Occurrence semantic

2. Dependencies and effects
I Functional dependencies and effects semantic
I Imperative effects semantic
I Operational effects semantic
I Data scoping semantic

3. Reducing code to analyse
I Slicing semantic
I Sparecode semantic
I Impact semantic



Dependencies and effects

Features

I several notions of input/output for functions

I several kinds of dependencies



Functional dependencies

Dependencies between inputs and outputs of functions

Definitions

I functional output of a function f: left-value that may be
modified in f when f terminates

I functional input of a function f: left-value which may impact
the output value of a functional output of f

Features

I functional outputs and inputs

I dependencies between outputs and inputs

I indicate whether the analyzer knows that an output is always
modified (when the function terminates)

I ignore local variables (from the next release)



Functional dependencies
(continuing)

How to use

I mainly a batch plug-in

I -deps displays the functional dependencies for each function

I -calldeps displays the functional dependencies by callsite:
if a function is called several times, results are not merged

What is it good for

I providing dataflow specifications of functions

I helping to understand relations between inputs and outputs
of each function

I improving precision of other analyser through -calldeps



Inout
imperative and operational effects

What is read, what is written,
what is read before being written

Definitions

I imperative input of a function f: left-value that may be read
in f

I imperative output of a function f: left-value that may be
written in f

I operational input of a function f: left-value that is read
without having been previously written to, when f terminates



Inout
(continuing)

Features

I imperative inputs and outputs

I operational inputs

Warnings

I mainly a batch plug-in

I operational inputs are still experimental: the specification
may change

I operational outputs exist but are not yet documented



Inout
command line options

How to use

I -input displays the imperative inputs of each function;
locals and function parameters are not displayed

I -input with formals same as -input, but displaying
function parameters

I -out displays the imperative outputs of each function

I -inout displays the operational inputs of each function



Scope
data scoping

Dependencies of a given left-value l at a given program point L

Features

I show defs: statements that may define the value of l at L

I zones: statements that may contribute to define the value of
l at L

I data scope: statements where l is guaranteed to have the
same value as at L

Warning

I still experimental



Scope
(continuing)

What is it good for
I locally better understand what the program does

I relations between left-values
I where the current value of a left-value comes from
I scope of definition of a left-value

How to use

I only available from the GUI: sub-menu Dependencies of the
contextual menu with three entries (Show defs, Zones,
DataScope)



Outline

1. Lightweight analyzers
I Metrics syntactic
I Callgraphs both
I Constant foldings both
I Occurrence semantic

2. Dependencies and effects
I Functional dependencies and effects semantic
I Imperative effects semantic
I Operational effects semantic
I Data scoping semantic

3. Reducing code to analyse
I Slicing semantic
I Sparecode semantic
I Impact semantic



Reducing code to analysed

Features

I generate a new program in a new project

I the new program is compilable

I the new program is usually shorter

I the new program is usually easier to analyze

Warning

I usually is not always...



Slicing
program specialization

Specialize the program according to some user-provided criteria

Features

I generate a new program in a new project

I the new program is compilable

I the new program and the analysed one have the same
behaviour according to the slicing criterion



Slicing
available criteria

What are the available criteria?

Criteria for code observation

I preserving effects of statements

I preserving the read/write accesses of/to left-values

Criteria for proving properties

I preserving behaviour of assertions

I preserving behaviour of loop invariants

I preserving behaviour of loop variants

I preserving behaviour of threats (emitted by the value
analysis)



Slicing
selecting criteria

Pragmas

I /*@ slice pragma ctrl; */ preserves the reachability of
this control-flow point

I /*@ slice pragma expr e; */ preserves the value of the
ACSL expression e at this control-flow point

I /*@ slice pragma stmt; */ preserves the effects of the
next statement

How to use

I from command line options

I from the GUI: left panel and contextual menu



Slicing
command line options

Each option preserves the semantics of the input program
according to a specific criterion

Options of the form -slice-criterion <f1>, ..., <fn>

I -slice-calls: calls to these functions

I -slice-return: the return of the these functions

I -slice-pragma: slicing pragmas in theses functions

I -slice-assert: assertions of these functions

I -slice-loop-inv: loop invariants in these functions

I -slice-loop-var: loop variants in these functions

I -slice-threat: threats in these functions



Slicing
command line options (continuing)

Options of the form -slice-criterion <v1>, ..., <vn>

I -slice-value values of these left-values at the end of the
entry point

I -slice-rd read access to these left-values

I -slice-wr write access to these left-values

Warning

I addresses of the left-values are evaluated at the beginning of
the entry point



Slicing
customisation

Custom options
I -slicing-level <n> specifies how to slice the callees

I 0: never slice the called functions
I 1: slice the callees but preserves all their functional outputs
I 2: slice the callees but create at most 1 slice by function
I 3: most precise slices; create as many slices as necessary

Default level is 2

I -no-slice-undef-functions does not slice the prototype
of undefined functions (default)

I -slice-undef-functions slices the prototype of undefined
functions

I -slice-print pretty prints the sliced code

Warning

I the higher the slicing level is, the slower the slicing is



Slicing

What is it good for

I helping to extract the signifiant parts of a program according
to your own criteria

I helping to understand where a behavior comes from

I helping analyses to give better results

I helping audit activities



Sparecode
code cleaner

Remove useless code of the program

Features

I generate a new program in a new project

I the new program is compilable

I the values assigned to the output variables of the main
function are preserved in the new program

I slicing pragmas may be used to keep some statements
I /*@ slice pragma ctrl; */
I /*@ slice pragma expr e; */
I /*@ slice pragma stmt; */



Sparecode
(continuing)

Warnings

I still experimental

I partial support of ACSL: only the annotations inside function
bodies (e.g. assertions) are processed at the moment; all the
others are ignored and do not appear in the new program

What is it good for

I help to discover what is useless in a program

I may improve the results of others analyzers which are
puzzled by some useless code



Sparecode
command line options

How to use

I -sparecode-analysis removes statements and functions
that are not useful to compute the result of the program

I -rm-unused-globals removes unused types and global
variables

I -sparecode-no-annot may remove some useless code even
if it changes the validity of some ACSL properties



Impact

What could be discovered
if the side effect of a statement would be revealed

More precisely

I a statement s is impacted by a statement s’ iff modifying
the effect of s’ by another possible one may modify the
effect of s

I an effect is possible iff there is an execution of the program
that generates this effect. For instance, the possible effects
of z=x+y; in x=c?0:1; y=c?0:1; z=x+y are z becomes
equal to 0 or 2.

Warning

I still experimental



Impact
(continuing)

What is it good for

I helping to understand what a statement is useful for

I helping to apprehend code changes

I helping audit activities, in particular security audits

How to use

I -impact-pragma <f1>, ..., <fn> computes the impact
from the pragmas in functions f1, ..., fn. Only the following
pragma is yet usable.
/*@ impact pragma stmt; */

I -impact-print dumps the result of the analysis on stdout

I from the GUI: left panel and contextual menu



Conclusion

Battery of Frama-C plug-ins presented

For what purpose

I helping to start verification of an unknown code

I helping to understand results of heavier analyses

I helping heavier analyses to give better results

I helping audit activities

I helping reverse-engineering activities

Browse your code dependencies more easily!


