
1st Asian-Pacific Summer School on Formal Methods
Class 11-12: Deductive verification with Frama-C

1 Introduction

The goal of these classes is to prove with Frama-C and its jessie plugin that a C
implementation of insert sort is correct. The C code itself is in insert sort.c.
The specification, helper annotations and Coq proofs will be built during the
classes.

The algorithm work as follows. We first have a function which insert a new
value v in an already sorted array a of length l (provided a[l] is a valid location).
For that, we start at index l − 1 and shift each cell to the right until we reach
an index i for which a[i] <= v: v can then be inserted at index i + 1.

The sort function itself inserts each element of the original array one by one,
so that at each step i, the sub-array of length i is sorted.

A C implementation is the following:

void insert(int* arr, int length, int val);

void insert sort(int* arr, int length);

void insert(int* arr, int length, int val) {
int i = length −1;
while(i≥0 ∧ arr[i] > val) { arr[i+1] = arr[i]; i−−; }
arr[i+1] = val;
return;

}

void insert sort(int* arr, int length) {
for(int i = 1; i < length; i++) { insert(arr,i,arr[i]); }

}

The properties that we want to establish are the following:

• safety: all array accesses are valid

• sort: at the end of the insert sort function, the array arr is sorted

• elements: at the end of insert sort, arr contains the same elements as
before

2 Logic Specifications

Before writing the function contracts, we have to define the predicates that we
will use.

1



1. Define a predicate sorted which, given an array and its length is true iff
the value of each cell of the array is less than or equal to the value of the
next one.

2. (Optional) Write a lemma that says that this predicate is equivalent to
the predicate seen during the course.

3. In order to ensure that the array always contain the same elements, we
will use a function nb occ that counts the number of occurrences of a
given value in an array. This function can be defined axiomatically:

• the function takes as input an array, the two bounds between which
we count the occurrences, and the value to be searched

• a first axiom indicates that if the higher bound is less than the lower
one, then nb occ is 0

• if the bounds low and high are in the correct order, there are two
cases (thus two axioms): the number of occurrences from from low
to high is equal to the number of occurrences from low to high − 1
if the last cell does not contain the value of interest. Otherwise, we
have to add one to this number.

3 Function Contracts

3.1 insert sort

The main function of the program is insert sort. We thus start by writing its
specification. This is the main property that we want to establish.

1. What are the pre-conditions for the function (validity of the pointers,
possible values for the length)?

2. What are the post-conditions (for the sort and elements properties respec-
tively)?

3.2 insert

This function is an auxiliary function. Its specification must be complete enough
to allow us to prove the contract of insert sort.

1. What are the pre-conditions (validity, possible values of length, fact that
the array is sorted)?

2. What are the locations that may be assigned by the function?

3. What is the post-condition for the sort property?

4. What is the post-condition for the elements property? (Don’t forget that
we are inserting an element, so the number of occurrences is not the same
for all values).

2



4 Loop invariants

Loop invariants are not part of the specification per se, but it is not possible to
perform a proof without them. For both loops, the invariants must in particular
indicate the following things

• interval of variation of the indices

• locations that are unchanged

• number of occurrences of the various elements

For insert, it is in addition important to state that all cells seen so far are
greater than val, and that they have been shifted on the right.

For insert sort, the main invariant is that the beginning of the array is
sorted.

5 Proof

Once you’re confident with your contracts and your invariants, you may try to
have alt-ergo prove the program. For that, the command line

frama-c -jessie insert_sort.c

will launch the gwhy interface with all proof obligations generated by the tool
chain. You can then try to have alt-ergo discharge automatically all of them.
If this works, you’re done. Otherwise, you have to check the failed formulas to
see if you must refine your specification (e.g. an invariant is too weak to prove
the post-condition, or too strong and does not hold), or if alt-ergo needs some
more help.

In particular, a few lemmas about nb occ might be useful:

1. split: if we take a third index med between low and high, the number of
occurrences between low and high is the sum of the occurrences between
low and med and between med+1 and high

2. copy: if a portion (between indices low2 and high2 of an array in a state
L2 is a copy of another portion of the array in a state L1 (between low1
and high1), the number of occurrences between low2 and high2 in state
L2 is the same as the number of occurrences between low1 and high1 in
state L1

3. reverse: the axioms give a recursive definition by defining the number of
occurrences between low and high in terms of the number of occurrences
between low and high-1, but we can establish that there is also a relation
with the number of occurrences between low-1 and high

In any case, we need Coq to complete the missing proofs. The following
command will instruct Frama-C to generate a Coq file in which the “proofs”
consists in a call to ergo:

3



frama-c -jessie -jessie-atp coq \
-jessie-why-opt="--coq-tactic ergo" insert_sort.c

In addition, Frama-c launches coqc which will fail at the first proof obliga-
tion that alt-ergo cannot discharge. You must then edit the generated Coq file
insert sort why.v, which is in directory insert sort.jessie/coq/1 with co-
qide or Proof General and replace the calls to alt-ergo that fail by a real Coq
proof.

Note that calling alt-ergo through Coq is less efficient than through gwhy.
You might want to give alt-ergo a bit more time by writing

Dp_timeout 20.

at the beginning of the Coq file.
Since writing a Coq proof can be quite time consuming, be really sure that

your specification is correct before that.

1Don’t forget to include the directory in Coq’s search path. You can also cd to that
directory.

4


