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Motivations

Main objective
Statically determine some semantic properties of a program

» safety: pointer are all valid, no arithmetic overflow, ...
termination

>
» functional properties
» dead code

>

Embedded code ’

» Much simpler than desktop applications

» Some parts are critical, i.e. a bug have severe consequences ,

teng i (financial loss, or even dead people)

{for(i=C

» Thus a good target for static analysis




Some examples

» During first gulf war (1991), a patriot missile failed to
intercept an lragi missile due to rounding errors

» Failure of Ariane 5 maiden flight (arithmetic overflows)

> ...
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Some tools

Polyspace Verifier Checks for (absence of) run-time error
C/C++/Ada)
http:
//www.mathworks.com/products/polyspace/

ASTREE Absence of error without false alarm in
SCADE-generated code
http:
//www.di.ens.fr/~cousot/projets/ASTREE/ E
Coverity Checks for various code defects (C/C++/Java) PR
http://www.coverity.com ; '
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!
Some tools (cont'd)

a3 Worst-case execution time and Stack depth
http://www.absint.com/

FLUCTUAT Accuracy of floating-point computations and origin
of rounding errors
http:
//www-1list.cea.fr/labos/fr/LSL/fluctuat/
Frama-C A toolbox for analysis of C programs
http://frama-c.cea.fr/ ST
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A brief history

» 90’s: CAVEAT, an Hoare logic-based tool for C programs
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A brief history

» 90’s: CAVEAT, an Hoare logic-based tool for C programs

» 2000's: CAVEAT used by Airbus during certification process
of the A380

» 2002: Why and its C front-end Caduceus

» 2006: Joint project to write a successor to CAVEAT and
Caduceus

» 2008: First public release of Frama-C
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Architecture

» A modular architecture
» Kernel:

» CIL (U. Berkeley) library for the C front-end

» ACSL front-end

» Global management of analyzer's state
» Various plug-ins for the analysis

» Value analysis (abstract interpretation)

» Jessie (translation to Why) .

» Slicing Y
» Impact analysis o
>
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Software Analyzers

Concrete execution

Concrete semantics
» Formalisation of all possible behaviors of a program

» Function which associate to a program an element of the
concrete domain of interest

» Trace semantics: associate to each program point the values
that the variables can take at this point

value of x
A
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Software Analyzers

int fact(int x
int z = 1,y
if (x<4) { x
while (y<=x)

Z=Z*Y;
y++;

I

}

return z;
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Example

int fact(int x) {
int z = 1,y = 1;

if (x<4) { x=4; }
while (y<=x) {
Z=Z*Y;
y++;
+ .
return z; ;é




Fixpoint Computations
» Control-flow graph (CFG) of the program
» Each edge has an associated a transfer function f;; : L — L
» System of equations ; = Uyeey{fi(€)}
» Solved by successive iterations (Kleene)
4
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e Control-flow Graph

int fact(int x) { @
int z = 1,y = 1;®

ye—1l|z«1
if (x<4) { x = 4; <::>}
while (y<=x) {

Z=ZXY;

y>Xx

y++;

(for (i=( }
-
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Any non-trivial semantic property of a program is undecidable.
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Example
Halting problem: it cannot be decided statically if a given program
will always terminate or not
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Software Analyzers

Rice's Theorem
Any non-trivial semantic property of a program is undecidable.

Example
Halting problem: it cannot be decided statically if a given program
will always terminate or not

Approximations
Even if the general case is unreachable, it is possible to devise ’
~ analyses that give useful information
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Approximations

» Ensuring termination of the analysis
» Use abstract values
» Allows approximations

» may lead to false alarm
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S
Approximations

» Ensuring termination of the analysis
» Use abstract values
» Allows approximations

» may lead to false alarm

Abstract interpretation
» Formalized by Patrick and Radhia Cousot [POPL'77]

» Give relations between concrete and abstract domains (Galois
connection)

» Termination (widening)

» Mixing information from distinct abstractions (reduced
product)
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:
Correction and completeness

The approximation can be either
correct: All concrete behavior are represented by the
abstraction
complete: All abstract behaviors are the representation of a
concrete trace

but not both

values
A
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Reduced product

Frama-c's integers abstraction uses intervals and modulo
information.

» normal product: x € [0;8] A x = 1]2]
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Reduced product

Frama-c's integers abstraction uses intervals and modulo
information.

» normal product: x € [0;8] A x = 1]2]

» but 0 # 1[2], so x € [1; 7] Ax =1[2]

» more generally the reduced product of two abstract domains

allows to deduce more information than by doing two
analyses separately
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frama .
Abstract domains

Frama-C use mainly 3 domains:

» floating-point values: intervals

v

integral types: intervals and modulo information

» pointers: set of possible base addresses + an offset (which is
an integer).

v

a few other refinements for pointed values :
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Representation of the state

In order to scale to realistic programs (100 kLOC or more), an
efficient representation of the state of the program at each point
is very important:
» Maximal sharing of the sub-expressions (hash-consing).
» Data structures allowing for fast search and insertion:
variations over Patricia trees.

» some improvements of the Ocaml compiler itself have helped
a lot.
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Semantic unrolling

It is possible to regain some precision (at the expense of the
performances) by keeping at most n states separated before
merging or widening.

Example

int main(int c) {

int x = 0;

int y = 0;

if (c<0) x++;

if (c<0) y++;

if xk==y) {x=y=42; %
return O; 3
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Exploiting value analysis

It is possible to use the results of value analysis to produce more
specialized results. This includes currently:

» semantic constant folding
> inputs and outputs of a function
> slicing

» impact analysis
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