Software Analyzers

1st Asian-Pacific Summer School on Formal
Methods
Course 12: Deductive verification of C programs
with Frama-C and Jessie

Virgile Prevosto

CEA List

August 30, 2009

frama

Software Analyzers

Jessie Usage

Function Contracts

Advanced Specification
Example 1: Searching
Example 2: Sorting

(long m1
(for(i=C

outline

¢ C

Software Analyzers

Jessie Usage

: :
What is Jessie?

Software Analyzers

Hoare-logic based plugin, developed at INRIA Saclay.
Input: a program and a specification
Jessie generates verification conditions

Use of Automated Theorem Provers to discharge the VCs

vV v.v. v .Y

If all VCs are proved, the program is correct with respect to
the specification
Otherwise: need to investigate why the proof fails

» Fix bug in the code) .
» Adds additional annotations to help ATP E
» Interactive Proof (Coq) 5

v

(long m1
(for (1=(

: :
What is Jessie Useful for?

Usage
» Proof of functional properties of the program

» Modular verification (function per function)

Limitations
» Cast between pointers and integers

» Limited support for union type

» Aliasing requires some care ,

(longm
(for i=C

From Frama-C to Theorem Provers

Why file

Verification conditions

:
A first example

Check safety of a function
» Pointer accesses

» Arithmetic overflow

> Division
unsigned int M;
void mean(unsigned int* p, unsigned int* q) {

M= (*p + *q) / 2; L
b LTS

(long m1

(for(i=C

[v am a] . P .
A first specification

unsigned int M;

/*@ requires \valid(p) A \valid(q);
*/

void mean(unsigned int* p, unsigned int* q) {
if ()p > *q@) { M = (*p — *q) / 2 + *q; }
else { M = (xq — *p) / 2 + *p; }

}

(longm
(for i=C

¢ C

Software Analyzers

Function Contracts

T ACSL

Safety of a program is important, but this is not sufficient: We
also want it to do “the right thing"...

But in order for jessie to verify that, we need to explain it what
“the right thing” is, and to explain it formally

This is the purpose of ACSL, ANSI/ISO C Specification
Language.

» Behavioral specification language a la JML and Eiffel
» Function contracts

» Logic models R

» Independent from any plug-in A

: :
Behavior of a function

Software Analyzers

» Functional specification
» Pre-conditions (requires)

» Post-conditions (ensures)

Example

unsigned int M;

/*@
requires \valid(p) A \valid(q);
ensures M = (*p + *q) / 2;

*/

void mean(unsigned int* p, unsigned int* q) { e
if (xp > *q) { M= (*p — *q) / 2 + *q; } ’

 else {M=(xq — *p) / 2 + xp; }

(for (1=(

}

f [l 2l a . .
Logic function

One can define logic functions as follows:

/*0@ logic integer mean(integer x, integer y) =

(x+y)/2; */

(long m1
(for (i=C

[v am a] .
Side effects

The specification:

/*@
requires \valid(p) A \valid(q);
ensures M = (*p + *q) / 2;

*/

void mean(unsigned int* p, unsigned int* q);

An admissible implementation: ,
void mean(int *p, int* q) { D gl
*p = xq =M =0; } 5

(long m1
{for (i=C

:
Side effects

The specification:
/*@

requires \valid(p) A \valid(q);

ensures M = (¥p + *q) / 2;

ensures *p = \old(*p) A *q = \old(*q);
*/

void mean(unsigned int* p, unsigned int* q);

An admissible implementation:

void mean(int *p, int* q) {
if (xp > *q) ... else ... F
A=0; } 3

(longm
(for i=C

:
Side effects

The specification:

/%@
requires \valid(p) A \valid(q);
ensures M = (*p + *q) / 2;
assigns M;

*/

void mean(unsigned int* p, unsigned int* q);

An admissible implementation:
void mean(int *p, int* q) {
if ()p > *q@) { M= (xp — *q) / 2 + *q; }
else { M = (xq — *p) / 2 + *p; } e
) -

(longm
(for i=C

Software Analyzers

» Post condition true when the function exits normally.
» By default, a function always terminates...
» ... as long as its pre-condition holds.

/*@
requires \valid(p) A \valid(q);
ensures ...
assigns M;
terminates \true;
*/

void mean(int* p, int* q) {

- if (p = NULL V q = NULL) while(1);
(for (i=(lf (*p 2 *q)

Termination

frama

Software Analyzers

Advanced Specification
Example 1: Searching
Example 2: Sorting o

(long m1
(for (i=(

A concrete example

Informal spec
» Input: a sorted array and its length, an element to search.

