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What is Jessie?

I Hoare-logic based plugin, developed at INRIA Saclay.
I Input: a program and a specification
I Jessie generates verification conditions
I Use of Automated Theorem Provers to discharge the VCs
I If all VCs are proved, the program is correct with respect to

the specification
I Otherwise: need to investigate why the proof fails

I Fix bug in the code
I Adds additional annotations to help ATP
I Interactive Proof (Coq/Isabelle)
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What is Jessie Useful for?

Usage
I Proof of functional properties of the program
I Modular verification (function per function)

Limitations
I Cast between pointers and integers
I Limited support for union type
I Aliasing requires some care
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From Frama-C to Theorem Provers

C file

Frama-CJessieWhy fileWhy

Verification conditions

Automated provers:
Alt-ergo
Simplify
Z3
...

Proof assistants:
Coq
Isabelle
PVS



A first example

Check safety of a function
I Pointer accesses
I Arithmetic overflow
I Division

unsigned int M;

void mean(unsigned int* p, unsigned int* q) {
M = (*p + *q) / 2;

}
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Behavior of a function

I Functional specification
I Pre-conditions (requires)
I Post-conditions (ensures)

Example
unsigned int M;
/*@

requires \valid(p) ∧ \valid(q);
ensures M ≡ (*p + *q) / 2;

*/
void mean(unsigned int* p, unsigned int* q) {

if (*p ≥ *q) { M = (*p − *q) / 2 + *q; }
else { M = (*q − *p) / 2 + *p; }

}
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Side effects

The specification:
/*@

requires \valid(p) ∧ \valid(q);
ensures M ≡ (*p + *q) / 2;
assigns M;

*/
void mean(unsigned int* p, unsigned int* q);
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Hoare logic

I Introduced by Floyd and Hoare (70s)
I Hoare triple: {P}s{Q}, meaning: If P holds, then Q will

hold after the execution of statement s
I Deduction rules on Hoare triples: Axiomatic semantic



Some rule examples

{P}{}{P}
P ⇒ P ′ {P ′}s{Q′} Q′ ⇒ Q

{P}s{Q}

{P}s_1{R} {R}s_2{Q}
{P}s_1;s_2{Q}

e evaluates without error
{P[x ← e]}x=e;{P}

{P ∧ e}s_1{Q} {P ∧ !e}s_2{Q}
{P}if (e) { s_1 } else { s_2 }{Q}

{I ∧ e}s{I}
{I}while (e) { s }{I ∧ !e}



Weakest pre-condition

I Program seen as a predicate transformer
I Given a function s, a pre-condition Pre and a post-condition

Post
I We start from Post at the end of the function and go

backwards
I At each step, we have a property Q and a statement s, and

compute the weakest pre-condition P such that {P}s{Q} is
a valid Hoare triple.

I When we reach the beginning of the function with property
P, we must prove Pre ⇒ P.
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Some rules

I Assignment
WP(x=e,Q) = Q[x ← e]

I Sequence

WP(s_1;s_2,Q) = WP(s_1,WP(s2; Q))

I Conditional

WP(if (e) { s_1 } else { s_2 },Q) =
e⇒WP(s_1,Q) ∧ !e⇒WP(s_2,Q)

I While

WP(while (e) { s },Q) =
I ∧ ∀ω.I ⇒ (e⇒WP(s, I) ∧ !e⇒ Q)



Memory Model

Issue
How can we represent memory operations (*x, a[i]=42,. . . ) in
the logic

I If too low-level (a big array of bytes), proof obligations are
intractable.

I If too abstract, some C constructions can not be represented
(arbitrary pointer casts, aliasing)

I Standard solution (Burstal-Bornat): replace struct’s
components by a function



Aliasing

Issue
The same memory location can be accessed through different
means:

int y;
int* yptr = &y;
*yptr = 3;
/*@ assert y ≡ 3; */

I Again, supposing that any two pointers can be aliases would
lead to intractable proof obligations.

I Memory is separated in disjoint regions
I Some hypotheses are done (as additional pre-conditions)



Jessie Usage

Function Contracts

Generating Proof Obligations

Advanced Specification
Example 1: Searching
Example 2: Sorting



A concrete example

Informal spec
I Input: a sorted array and its length, an element to search.
I Output: index of the element or -1 if not found

Implementation
int find_array(int* arr, int length, int query) {

int low = 0;
int high = length − 1;
while (low ≤ high) {

int mean = low + (high −low) / 2;
if (arr[mean] ≡ query) return mean;
if (arr[mean] < query) low = mean + 1;
else high = mean − 1;

}
return −1;

}



An example

Informal specification
I Input: an array and its length
I Output: the array is sorted in ascending order

int index_min(int* a, int low, int high);

void swap(int* arr, int i, int j);

void min_sort(int* arr, int length) {
for(int i = 0; i < length; i++) {

int min = index_min(arr,i,length);
swap(arr,i,min);

}
}
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