
caller called

.

.

.

.

.

.

.

.

.

.

.

.

.

State before the call site

S0

S1

State before the return statement of f

Sn

“S0 u Sn”

State after the call site

1. evaluation of the arguments exprs

2. start_call(S0) = Compute(S1)

3. enter_scope(flocals)

4. analysis of f

5. enter_scope(RET )

6. RET = return_expr ;

7. evaluation of the formal arguments args

8. leave_scope(fformals ∪ flocals)

9. finalize_call(S0, Sn)

10. reduction of the concrete arguments,
assuming exprs = args at the end of f

11. v = RET ;

12. leave_scope(RET )

start_call(S0) = Result(Sn)
approximate_call(S0) = Sn

m
e
m_

e
x
e
c

c
o
m
p
u
t
e_

u
s
i
n
g_

s
p
e
c

in transfer_stmt

in partitioned_dataflow

in compute_function

Figure 1: Interpretation of the call

1



Listing 1: Call to a function f

1 int f (args) {
[...]
return return_expr;

}

6 int main () {
...
v = f (exprs);
...

} �
Interpretation of a Function Call within EVA
Step by Step

Figure 1 outlines each stage of the interpretation of a function call. The magenta lines highlight
the functions provided by an abstract domain and dedicated to function calls. The others com-
putations are performed by the standard transfer functions for the evaluation of expressions and
interpretation of statements. The teal edges refer to actions written in transfer_stmt.ml, while
the purple edges refer to actions written in partitioned_dataflow.ml. The left line gathers the
computations carried out at the call site, while the right line gathers the computations carried
out in the body of the called function.

The stages of the interpretation of a function call are as follows:

1. The concrete arguments exprs are evaluated at the call site.

2. start_call builds the state at the entry point of function f . This steps includes the entry
in scope of the formal arguments fformals = args, and their instantiation with the value of
the concrete arguments (evaluated at step 1).

3. The local variables of f enter in scope.

4. Standard dataflow analysis of f up to the state inferred before the return statement of f .

5. The special variable RET enters in scope.

6. The special variable RET is assigned to the return value, through a standard assignment.

7. The formal arguments args of the function are evaluated, and the resulting values vargs are
stored.

8. The formal and local variables leave the scope.

9. finalize_call merges the state at the call site and the state at the end of the called
function.

10. At the call site, the concrete arguments are reduced to the values vargs , provided that
args = exprs at the end of the function f . This condition holds if the values of args and
exprs have not been modified by f .

11. The assignment of the return value of f , through a regular assignment of the value of RET .

12. The special variable RET leaves the scope.

2