» Qutput: index of the element or -1 if not found
Implementation

int find_array(int* arr, int length, int query) {
int low = O;
int high = length — 1;
while (low < high) {
int mean = low + (high —low) / 2;

if (arr[mean] = query) return mean; .
if (arr[mean] < query) low = mean + 1; _y
else high = mean — 1; 5

(long m1
(for (1=(}

return —1;

Predicate definition

What does “sorted” mean?
/*@

predicate sorted{L}(int* arr, integer length) =

V integer i,j; 0<i<j<length —> arr[i] < arr[j];
*/

ACSL predicates
» Give a formal definition of the properties of objects
» Can be used in annotations

» Must be tied to a program point when performing a memory |,
access

- » Some predicate can relate two or more program points (see

{for(i=C

after)

: :
Function behaviors

find_array has two distinct behaviors, depending on whether
the query is in the array or not. This can be reflected in the
contract in the following way:

/%@
behavior exists:
assumes 1 integer ij;
0<i<length A arr[i] = query;
ensures arr[\result] = query;

behavior not_exists:
assumes V integer ij;)
0<i<length — arr[i] # query; s

. ensures \result = —1;

o
Loop invariant

Role of the loop invariant
» Must be inductive (if it holds at the beginning, then it holds
at the end)
» Capture the effects of one loop step
» Represents the only things known at the exit of the loop
» Must be strong enough to allow to derive the post-condition
Example
/*@
loop invariant 0 < low;
loop invariant high < length;
loop invariant V integer i; ‘
0 < i< low = arr[i] < query; A
| loop invariant V integer ij; §
high < i < length — arr[i] > query;

Software Analyzers

Total correctness
» Needed for proving termination

» Expression which strictly decreases at each step

> And stay non-negative

Example
/*@ loop invariant
loop variant high — low;

*/

(long m1
{for (i=C

Loop variant

(long m1
(for (1=(

Software Analyzers

Usage
» A property which must hold at a given point
» Allows to guide the automated provers

» Can be associated to a particular behavior

Example

int mean = low +
//@ assert low <
if (arr[mean] =

(high —low) / 2;
mean < high;
query)

//@ for not_exists: assert \false;

Assertions

f [l 2l a

(long m1
(for (1=(

Software Analyzers

Informal specification
» Input: an array and its length

» Qutput: the array is sorted in ascending order
int index_min(int* a, int low, int high);
void swap(int* arr, int i, int j);

void min_sort(int* arr, int length) {
for(int i = 0; i < length; i++) {
int min = index_min(arr,i,length);
swap(arr,i,min);

}

}

An example

f [l 2l a .
Function Calls

» Post-conditions and assigns are the only things that the
caller knows when the callee returns

» Caller must fulfill the pre-condition of callee before the call

(longm
(for i=C

: :
Inductive Predicates

» Case definition: H; = Pred

» Horn clause: Pred can only appear positively in H; (ensures
consistency)

» Smallest fixpoint: predicate holds iff one of the H; holds

/*@ inductive Permut{L1,L2}

(int a[], integer 1, integer h) {

case Permut_trans{L1,L2,L3}:

V int all], integer 1, h;
Permut{L1,L2}(a, 1, h) A
Permut{L2,L3}(a, 1, h) —)

Permut{L1,L3}(a,1, h) ; <
case Permut_swap{L1,L2}: ... 4

(long m1

(for (i=0 }

: :
Axiomatics

It is also possible to have axiomatic definitions of predicates and
logic functions:

/*@ axiomatic Permut{
predicate permut{L1,L2}(int* arr, integer length);
axiom perm_refl{L}:
V int* arr, integer length; permut{L,L}(arr,length)
axiom perm_swap{L1,L2}:
V int* arr, integer length,i,j;
0<i<length AN 0< j < length —
swap{L1,L2}(arr,i,j) = permut{L1,L2}(arr,length)
axiom perm_trans{L1,L2,L3}: V int* arr; : fc
V integer length; permut{L1,L2}(arr,length) — L]
~ permut{L2,L3}(arr,length) — :
permut{L1,L3}(arr,length) ; }*/

	Jessie Usage
	Function Contracts
	Advanced Specification
	Example 1: Searching
	Example 2: Sorting

